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Abstract

Statistical Equivalent Models, or SEMs, have recently
attracted considerable interest as a general approach
to study computer simulators. By fitting a statistical
model to the simulator’s output, SEMs provide an ef-
ficient way to quickly explore the simulator’s result.
In this paper, we develop a SEM for random waypoint
mobility, one of the most widely used mobility mod-
els employed by network simulators in the evaluation
of communication protocols for wireless multi-hop ad
hoc networks (MANETS). We chose the random way-
point mobility model as a case study of SEMs due to
recent results pointing out some serious drawbacks of
the model (e.g., [1]). In particular, these studies show
that, under the random waypoint mobility regime, av-
erage node speed tends to zero in steady state. They
also show that average node speed varies considerably
from the expected average value for the time scales
under consideration in most simulation analysis.

In order to investigate further the behavior of the
random waypoint model, we develop a SEM that cap-
tures speed decay over time under random waypoint
mobility using maximum speed and terrain size as in-
put parameters. A Bayesian approach to model fit-
ting is employed to capture the uncertainty due to un-
known parameters of the statistical model. The SEM
is given by the posterior predictive distributions of the
average node speed as a function of time. A direct re-
sult from our model is that, by characterizing average
node speed as a function of time, our approach pro-
vides an accurate estimate of the “warm-up” period
required by simulations using the random waypoint
mobility model. Simulation data from the “warm-up”
period can then be discarded to obtain accurate proto-
col performance results. Given that random waypoint
mobility is still, by far, the most widely used mobility
model in the evaluation of MANETS, the contribu-

*Address for correspondence: Kumar Viswanath, Depart-
ment of Computer Engineering, University of California, 1156
High Street MS:SOE3, Santa Cruz, CA-95064, USA

tion of this work is potentially significant as it allows
network protocol designers to continue to use the orig-
inal random waypoint mobility model and yet obtain
accurate results characterizing MANET protocol per-
formance.
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1 INTRODUCTION

The problem of fitting a statistical model to computer
simulator results has recently been receiving consid-
erable attention in the literature as an efficient way
to perform fast exploration of the simulator’s out-
put. The method, referred to as Statistical Equiva-
lent Modeling, consists of creating a relatively simple
statistical model to approximate some function of the
output of a computer simulator. The resulting Statis-
tical Equivalent Model (SEM) must be flexible enough
to capture most of the variability in the simulator’s
output. Since SEMs are used as surrogate models, it
is important that the uncertainty in the SEM predic-
tions be easily assessed in order to quantify its per-
formance. SEMs are used for a variety of purposes
which can be roughly classified in four groups: (1)
model calibration to find ranges of the simulator in-
put that produce sensible output; (2) data assimila-
tion, which consists of merging simulator output with
observations; (3) model validation for comparison of
results from a simulator to observations or other sim-
ulators; and (4) model description and comparison for
describing and comparing certain configurations of the
simulator. The latter is the application of Statistical
Equivalent Modeling we employ in the work described
herein.

Regarding the literature on SEMs, the pro-
posed methods, typically, involve Gaussian process
response-surface approximations, i.e., the use of Gaus-
sian processes to approximate the function that repre-
sents the computer simulator output (e.g., [2]). The



literature includes a number of Bayesian approaches
with a range of corresponding applications (see, e.g.,
[3, 4, 5, 6, 7, 8, 9]). Bayesian methodology is partic-
ularly suited to addressing the four issues discussed
above, to quantifying multiple sources of error and
uncertainty in computer simulators, and to combining
multiple sources of information. We note that there
has been relatively limited work on statistical method-
ology for the analysis of computer experiments under
the practically important setting where the computer
simulator produces functional output (see [10, 11] for
some recent work in this direction).

The SEM we develop in this paper handles func-
tional computer simulator data, in particular, data
on the average node speed, as a function of time,
based on the random waypoint mobility regime. This
is a mobility model that has been extensively used
by packet-level network simulators to study the per-
formance of communication protocols for multi-hop
wireless ad hoc networks (MANETS).

