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Abstract—We present and evaluate new hybrid recovery al-
gorithms for outdoor IoT networks. Rather than using the 2D
disk model, the algorithms use 2.5D terrain data to compute
intersections of commsheds that identify potential positions for
recovery nodes, and they compute unions of viewsheds to prior-
itize potential recovery positions. The algorithms are evaluated
using actual terrain data. Results show that on average, TARCI-
GP achieves post-recovery coverage that approaches that of a
similar algorithm that incorporates an exhaustive step, while
using two orders of magnitude less CPU time during pre-
failure planning. Also, TARCI-GP achieves better post-recovery
coverage compared to a proxy for 2D recovery algorithms.
And finally, since the TARCI variants consider coverage when
choosing recovery positions, we discovered that on average,
TARCI variants that consider more distant recovery positions
during pre-failure planning tend to achieve better post-recovery
coverage.

Index Terms—Outdoor IoT, 2.5D Terrain, Network Recovery

I. INTRODUCTION

Outdoor IoT networks have a range of applications in-
cluding surveillance and environmental monitoring. IoT nodes
are equipped with sensors that sense environmental data and,
through the wireless networks that interconnects them, trans-
mit sensed data to data collection sites known as data sinks.

Sensors that equip outdoor IoT nodes are of two main
kinds. Contact sensors measure environmental conditions at a
node’s location, for instance temperature and humidity. Non-
contact sensors measure environmental conditions at a distant
location and require a clear line of sight, or CLOS. Examples
of non-contact sensors are ultrasonic microphones, cameras,
and infrared imagers. This distinction is important because
the CLOS requirement of non-contact sensors depends on the
deployment area.

Our work considers outdoor IoT networks of non-contact
sensors deployed over terrain. (Sometimes we will refer to
these nodes as cameras.) This combination of camera nodes
and terrain is important because the landforms of the terrain
itself affect a camera’s view and network connectivity, and
thereby the effectiveness of a node’s position.

In order to guarantee that sensor nodes are able to deliver
sensed data to the data sink, outdoor IoT networks must

be kept connected, meaning that all nodes of the network
should be able to communicate with the data sink, either
directly or indirectly through neighboring nodes. Although
network connectivity can be ensured during initial deployment,
subsequent node failures can partition the network, blocking
one or more otherwise functional nodes from communication
with the sink.

Recovery algorithms compensate for node failures, typically
through node mobility. The primary goal of a recovery algo-
rithm is to restore connectivity, but possible additional goals
include mitigating loss of coverage and controlling the energy
expenditure of repositioning nodes. Most existing solutions
assume two-dimensional (2D) models of the environment, in
which nodes are restricted to a plane. Some research uses
3D models, in which nodes are free to move unconstrained
through the air or underwater. For our work, however, the
deployment area is the surface of outdoor terrain, which we
call 2.5D.

Recovery from node failures has been researched for de-
ployments whose nodes are limited to 2D and deployments
whose nodes can freely travel in 3D, with researchers propos-
ing numerous mechanisms. (See the surveys by Younis et al.
[1] [2].) But outdoor 2.5D IoT networks are unique because
the nodes are restricted to the surface of terrain, meaning that
an outdoor IoT deployment is poorly modeled as either a 2D
plane or a 3D space. Hence, current algorithms for 2D and 3D
recovery are a poor match for outdoor IoT, and so we explore
recovery algorithms that consider the effects of outdoor terrain
directly. We discuss in more detail the effects that 2.5D terrain
has on communication and sensing in Section II.

This paper introduces the first suite of recovery algorithms
for outdoor IoT networks deployed over 2.5D terrain that
repair network partitions while mitigating coverage losses. One
of the proposed algorithms yields results that are comparable
to an exhaustive approach but uses two orders of magnitude
less CPU time during pre-failure planning. We also show that
results of our algorithm, which is designed for 2.5D terrain,
are superior when compared to results that would be possible
by algorithms that are designed assuming 2D deployments.



TABLE I
DEFINITIONS

cut vertex A node whose failure will partition a network, thereby
preventing communication between at least one node
and the sink.

critical node A node of the network that is a cut vertex, and with
some heuristic recovery algorithms, a node that is
suspected to be a cut vertex.

CLOS Clear Line Of Sight. Describes a direct path between
two terrain points that has no obstructions.

visibility The ability of a sensor to see a target without obstruc-
tion. Requires CLOS. In practice, visibility is restricted
by a maximum range. The range limit can be due to,
for example, attenuation (a microphone hearing sound)
or resolution limits (a camera viewing a distant object).

viewshed The positions of terrain that are visible to a sensor or a
set of sensors.

coverage The number of targets in a viewshed (point coverage)
or the area of a viewshed (area coverage).

commshed Communications viewshed. The positions of terrain at
which one could communicate with the node or nodes
that define the commshed.