Packet-level network simulators (e.g., ns-2 [12],
GloMoSim [13], QualNet [14], OPNET [15]) have
been an extremely popular platform for evaluating
MANET protocols. There are clear advantages to us-
ing simulations when evaluating network (in particu-
lar, MANET) protocols, including the ability to re-
produce experiments and subject protocols to a wide
range of network topologies and conditions, for exam-
ple mobility patterns. Topology, number of network
nodes and node mobility are important parameters
that can significantly affect protocol performance.

Most existing network simulators employ random
waypoint mobility to model how nodes move on a
terrain [16]. Nodes in the random waypoint regime
move according to the following rules: (1) each node
picks a destination randomly within the simulation
area and also picks a speed v that is uniformly cho-
sen between v, and v;,.:. Each node then moves
toward the destination over a straight line with speed
v. (2) upon reaching the destination, a node pauses
for some pause-time; (3) the node then picks the next
destination and the process re-starts. Typically, the
values of Vpin, Umaz, and pause-time are parameters
of the simulation and are selected according to the
requirements and operating environment of the appli-
cation at hand.

Recently, it has been reported that the random
waypoint model exhibits some originally unforeseen
anomalous behavior. More specifically, it has been
shown that, under the random waypoint model, the
average node speed decays with time [1]. It has also
been shown that nodes moving according to the ran-
dom waypoint model tend to concentrate in the mid-

dle of the simulation region, resulting in non-uniform
node spatial distribution. In the specific case where
Umin = 0, as time t — oo , node speeds tend to zero,
resulting in a stationary system. One important ef-
fect of this behavior is that, if simulations using the
random waypoint model do not run for sufficiently
long periods beyond the initial steep decay, the corre-
sponding simulation results will not be accurate. In
fact, variations of up to 40% in ad hoc routing per-
formance over a 900-second simulation have been de-
tected [1].

From the above discussion, one important consid-
eration is how long does it take for the system to
converge to steady state. Given this information,
one easy “fix” to the random waypoint model is to
run simulations long enough to guarantee that proto-
col performance evaluation is conducted after steady
state is reached to guarantee accurate results. In this
paper, we introduce a novel approach to study the be-
havior of the random waypoint regime. We develop
a SEM to predict average node speed (through both
point and interval estimates) as a function of input pa-
rameters v,,q, and field size. Since our SEM also char-
acterizes average node speed as a function of time, it
offers an efficient alternative to obtaining an accurate
estimate of how long simulation experiments take to
“warm-up”. Simulation data from the “warm-up” pe-
riod can then be discarded to obtain accurate protocol
performance results. Since random waypoint mobility
continues to be, by far, the most widely used mobility
model in the evaluation of MANETS, our model allows
protocol designers to use the original random way-
point mobility model and still characterize MANET
protocol performance accurately.

To build a SEM for random waypoint mobility, we
consider a random waypoint simulator where the in-
puts are terrain size and maximum node speed. We
run the simulator for a number of different configura-
tions of these two variables. We then fit a statistical
model to the resulting average node speed at different
times. We validate the statistical model by compar-
ing its predictions against the actual simulator results.
We use the resulting model to measure the decay of
average node speed and quantify the time that it takes
for the “warm-up”. We also show that our random
waypoint mobility SEM is able to provide informa-
tion on the warm-up period for different combinations
of input parameters significantly faster than running
pre-simulations of the mobility model for different in-
put combinations. For instance, using our model, it
took us 20 minutes to compute the point estimates of
the warm-up period over a grid of values for v;,4, and
field size (and for two different values of speed decay).



Using the same (reasonably fast) machine, it would
take approximately 65 hours to run pre-simulations
for the same grid of v,,4, and field size values.

In the rest of the paper we present our statistical
model in detail. Section 2 puts our work in perspec-
tive by describing related efforts in modeling the ran-
dom waypoint regime. In Section 3, we present the
methodology employed to formulate and develop the
model. Section 4 describes the proposed statistical
model. In Section 5, we present results obtained from
the model and evaluate its accuracy by validating it
against data obtained from the simulator. Section 6
discusses directions for future work and finally, Sec-
tion 7 presents concluding remarks.