The rest of this paper is organized as follows: Section II
defines and states our problem, and we discuss related work
in Section III. In Section IV, we present four variants of
our 2.5D recovery algorithm, TARCI. Then in Section V, we
describe how we evaluated the algorithms, and in Section VI
we present our results. Section VII concludes the paper with
some directions for future work.

II. PROBLEM STATEMENT

We explore the problem of repairing an outdoor IoT network
following the failure of a single node. An important distinction
of our recovery work is in the definition of the deployment
region and the characteristics that the deployment region
has on communication and visibility. Table I summarizes
terminology definitions that will be used throughout the paper.

We define the deployment region as 2.5D terrain: As
previously pointed out, terrain landforms affect the sensing and
communication range of outdoor IoT nodes and thus 2D terrain
models are not adequate. We do not consider the region 3D
because the third dimension z = h(x, y), which is the height
of the terrain’s surface, depends on the other coordinates (x, y)
rather than being an independent dimension. So instead, we
call outdoor IoT terrain 2.5D [3]. This means that the nodes
rest on the upper surface of the hills and valleys of terrain, and
the terrain itself can block both communication and visibility.

Identifying the deployment region as 2.5D terrain is key
because it leads us to understand that we cannot use a simple
2D disk model to predict coverage and connectivity. Instead,
we must use a Clear Line of Sight (CLOS) visibility model.
However, a pure CLOS model is inadequate for both coverage
and communication.

Regarding coverage, practical cameras (and other types of
non-contact sensors) have limited resolution, in the case of
cameras, optical resolution. This means that, for a given sensor
and environmental conditions (e.g., camera/lens pair, lighting,

Fig. 1. Range-limited viewshed of a two-node network on 2.5D terrain.
Lighter areas represent regions with higher elevation, and darker areas
represent regions with lower elevation. Blue squares represent the positions
of nodes. Yellow areas indicate the locations of targets that have CLOS (clear
line of sight) visibility to at least one of the nodes.

atmospheric conditions, and target size and contrast) there is
a maximum event-detection (or sensing) range, RS . Conse-
quently, we use a range-limited CLOS model for coverage,
meaning that a target must be line-of-sight visible to the node
and it must be no farther away than RS . (Note that while our
analysis uses arbitrary values for RS , one can adjust the values
to model a chosen resolution.)

For measuring coverage, the range-limited CLOS model
defines the concept of a viewshed [4], which is the region
of terrain that is visible to a node. Fig. 1 shows an example
of the viewsheds of a two-node deployment.

Given a node’s viewshed, the viewshed’s area measures the
area coverage or fitness of the node. However, we find it
better to use point coverage, which measures fitness as the
number of targets covered, for three reasons. First, it is easier
to write algorithms to process point coverage. And second,
raster terrain data easily maps to a regular grid of point targets.
(Note that when all targets represent equal area, which happens
when targets are arranged in a rectangular grid, point coverage
and area coverage are equal except for a constant multiple of
the area of a target.)

The third advantage of using point coverage is that view-
sheds are sets, and then the viewsheds of a network’s nodes
can be joined using the union set operation to construct the
viewshed of the network: that is, the union set operation
constructs the set of targets that are visible to at least one
of the network’s nodes. Then the number of visible targets is
the coverage of the network.

We can then use the change in the coverage to evaluate the
fitness of repositioning a node. That is, given a candidate new
position for a node, the fitness of repositioning the node is
the difference between the coverage of the original network
viewshed and the coverage of the network viewshed that would
result from repositioning the node. Now, if presented with



more than one potential node repositioning that will repair
a network, we can mitigate coverage loss by ranking the
candidate new positions by fitness and choosing the best.

The concept of a viewshed can be extended to communi-
cations as a communications viewshed or a commshed [5].
We observe that a CLOS model can be appropriate for
communications since microwaves cannot pass through soil.
Then, as with viewsheds, we limit communication range with
a value RC for the maximum communication range. (Note that
while our work uses an arbitrary value for RC , one can adjust
the value to any radio propagation range.)