2 RELATED WORK

Mobility models are an important component of net-
work simulators and are one of the key factors affect-
ing the performance of ad-hoc network protocols. A
number of mobility models for ad-hoc networks have
been proposed and evaluated ( [17, 18, 19, 20]). One
of the most widely used mobility models is the ran-
dom waypoint model ( [16, 21, 22]) described in Sec-
tion 1. This model is implemented in a number of cur-
rent network simulation platforms such as ns-2 [12],
GloMoSim [13], and Qualnet [14].

However, it has been shown in [1] that under
the random waypoint regime, the average node speed
decays with time before reaching steady state and
the settling time to reach steady state increases as
the minimum speed parameter v,,;, of the model
decreases. In particular, the default random way-
point models distributed with ns-2 and GlomoSim use
Umin = 0 which causes the average node speed to
steadily decrease over time. In [1], the impact of this
speed decay on ad-hoc routing protocols like DSR, [16]
and AODV [23] was also investigated. It was shown
that speed decay can result in performance variations
of around 40% over simulation times typically used
in the study of ad-hoc network protocols. One sug-
gested solution was to use non-zero minimum speed or
to discard results from the “burn-in” period, i.e., the
simulation period during which speed decay is most
dramatic.

There have been several other bodies of work such

as [24, 25, 26] which have investigated the spatial
node distribution for the random waypoint model.

In [27], a framework for analyzing the speed de-
cay of mobility models was proposed; additionally,
based on this framework, a technique to obtain the
stationary equivalent to mobility models that exhibit

the speed decay behavior was introduced. Essentially,
the proposed strategy is to choose initial speeds from
the stationary distribution and subsequent speeds ac-
cording to the original distribution. Similarly, in [28]
the authors have used palm calculus to provide neces-
sary and sufficient conditions for a stationary regime
to exist under the random waypoint model and pre-
sented an algorithm to start simulations in the steady
state (so called perfect simulation).

The main difference of our work compared to other
approaches is that we propose a novel method to
study the behavior of the random waypoint model
which uses a statistical model to characterize speed
decay. Our model is able to predict average node
speed (through both point and interval estimates) as a
function of input parameters v,,q; and field size. Our
model also offers an efficient alternative to obtaining
accurate results from simulations using the original
Random Waypoint model '. More specifically, as it
will become clear in Section 5.2, using our statistical
model, one can obtain the speed decay as a function
of time (as well as the input parameters). This al-
lows protocol designers running simulations to plan
their experiments accordingly so as to discard results
from the “warm-up” period and hence perform accu-
rate protocol performance evaluation.

3 METHODOLOGY

We used GloMoSim [13] as the simulation platform for
the initial mobility experiments. The simulation setup
consisted of 150 nodes moving according to the ran-
dom waypoint model with v,,4, from the set { 2, 3, 4,
5,7.5,10,12.5,15,17.5, 20 } m/s and vy, = 0. The
pause-time was set to 0 for all experiments. The field-
size was varied in the range { 500, 1000, 1500, 2000,
2500, 3000 } m2. Hence we ran mobility simulations
for 60 different combinations of v,,.,, and field-size
with each run averaged over 10 different seed values.
The total duration of the mobility experiments was
set to 20,000 secs and we captured the average node
speed as reported by the simulator every 5 secs. As
noted previously the values were averaged over 10 dif-
ferent runs using different seed values. The data ob-
tained from these mobility experiments was used as
“computer simulator data” for our statistical model.

One key observation that helped to simplify model
formulation was the implicit relationship between ter-
rain size and number of nodes used in simulation ex-

INote that the alternative is to run pre-simulations of the
mobility model for different combinations of parameters of in-
terest.
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Figure 1: Speed decay under the random waypoint model

periments. For a given transmission range, the terrain
size chosen normally dictates the minimum number of
nodes required to ensure that the network is connected
2. Hence our model implicitly accounts for number of
nodes through the “field-size” parameter, which is de-
fined as the 2-dimensional region within which nodes
can move.

Figure 1 is a pictorial representation of the speed
decay suffered by nodes using the Random Waypoint
mobility model. Note that, the average initial speed
of the nodes is (Umaz — Umin)/2 as expected and then
starts decaying with time. This is similar to the re-
sults observed in [1].

4 STATISTICAL MODEL

We fitted a statistical model to observations on aver-
age node speed, obtained from the simulator as dis-
cussed in section 3, for 10 different choices of vqx
and 6 different field sizes. In what follows we use the
notation v for v,,q., f for field-size, ¢ for time in sec-
onds, and y; for the average node speed at time t. We
started by considering the non-linear regression model

Y= A b(t/1000)) T © (41)

where € is a random error term, for each of the 60
combinations of v,,4, and field-size. We fitted these
models using least squares and obtained a set of 60
triplets corresponding to the fitted values of a,b and
c. By exploring the dependence of these values on v
and f, we were able to generalize model (4.1) mak-
ing the coefficients a,b and ¢ dependent on v and f.
Hence we obtain a SEM for the average node speed

2Node mobility can cause the network to be disconnected at
certain times

corresponding to any combination of v and f given by
yt(va f) = g(ta v, f; a, ba C)+ g, where

c(v, f)

g(t; v, f? a, b; c) = (1 T b(v’ f)(t/l()()()))a(v,f) (4.2)
with
a(v,f) = exp{a1 + azlog(f/v) + aslog(log(f/v))
+ aslog(log((v/f) +1))
+ aslog(log(v+0.5))}
b(v,f) = exp{b1+ b2logv + bslog f
+  balog(log(f/v)) + bs log(log f)
+ bslog(log(v +0.5))}
c(v, f) = exp{ci +cz2logv+ cslog f}
Here a = (a1,...,a5), b = (b1,...,bs) and ¢ =

(c1,ca,c3) denote the vectors of the unknown coeffi-
cients. These can be estimated from the computer
simulator data. We note that the seemingly compli-
cated structure of the proposed statistical model was
obtained using a constructive approach. First, work-
ing with various combinations of v, and field-size,
we observed that a non-linear regression model with,
at least, three parameters was required to model av-
erage node speed as a function of time. The form in
(4.1) emerged as a particularly successful one in cap-
turing the shape of these functions. Next, to obtain
the expressions for a(v, f), b(v, f), and c(v, f) in (4.2),
we explored several different alternative formulations,
preferring the ones given above, since they provided
the best fit with the smallest number of parameters.
Of course, different statistical models could be de-
veloped by using different forms for a(v, f), b(v, f),
and ¢(v, f) in (4.2), or, perhaps, a different non-linear
regression model. However, based on our extensive
empirical study of the computer simulator data, we
would argue that a significant reduction in the num-
ber of parameters is not possible without sacrificing



flexibility of the resulting SEM. A critical advantage
of this formulation is that, once the 14 unknown pa-
rameters are estimated, one can estimate the average
node speed for any combination of field-size and vy, 4z,
and for any time.

The estimation of the parameters in the SEM was
performed by assuming that the error term follows
a normal distribution with zero mean and variance
o2. Therefore, given the data Y = {y(v;, f;);t =
1,...,7;i = 1,...,10;5 = 1,...,6}, we obtain the
likelihood for the parameter vector, which is denoted
by 6 = (a,b,c,0?), as

[T (2r0®) " expl— 5o (evs, £

t,2,j
- g(t7vi7fj;a7b7c))2}

We estimate 6 using a Bayesian approach. This is
based on exploring the posterior distribution p(8|Y).
We consider a non-informative prior p(a, b,c,0?)
1/02. Thus p(0Y) « 1/62L(0]Y). Under squared
error loss, the optimal estimator is given by the pos-
terior expectation E(0]Y).