One important difference between viewsheds and
commsheds is that except under specific circumstances,
CLOS is only an approximate radio propagation model.
That is, we acknowledge that there are more realistic
radio propagation models, such as those that incorporate
Fresnel zones [6]. We use the CLOS model for two reasons.
First, the CLOS model lets us use an efficient dynamic
programming visibility algorithm, and adding Fresnel Zone
clearance computations will likely increase algorithm runtime
significantly. Second, since this analysis compares various
algorithms’ performance when combining the same commshed
shapes, we believe that adjusting the commshed shapes with
Fresnel Zone clearance computations for all algorithms will
have little effect on relative results. That said, we plan to
confirm our beliefs in future work that explores the effect of
different radio propagation models on our algorithms.

While our algorithms perform recovery operations through
node mobility, we should also point out that they use a hybrid
approach: nodes are stationary during normal operation to
conserve energy, but they can become mobile during recov-
ery operations when it is necessary for one or more nodes
to reposition. Then the distance that a node travels during
repositioning measures the cost of repositioning.

We design, implement and evaluate our algorithms’ perfor-
mance using the following system model.

• Network Model: It is assumed that initial deployment
creates a connected network. The algorithms rely on
lower-level protocols to ensure reliable message delivery.

• Communications Model: TARCI uses six message types
which are summarized in Table II. The way that these
messages are used by TARCI algorithms is described in
more detail in Section IV.

• Failure Model: We assume single-node failures, i.e., that
only a single node fails at a time. We briefly explore how
we plan to relax this assumption as part of our discussion
of future work (Section VII).

Summarizing our problem statement: we explore algorithms
that use node mobility to restore connectivity in outdoor
IoT networks over 2.5D terrain following node failure, while
simultaneously mitigating coverage loss. Our algorithms com-
pute, combine, and compare viewsheds and commsheds as part
of selecting and ranking recovery actions.

TABLE II
MESSAGE TYPES

Message Type Purpose Payload
NEIGHBORS-R Sink requests neighbor lists.

NEIGHBORS Node sends its neighbor list to
the sink.

Neighbor List

ASSIGNMENT Sink sends a recovery assign-
ment to a recovery node.

Assigned Node

ACTIVATE Sink instructs nodes to start re-
covery tasks.

KEEP-ALIVE Nodes detect the failure of an
immediate neighbor.

FAILED-NODE A node that detects a failed
neighbor broadcasts a FAILED-
NODE message that identifies
the neighbor.

Failed Node

III. RELATED WORK

Recovery from node failures has been well researched
for deployments over two-dimensional (2D) planes, with re-
searchers proposing numerous mechanisms. The surveys in
[1] [2] classify and describe existing 2D recovery approaches.
In the remainder of this section, we reference their taxonomy
of fault tolerance to discuss related work and its applicability
to 2.5D terrain.

A. Proactive Methods

According to [1] [2], one class of recovery approach is
based on proactive mechanisms. For example, avoiding faults
through proactive over-provisioning. One can do this by de-
ploying k-connected wireless networks where k > 1, meaning
that every pair of nodes is connected by k node-disjoint paths.
Such a strategy ensures that a network can withstand up to
k − 1 node failures without becoming partitioned.

An example of this approach using k = 2 is Basu & Redi
[7]. In their work, a bi-connected network is created from
a connected network by repeatedly identifying a connected
subset of nodes and then moving the subset as a block toward
the rest of the network. Each block of nodes moves until the
appearance of a redundant path eliminates a cut vertex.

We note some shortcomings to this approach. First, while
provisioned approaches in general prevent consequential loss
of connectivity following a node failure, such solutions usually
bear the cost of requiring redundant nodes. Second, if a
provisioned algorithm does not add redundant nodes, then
the area of coverage will be reduced by the necessity of
moving nodes closer together to create redundant paths. Third,
proactive approaches incur overhead even when no faults
happen.

We also note a drawback from using block moves over 2.5D
terrain. Any strategy for 2D can assume that block moves that
maintain intra-block node-to-node distances also will maintain
intra-block node-to-node communication. However, with 2.5D
terrain, two nodes of a moving block may lose contact if one
node drops into a valley or if both nodes move to opposite
sides of a hill. That is, generally, any algorithm that assumes



that a block move will maintain intra-block communication is
inappropriate for 2.5D terrain.

B. Reactive Methods

Reactive methods are an alternative to proactive approaches
where recovery mechanisms are activated only when a node
failure that causes the network to partition is detected.

One example of a reactive approach is RIM (Recovery by
Inward Motion) [8]. The RIM algorithm works as follows:
after detecting a node failure, the node’s 1-hop neighbors move
inward until they form a connected subnetwork. Then, if the
inward motion of the failed node’s 1-hop neighbors causes
disconnection with any of their neighbors, there will be a
cascading motion of nodes, with each node moving toward
its inner neighbor until it reconnects.