LY) =

Given the difficulties involved in describing, in-
tegrating or maximizing p(@|Y), which is a 15-
dimensional function, we resort to Markov chain
Monte Carlo (MCMC) methods to obtain samples
from p(0|Y). The idea of MCMC methodology is
to construct a Markov chain that is easy to sam-
ple from and such that its equilibrium distribution
is p(8]Y) [29]. Before we describe the Markov
chain that we used, we note that p(a,b,c,d?|Y) =

pla,b,clY) o AT0T/2

p(o®la,b,c,Y) o (o) T exp{—A/(20%)},
with A = Zt,i,j (yt(lh;, f]) - g(ta Vi, fJ? a, b7 C))Q' Thus
we recognize p(c?|a,b,c,Y) as the density of an in-
verse gamma distribution with shape 607"/2 and scale
AJ/2.

To obtain samples from the posterior p(8|y) we fol-
low the steps:

1. Set initial values 8y and total number of itera-
tions K

2. Loop for k=1,.... K

3. At iteration k, denote the current samples with
the super-index k, and sample a vector of candi-
dates (a*, b*, c*) from a normal distribution with
mean (a¥ b* c¥) and covariance matrix V.

4. Calculate o = min{1,r} where
p(a*, b*,c*Y)

r=

~ p(ak, bk ck|Y)

5. Sample u from a uniform distribution on (0,1).

6. If u < « then sample (02)* from an in-
verse gamma distribution with shape 607"/2
and scale A*/2, where A* denotes the evalua-
tion of A at the candidate values (a*,b*, c*).
Let (ak“‘l,bk"'l,ck"'l) — (a*,b*,c*), (0.2)k+1 —
(02)* and cycle.

7. If u > a, let (aFT! bFTL k) = (ak bF k),
(02)F*1 = (62)* and cycle.

After an initial burn-in period, the results from this
chain yield a sequence of samples 8 whose distribu-
tion is approximately p(@|Y"). These posterior samples
can be used to obtain inference for 6.

5 RESULTS

In this section we present results obtained from the
statistical model and assess its performance using mo-
bility data obtained from the simulator. As explained
in section 4, we ran a Markov Chain Monte Carlo
(MCMC) algorithm in MATLAB to obtain samples
from the posterior distribution for p(8|Y). These sam-
ples were then used to estimate a(v, f),b(v, f) and
¢(v, f) for different combinations of v, and field-
size. The estimates thus obtained were then used to
evaluate for each combination of (v, f) the posterior
mean of y; as given in equation (4.2) for 4000 time-
points up to 20,000 secs. Note that for each com-
bination of (v, f) we obtain samples from the entire
posterior distribution for equation (4.2). We present
both point estimates and interval estimates (denoted
by dashed lines in the subsequent figures) based on
5% and 95% quantiles of the posterior samples.

Figure 2 depicts the comparison between the simu-
lator data and posterior point and interval estimates
based on the statistical model for vy,q, = 2 m/s, while
figures 3 and 4 show the comparison for v,,q, = 10
m/s and 20 m/s, respectively. Note that, in the fig-
ures we only present model fits up-to 15,000 secs for
the sake of clarity as the behavior beyond 15,000 sec-
onds is very similar.

As seen from these figures, the statistical model pro-
duces good fits as compared to the mobility data from
the simulator. The interval estimates tend to capture
the variability of the original data as well. One minor
discrepancy is the tendency of the statistical model
to overestimate the actual values of the average node
speed at t close to 0.
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idation

In order to verify the accuracy of the proposed esti-
mator we also ran some validation tests. In these tests

we used the random waypoint mobility SEM of sec-
tion 4 to estimate average node speed over time for
values of vy,4, that are not included in the set of 10
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used two different values of vya4, 1.6, {8, 25}, keeping
all other simulator parameters constant. Note that
one of the vy,q, values, i.e, 8 m/s is within the data

values used in developing the SEM. We then validate
the SEM predictions against computer simulator data
obtained under the new vy, 4, values. In particular, we
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range originally considered while the other value, i.e,
25 m/s is outside the data range used to formulate
the SEM. Figures 5 and 6 illustrate that the statis-
tical model provides good fits for the new simulator
data as well.