The problem with RIM when used with 2.5D terrain is that
it assumes that nodes that are closer than RC can commu-
nicate. However, as we mentioned earlier, on 2.5D terrain,
any repositioning that ignores hills and other obstructions
can cause loss of communication, regardless of inter-node
distance. Consequently, RIM is not appropriate for 2.5D terrain
deployments.

DARA [9], an algorithm that is similar to RIM, avoids the
shortcomings of deployment over 2.5D terrain. DARA will
direct a node to move only to a position that was just vacated
by a neighboring node. Consequently, a DARA-recovered
network never attempts to establish new links between node
positions. That is, DARA’s cascading node motion will change
which nodes occupy which positions, but the set of positions
themselves will remain unchanged, and hence connectivity
between positions will not be altered. (Aside from any con-
nections to the leaf-node position that gets abandoned as part
of DARA’s network recovery effort.) This “reuse” of node
positions by DARA means that it will work with 2.5D terrain.
Although we must note that the very position restrictions that
let DARA ensure node connectivity also prevent the algorithm
from considering new connected positions that would mitigate
coverage loss or even improve coverage.

C. Hybrid Methods

As just discussed, it’s possible that a recovery mechanism
can be purely reactive, with nodes formulating a strategy only
after the need for network recovery is detected, but alternative
hybrid approaches also are possible, with nodes’ responses
also incorporating pre-failure communication.

Some examples of hybrid approaches are PADRA [10],
PCR [11], and NORAS [12]. During the pre-failure phase of
these approaches, the critical nodes of the network self identify
using a distributed algorithm. Then each critical node uses a
heuristic mechanism to designate a recovery node for itself
(also called a backup) that will activate should the critical
node fail.

After the pre-failure phase is complete, the network is
primed to respond to the failure of a critical node. For these
algorithms the response is similar: following the failure of a
critical node, the corresponding recovery node moves to take

the position of the failed node, possibly initiating cascading
node movement in order to maintain network connectivity.
Critical nodes of PADRA and PCR potentially select a recov-
ery node that is not an immediate neighbor, and so to balance
energy usage, cascading node movement is initiated along the
path between the failed node and its backup.

These approaches have a few shortcomings. First, while the
distributed algorithms that are used always successfully iden-
tify cut vertices as critical nodes, they sometimes mistakenly
designate a node that is not a cut vertex as critical. Although
such a ”mistake” will not harm connectivity since failure of a
mistakenly identified node merely will activate the recovery
mechanism on a still-connected network, such unnecessary
activation will cause unnecessary energy usage.

Second, considering 2.5D terrain, while the examples that
we have cited are similar to DARA in that they direct a node
to move only to a position that was just vacated by a neigh-
boring node (and so node-to-node connectivity assumptions
will be maintained with 2.5D terrain), we also note that, as
with DARA, these position restrictions prevent the algorithm
from considering new connected positions that would mitigate
coverage loss or would improve coverage.

IV. TERRAIN AWARE RECOVERY WITH COMMSHED
INTERSECTIONS

We propose a suite of hybrid repair algorithms that ad-
dresses the requirements of Outdoor IoT deployments over
2.5D terrain. We call our algorithms TARCI for Terrain Aware
Recovery with Commshed Intersections.

TARCI leverages the notions of commsheds and viewsheds
as they quantitatively capture our goals of connectivity restora-
tion and coverage-loss mitigation, and based on available
2.5D terrain models, TARCI uses this data to compute the
commsheds and viewsheds that guide its pre-failure planning
decisions.

In other words, the key idea behind TARCI is to use
commsheds and viewsheds to compute the set of recovery
positions for a partitioned network by finding the intersection
of the partitions’ commsheds (Fig 2). Then, given a set
of potential recovery positions provided by the commshed
intersection, one can compute the viewsheds of each of the
potential recovery positions to prioritize the positions based on
the amount of additional coverage that each potential recovery
position provides.

During algorithm development we observed that in some
circumstances the commshed intersection is quite large, mean-
ing that we should try to limit the number of potential recovery
positions (and corresponding viewsheds) that are evaluated
during the pre-failure planning phase. So to understand the
necessity and benefits of such limits, we developed and
evaluated four variants of TARCI that use different approaches
to prioritize potential positions for each candidate recovery
node:

• TARCI-E exhaustively considers all possible new posi-
tions for a recovery node. It expends the most energy dur-
ing pre-failure planning of all of the algorithm variants,



(a) Commshed of a network. The gray region indicates
positions that are within distance RC of at least one node
of the network. A new node that is placed anywhere in the
commshed can communicate with the network.