5.2 Discussion

As mentioned in Section 1, the main contribution of
this work is the ability of the statistical model to pre-
dict the average node speed (through both point and
interval estimates) as a function of input parameters
Umaz and field-size. One of the recommended tech-
niques to obtain accurate simulation results using the
random waypoint model is to discard results from the
“warm-up” period during which average node speed is
still decaying. The proposed statistical model is use-
ful in providing inference for the “warm-up” period
for a specific simulation using the following equation

twarm—up = 10000 {(c/y)*  —1},

where y; is the required value for the speed decay
and a, b and ¢ are functions of v,,,, and field-size as
defined in section 4. Hence we can obtain the entire
posterior distribution for fygrm—vup as a function of
Umae and field-size for different values of speed decay

Yt-

Figure 7 represents the point estimates of the
“warm-up” period for a grid (of size 1250) over a range
of commonly used combinations of v, and field-size
for 2 different values of y;.

To put these results in perspective, the alternative
approach would require running pre-simulations of the
mobility model. For the 1250 different combinations
of Ve and field-size considered above this would take
approximately 65 hrs for 10 different seed values on a
sufficiently fast simulation machine, whereas our ap-
proach required approximately 20 minutes of comput-
ing time.

6 FUTURE WORK

As an initial exercise in capturing the speed decay of
the random waypoint mobility model we have made
the simplifying assumption of setting the pause-time
to zero as this does not affect the speed-decay be-
havior. However, we are currently studying exten-
sions of the statistical model to include pause-time as
another parameter. From our initial results for dif-
ferent values of V., and field-size we can see that
the speed-decay behavior with non-zero pause-times
is quite similar to that seen in Figure 1. Figures 8a,
8b, 8c and 8d show the speed decay behavior for
pause-times of 2 seconds, 10 seconds, 20 seconds and
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50 seconds respectively. From our preliminary results,
we see that pause-times < 20s have negligible impact
on the overall speed-decay behavior while the effect of
larger pause-time is to slow down the decay process.
This effect can possibly be captured by an additional
parameter in equation 4.2.

Another area of future work involves extending the
random waypoint mobility SEM to incorporate non-
zero minimum speeds (Vyin 7 0).

7 CONCLUSIONS

This paper conducts a case study of Statistical Equiv-
alent Modeling applied to the Random Waypoint Mo-
bility model used in network simulators. This novel
modeling technique of characterizing the behavior
of the Random Waypoint Mobility regime captures
speed decay over time using maximum speed and ter-
rain size as input parameters. A Bayesian approach to
model fitting is employed to capture the uncertainty
due to unknown parameters of the statistical model.
The resulting posterior predictive distributions of the
quantities of interest (i.e, average node speed) can
be used to formally address the fit of the statistical
model. We present results obtained from the model
and evaluate its accuracy by validating it against data
obtained from the simulator.

One of the main contributions of our random way-
point mobility SEM is that it offers an efficient alter-
native to circumventing recently uncovered anomalies
of random waypoint mobility, one of the most widely

used mobility models for evaluating the performance
of multi-hop wireless ad hoc networks (MANETS).
These anomalies include the fact that average node
speed tends to zero as ¢ — oo and that node speed
varies considerably from the expected average value
for the time scales under consideration for most simu-
lation analysis. Since our model characterizes average
node speed as a function of time, it provides an ac-
curate estimate of the time it takes for random way-
point mobility simulations to “warm up”, i.e., reach
steady state. Using this information, MANET proto-
col designers can continue to use the original random
waypoint mobility model, discard simulation data pro-
duced during the “warm-up” period and still obtain
accurate performance results for the protocols un-
der study. This is an important contribution given
that Random Waypoint Mobility is still, by far, the
most widely used mobility model in the evaluation of
MANETs [30], [31], [32].

We also show that our random waypoint mobility
SEM is able to provide information on the warm-up
period for different combinations of input parameters
significantly faster than running pre-simulations of the
mobility model for different input combinations. For
instance, using our model, it took us 20 minutes to
compute the point estimates of the warm-up period
as a function of v,,.,; and field size for two different
values of speed decay. Using the same (reasonably
fast) machine, it would take close to 200 times longer
to run pre-simulations for the same number of combi-
nations of v,,.; and field size values.
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