(b) Commsheds of a partitioned network. The darkest gray
region indicates the intersection of all of the partitions’
commsheds. A new node that is placed anywhere in the
intersection can communicate with all three partitions and
will repair the network.

Fig. 2. Conceptual example of using commshed intersections to identify candidate positions for a recovery node. For clarity this example uses the 2D disk
model, but one could extend the example to 2.5D by replacing the disk model with a terrain-based range-limited CLOS model, similar in appearance to the
viewsheds shown in Fig 1.

but it will find the optimal recovery solution. Hence, we
use TARCI-E as baseline in our evaluations, i.e., worse
case for energy consumption and best case for recovery
optimality.

• TARCI-H uses the height of each possible new position
as a proxy of the position’s potential communication
effectiveness, and so it evaluates the highest H positions
of the commshed intersection. It expends much less
energy during pre-failure planning than TARCI-E. When
choosing a value for control parameter H , there are trade-
offs between the quality of the recovery solution and the
pre-failure energy usage, which we discuss in Section VI.

• TARCI-GP is similar to TARCI-H, but it uses the Grid
Partition [13] mechanism to distribute the considered
positions across the entire commshed intersection, rather
than considering only the highest positions, which will
tend to cluster together. Grid Partition places a grid of
approximately H squares over the commshed intersection
and then evaluating the highest position of each grid
square. For a given value of H , TARCI-GP expends about
the same amount of energy during pre-failure planning
as TARCI-H. And as with TARCI-H, the chosen value
for control parameter H leads to trade-offs between the
quality of the recovery solution and the pre-failure energy
usage (see Section VI).

• TARCI-D minimizes energy usage during both pre-failure
planning and recovery. During pre-failure planning, it
immediately chooses the recovery position within the
commshed intersection that is closest to the candidate re-
covery node’s current position. Then during recovery, the
node can reach the commshed intersection by traveling
the shortest distance.

The pre-failure planning phase of a hybrid recovery algo-
rithm typically corresponds to a relatively small amount of
time compared to the network’s total deployment time. We
also note that the sinks usually are larger nodes equipped

Algorithm 1 Pre-Failure Planning: Network Initialization by
the Sink. Input: network graph N .

1: Compute each node’s commshed.
2: V ← cut vertices of N
3: for every cut vertex v ∈ V do
4: for every node r ∈ N where r ̸= v do
5: Evaluate the effectiveness of moving node r to re-

cover from the failure of cut vertex v. {See Algo-
rithm 2.}

6: end for
7: Choose the node r with the best recovery response and

assign it as the recovery node for cut vertex v.
8: end for

with more computation capabilities and either are equipped
with larger battery packs/solar panels or are connected to
continuous energy sources. Hence, we made the design choice
of using a centralized algorithm instead of a distributed one
during pre-failure planning to: (1) identify critical nodes and
(2) choose appropriate failure responses. As our experimental
results demonstrate (see SectionVI), this results in a relatively
small energy usage increase due to additional communication.

A. Pre-Failure Planning

Pre-failure planning computations comprise the bulk of
the recovery algorithm’s work and are performed while the
network is whole. The overall goal of pre-failure planning
is for TARCI to select a recovery response for every cut
vertex of the network and then send appropriate instructions
to corresponding recovery node(s).

Pre-failure planning begins when the sink broadcasts a
NEIGHBORS-R request message All messages exchanged are
summarized in Table II. In response, each node sends a list of
its neighbors to the sink in a NEIGHBORS message. Using
this information, the sink identifies the network’s cut vertices.



Algorithm 2 Pre-Failure Planning: Evaluating the effective-
ness the moving node r to recover from the failure of cut
vertex v. Inputs: network graph N , node r, and cut vertex v.

1: N ′ ← N − r − v
2: Split N ′ into its connected components P1 . . . Pn.
3: C ←

⋂n
i=1 commshed(Pi)

{Intersection C contains all of the potential new positions
for node r that will reconnect the network.}

4: if C = ∅ then
5: Return failure.
6: else
7: Select all or a subset of the positions ci ∈ C. {See

text.}
8: For every selected ci compute fitness(ci).
9: Return the best fitness(ci) and the corresponding

ci.
10: end if

Then, for every cut vertex identified, the sink evaluates every
other node as a potential recovery node and then sends an
ASSIGNMENT message to the best node seen as the recovery
node for the cut vertex (see Algorithm 1). Using commshed
intersections to identify new recovery node positions and then
ranking those positions using viewsheds makes up the core of
TARCI’s pre-failure planning as illustrated in Algorithm 2.

Below we describe both Algorithms 1 and 2 in more detail.

Algorithm 1 – Network Initialization by the Sink: Input is
the network graph N . The algorithm relies on knowledge of
each node’s commshed, and so the commsheds are computed
in Step 1. Step 2 identifies the cut vertices of the network.
We note that since the relative execution time of this step is
relatively small, one can use the simple approach of removing
each vertex one-by-one and then checking for a disconnected
network with depth-first search. However, if one desires better
asymptotic performance, Problem 22-2 of [14] presents an
alternative. Steps 3–8 form a loop that formulates a recovery
response for the failure of each cut vertex v. Within the loop,
Steps 4–6 evaluate the capability of every other node r to
respond for the failure of cut vertex v. Then Step 7 compares
node capabilities and chooses the best node r to act as the
recovery node for cut vertex v.

Algorithm 2 – Recovery Node Effectiveness: This subroutine
accepts as input a network graph N , the position of a failed
cut vertex v, and the position of a recovery node r. Step 1
removes cut vertex v and node r from the network N . This
network modification is needed to evaluate the failure of cut
vertex v along with node r moving in response. Step 2
computes the combined effect of these changes: a set of
network partitions P1 . . . Pn. Next, Step 3 determines which
potential new positions for node r could repair the network.
This set of potential new positions, C, is the intersection of all
of the partitions’ commsheds. Steps 4–10 determine the result
of the algorithm. If C is the empty set, then the algorithm
indicates that there is no new position for node r that will

Algorithm 3 Node Failure-Response Task #1.
1: if this node detects that a neighbor has failed then
2: Broadcast a FAILED-NODE message that identifies the

failed neighbor.
3: if this node is the recovery node for the failed neighbor

then
4: Take the assigned recovery action.
5: end if
6: end if

Algorithm 4 Node Failure-Response Task #2.
1: if this node is the assigned recovery node for a received

FAILED-NODE message then
2: Take the assigned recovery action.
3: end if

let the network recover from the loss of cut vertex v. (One
might think that moving node r to the position of failed cut
vertex v always would repair the network, but r might be a
cut vertex itself, and so finding a repair position for r is not
certain.) If set C is not empty, then it contains one or more
potential new positions for node r, and in Step 7 all or some of
these positions are evaluated for fitness. The set of positions
that are evaluated depends on the variant of TARCI that is
running (TARCI-E, TARCI-H, TARCI-GP, and TARCI-D), as
mentioned earlier. Step 8 determines the fitness of all of the
selected positions, and then Step 9 compares the fitness results
to return the best position.

Once all recovery assignments have been made, the sink
broadcasts an ACTIVATE message, and the nodes start their
Failure-Response Tasks.

B. Failure Response

After pre-failure planning, all nodes receive an ACTIVATE
message and run a pair of failure-response tasks. One task
(Algorithm 3) uses KEEP-ALIVE messages to detect the
failure of an immediate neighbor. Upon detecting such a
failure, it broadcasts a FAILED-NODE message to its partition
that identifies the failed neighbor. Then, if it is the failed
neighbor’s designated recovery node, it performs its assigned
recovery action.

The other task (Algorithm 4) is run by nodes that have been
designated as a recovery node. This task checks all FAILED-
NODE messages to determine whether the node needs to
activate its recovery response for a failed node.

V. EVALUATION

A. Experimental Evaluation Infrastructure

To evaluate and compare the different variants of TARCI,
we modeled and simulated its algorithms using a C++ ver-
sion of TAFFI (Terrain-Aware Framework for IoT) [15]. The
TAFFI/C++ experimental platform better matches TARCI’s
centralized algorithms since the alternative of using TAFFI’s
Cooja-Contiki version would have added the complication of



Algorithm 5 Connected Greedy Adding. Input: network graph
N and position of the sink s.

1: C ← commshed(s)
2: for every node xi ∈ N do
3: Place node xi at the position in C that best improves

coverage.
4: C ← C ∪ commshed(xi)
5: end for

running a centralized algorithm as a Java-based model in a
distributed Cooja-Contiki simulation environment.

Using the TAFFI/C++ framework, our analysis tasks were
facilitated through the following features:

• A C++ library of line-of-sight algorithms that aid the
creation of command-line simulation models for 2.5D
terrain. Using the library improves code quality and
programming efficiency.

• A benchmark suite of actual terrains that help with
reproducibility and algorithm comparisons.

• Command-line job management using GNU Make [16],
preventing our inadvertently duplicating simulation runs
and also helping us run simultaneous simulations on
multiple servers.

• Data collection from thousands of simulation logs using
GNU Awk [17] scripts.

• MATLAB [18] scripts that analyze data and generate
plots as Encapsulated PostScript files, which are used
with LaTeX [19] in the creation of technical papers.

Simulations were run on a compute server with two Intel®

Xeon® Processor E5-2670 CPUs running at 2.60 GHz, pro-
viding the server with a total of 32 threads. As one of our
performance metrics, we measured processor time using the
C++ clock() function.

B. Benchmark Networks

Each of the TARCI algorithm variants was evaluated for
its post-recovery coverage and estimated energy usage as it
repaired 475 different cut vertices in 200 benchmark networks.

Each of the 200 benchmark networks was created using
a three-step process: (1) choose a benchmark terrain subtile
from a terrain dataset, (2) place a sink in one of ten predefined
positions on the subtile and deploy ten nodes into a connected
network, and (3) if necessary, decrease the communications
range, breaking links until the network has one or more cut
vertices.

For our source of 2.5D benchmark terrain subtiles, we
leveraged our prior work on two terrain classifiers that help
us verify that a set of Shuttle Radar Topography Mission
(SRTM) [20] terrain subtiles represent a wide range of land-
form variation [13] [15].

The ten sink positions are chosen from locations on a regular
triangular grid. Using a grid ensures that the possible sink
positions will be distributed uniformly over the subtile and
will help create a variety of experimental setups.

Then, after placing the sink, we run Connected Greedy
Adding, or CGA (see below for more details on CGA) to
compute an initial network deployment of ten nodes. We chose
to use ten-node networks because from earlier work with this
source of terrain data, we found ten nodes to be ideal with
the 240-by-180 unit terrain subtiles and our chosen value of
RC . Choosing a larger number of nodes with the same subtile
would require us to decrease the value of RC , which would
reduce the resolution of the commsheds.

Connected Greedy Adding is a modification of the set-cover
heuristic Greedy Adding [21] that, in addition to trying to
optimize coverage, also includes steps to ensure that a network
is connected (see Algorithm 5). The salient additions are Step
1 and Step 4, which construct and maintain the commshed C.
This commshed is the set of all positions of the terrain that can
communicate with the sink or with any already placed node
of the network. The algorithm ensures network connectivity
by construction because Step 3 places nodes only in positions
that are part of the current commshed.

The result of the algorithm is initial positions for all nodes
xi, thereby defining a network that has good coverage and that
also is connected. We repeat this first step using 200 different
pairs of subtiles and sink positions to generate 200 benchmark
networks.

Although the benchmark networks that are generated by this
first step have good coverage and also are connected, some of
the networks also are inadvertently bi-connected, meaning that
they lack cut vertices. Since a benchmark network for testing
a recovery algorithm must have at least one cut vertex, we
perform a third step on any bi-connected networks to generate
one or more cut vertices. The third step is to reduce the
communications range RC for the benchmark network until
at least one cut vertex appears. After this process is complete,
all of the 200 benchmark networks have a specific value for
RC and one or more cut vertices.

C. Experiments

We evaluated all of the algorithms using three perfor-
mance metrics: (1) CPU time used during pre-failure planning
(to compare relative pre-failure-planning energy usage), (2)
change in coverage following network recovery after the loss
of a cut vertex, and (3) distance traveled during network
recovery after the loss of a cut vertex (to compare relative
recovery energy usage).

Also, to allow comparing the performance of TARCI vari-
ants against 2D algorithms, we devised a proxy algorithm
that will perform no worse than the 2D algorithms. Since 2D
recovery algorithms often ignore coverage, we expect that they
will perform no better than a proxy algorithm that merely
moves the network’s remaining nine nodes into the original
positions of nodes x1 through x9. The idea is that nodes x1

through x9 are in the positions chosen by Connected Greedy
Adding for a nine-node network, and so they should provide
better coverage than the positions chosen by any 2D recovery
algorithm that ignores coverage. We call this algorithm 9-Node
CGA and use it as a proxy for 2D recovery algorithms like



TABLE III
CONTROL PARAMETERS

Parameter Purpose Name Value
Number of Nodes m 10

Initial Communications Range RC 130

Event-Detection Range RS 50

Number of Candidate Positions H {10, 20, 30, 40, 50, 100}

TABLE IV
PRE-FAILURE PLANNING CPU TIME

Pre-Failure Planning Post-Recovery
Algorithm H Minutes CPU Time Change in Coverage
TARCI-E — 65 -4.7%
TARCI-GP 100 2.4 -5.0%
TARCI-GP 30 0.74 -5.2%
TARCI-GP 10 0.30 -6.0%
TARCI-H 100 2.7 -5.9%
TARCI-H 30 0.77 -6.6%
TARCI-H 10 0.37 -7.6%
9-Node CGA — 0.0 -6.5%
TARCI-D — 0.064 -11.2%

DARA [9]. Since 9-Node CGA simply restores the remaining
nodes to the original positions of nodes x1 through x9, it
expends essentially zero energy during pre-failure planning.

We ran algorithms TARCI-E, TARCI-H, TARCI-GP, and
TARCI-D over all 475 cut verticies of the benchmark net-
works. Table III shows the values of control parameters used
during the experiments. We chose values of m, RC , and RS

that worked well in other research experiments with this size
of terrain subtile.

Since TARCI-H and TARCI-GP evaluate H positions, in
order to determine the sensitivity of these algorithms to the
control parameter H , we repeated the tests using the six
values of H listed as Number of Candidate Positions in Table
Table III.

VI. RESULTS

CPU time for pre-failure planning: Table IV compares
the average pre-failure-planning CPU time with the average
post-recovery change in coverage. As expected, the exhaustive
TARCI-E algorithm uses the most CPU time, but TARCI-GP
with H = 30 shows nearly as good post-recovery coverage
as TARCI-E while using about two orders of magnitude less
CPU time for pre-failure planning! TARCI-H is similar, but
its performance is slightly worse than TARCI-GP. Finally, we
note that looking at the post-recovery change in coverage,
TARCI-H and TARCI-GP best 9-Node CGA, our proxy for
the 2D recovery algorithms like DARA [9].

Change in coverage: Another view of post-recovery change
in coverage is presented in Fig. 3 where we can see that
nearly all of the TARCI algorithms (except for TARCI-D and
TARCI-H with H = 10) have superior recovery responses.
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Fig. 3. Change in coverage boxplot.

We are not surprised by this result because—similar to
2D algorithms DARA, PADRA, PCR, and NORAS—9-
Node CGA never will direct a node into a previously
unoccupied position, while the TARCI algorithms, without
this restriction, can find positions with superior coverage. As
noted in the previous section, the 2D algorithms that ignore
coverage are expected to perform no better than 9-Node CGA.

Distance traveled during recovery: Fig 4 estimates energy
usage during failure response from the distance that a backup
node travels. Comparing TARCI-GP and TARCI-H, we see
that TARCI-GP reduces coverage less than TARCI-H, but it
also expends more recovery energy. The positive correlation
between the goodness of the recovery response and the dis-
tance traveled can be explained by noting that TARCI-GP
searches more widely, and so it is able to find a superior, more
distant position. The datapoint for TARCI-D is consistent with
this explanation, since TARCI-D always chooses the shortest
possible recovery distance, and consequently it ignores any
positions that have better coverage. Comparing datapoints of
all of the TARCI variants, the positive correlation mentioned
above between the average distance traveled and the average
change in post-recovery coverage is clear.

Finally, considering the sensitivity of TARCI-GP and
TARCI-H to the value of H , Fig. 5 shows that TARCI-GP’s
average effectiveness is nearly as good as that of TARCI-E
when TARCI-GP considers 30 positions. The graph also shows
that TARCI-H must consider at least 40 positions in order to
better the results of 9-Node CGA.

VII. CONCLUSION

In this paper, we introduced TARCI, a suite of recovery al-
gorithms for outdoor IoT networks deployed over 2.5D terrain.
TARCI’s main contribution is that it repairs network partitions
while mitigating coverage loss. It leverages the concepts of
commsheds and viewsheds to restore connectivity and reduce
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the effect of node failures on coverage. Our experimental
results obtained on a wide variety of scenarios indicate that one
of TARCI’s variants, TARCI-GP achieves nearly ideal average
results compared to the TARCI-E exhaustive search variant,
but with two orders of magnitude less CPU time. We also
discovered that TARCI-GP performs better than a proxy for 2D
recovery algorithms. Finally, we discovered that considering
more distant recovery positions during pre-failure planning can
lead to better post-recovery coverage.

Some directions of future work we have identified are as
follows. We plan to compare the effect of different radio-
propagation models on TARCI’s results, such as including the
effect of Fresnel Zones. Another area we plan to explore is to
evaluate the benefit of increasing node communication power
as a recovery mechanism, either instead of or in addition to
TARCI-GP’s hybrid algorithm. We will also explore mech-

anisms to reduce the probability of node failures, e.g., by
instructing nodes to report their battery’s state of charge to
the sink, thereby helping to avoid simultaneous node failures
by initiating recovery of some nodes early.
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