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Abstract

This paper introduces the Reliable, Adaptive, Congestion controlled multicasT protocol, or ReACT, de-

signed to provide reliable and timely multicast delivery for a wide range of mobile ad hoc network (MANET)

scenarios. ReACT combines source-based congestion and error control with localized recovery. For conges-

tion control, it uses simple stop-and-wait to adjust to congestion experienced by receivers. To recover from

the different types of losses that may occur in MANETs, ReACT uses both source-based and local recovery.

Ideally, while the latter will recover from localized losses caused by transmission errors or “local” congestion,

the former will only be used when receivers experience “global” congestion losses. In this case, congestion

control will also be triggered.

Through extensive simulations, we evaluate ReACT’s performance and compare it against other reliable

multicast mechanisms for a wide range of MANET conditions. Our results show that ReACT is the best per-

former in terms of reliability. Our results also showcase the effect of ReACT’s local recovery mechanism which

manages to prevent the source from reducing its rate unnecessarily, thus achieving acceptable throughput. In

our experiments we run ReACT over a mesh- and a tree-based multicast routing protocols to show that its per-

formance is fairly insensitive to the underlying routing structure. Finally, we also show that ReACT is fair to
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competing TCP traffic.

Keywords: ad hoc networks, reliable multicast, local recovery, mobile networking, transport protocols.

Technical Area: Mobile Computing and Communication

1 Introduction

A mobile ad hoc network (MANET) [4] [6] [7] [11] operates without any fixed infrastructure or central admin-

istration. Each host communicates with each other through wireless packet radios. Because of the limited radio

propagation range, routes can often be multihop. Hence, every host may act as a packet forwarder as well as a

source or a destination. Because of its ease of deployment, a multihop (wireless) ad hoc network, or MANET,

is an attractive choice for scenarios where the fixed network infrastructure is non-existent or unusable. Example

applications include digital battlefield, search and rescue, disaster recovery, and covert military operations.

The types of scenarios targeted by MANETs make group-oriented services such as data dissemination and

teleconferences a key application domain. Undoubtedly, multicast communication is an efficient means of sup-

porting group-oriented applications. This is especially true in MANETs where nodes are energy- and bandwidth

limited. In these resource-constrained environments, reliable point-to-point protocols (viable in wired networks)

can get prohibitively expensive: the convergence of multiple requests to a single node typically causes intolerable

congestion, violating the time constraints of a critical mission, and may drain the node’s battery, cutting short the

network’s lifetime. Despite the fact that reliable multicasting is vital to the success of mission critical applications

in MANETs, surprisingly very few efforts focus on reliable multicast.

In this paper, we propose the Reliable, Adaptive, Congestion-controlled multicasT (ReACT) transport protocol

for reliable and timely multicast delivery in a wide range of MANET scenarios. One distinguishing feature of

ReACT is that it combines source-based and local recovery. Source-based control includes a rate-based congestion

control algorithm that guarantees data delivery to troubled receivers in a round-robin fashion. It adjusts the sending

rate using a simple stop-and-wait mechanism based on receivers’ feedback.
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Wireless environments are prone to packet losses due to various factors other than congestion, including trans-

mission errors, hidden terminal, and route breaks caused by mobility. Based on the observation that in MANETs

congestion is not the sole reason for losses, ReACT’s error control mechanism combines source-based and local

recovery. Ideally, the local recovery mechanism will mend non-congestion losses, avoiding the multicast source to

back-off its transmission rate unnecessarily. Local recovery also tries to catch losses due to “localized” congestion

(e.g., caused by the hidden terminal effect). Besides preventing the source from unnecessarily slowing down, Re-

ACT’s local recovery mechanism also manages to reduce “global” congestion by suppressing feedback ultimately

addressed to the source as well as source-originated retransmissions. Also, by recovering locally, timeliness is

preserved.

Through extensive simulations, we evaluate ReACT’s performance under a wide range of MANET conditions,

comparing it against (multicast) UDP and Anonymous Gossip [3], which, to the best of our knowledge, is the only

other end-to-end protocol for reliable multicasting in MANETs that has been proposed to date. AG’s error control

relies exclusively on local recovery.

One of our goals was to also analyze the performance of ReACT over different underlying multicast routing

structures, namely tree and mesh. As shown in previous studies [9], mesh-based routing protocols typically exhibit

very high packet delivery ratio at low traffic due to path redundancy. At high traffic however, redundant forwarding

adds to network congestion and hence is less effective. Tree-based protocols, on the other hand, are known to

achieve good packet delivery ratio efficiently in static MANET scenarios, but deliver poor performance in highly

mobile environments it because of frequent tree breaks that require excessive control overhead for repairs. Our

hypothesis was that its congestion and error control schemes would shield ReACT’s performance from the nuances

of the underlying routing fabric. In our performance analysis, we use On-Demand Multicast Routing Protocol

(ODMRP) [8] as a representative of mesh-based protocols, and an improved version of Multicast Ad hoc On-

Demand Distance Vector (MAODV) [13] 1 as a representative of tree-based protocols. Our simulation results show

that ReACT performs comparably well with both ODMRP and MAODV.

1We describe in detail our changes to the original MAODV protocol in Section 4
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We should point out that ReACT favors reliability over throughput. ReACT’s congestion control mechanisms

slows down the sender when congestion is detected so that packets that are already in the network can get through.

Clearly, the side-effect is a decrease in throughput. Applications that are willing to trade throughput for reliability

include military covert operations and search and rescue missions. However, as our simulation results demonstrate,

local recovery manages to lessen the reliability-throughput tradeoff improving ReACT’s overall throughput while

still maintaining close to perfect reliability for a variety of scenarios.

The remainder of this paper is organized as follows. Section 2 overviews related work. ReACT is introduced in

Section 3 which presents a detailed description of the source-based and local recovery mechanisms. Performance

evaluation follows in Sections 4 and 5 which describe the experimental environments used and results obtained,

respectively. Section 6 presents our concluding remarks and directions for future work.

2 Related Work

The Reliable Multicast Algorithm (RMA) [5] is a multicast routing protocol that offers reliable data delivery

through the use of retransmissions at the source. Each source maintains a list of all members of the group and from

this list ensures that all members have successfully received all transmitted packets (each members reply with ACK

to source). Furthermore, rather than traditional hop count, the link’s expected lifetime is used as routing metric to

favor stable links. The drawback of RMA is the fact that each member must reply to the source with ACKs. This

may lead to ACK implosion at the source and thus does not scale well. Furthermore, congestion control is not

addressed and hence RMA would suffer under high network load.

In [10], a reliable broadcast protocol was proposed to address the problem of reliable atomic delivery of mes-

sages. The protocol’s operation is divided in two phases: scattering and gathering. During scattering, a source

propagates the data to all members; ACKs are collected by the source in the gathering phase. While this protocol

may work well in stable networks with low mobility and low failure rates, its performance will likely degrade

in dynamic MANET scenarios where topology changes are frequent. In fact, simulation results reported in [10]
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indicate that the protocol does not perform well in the presence of high node mobility.

Anonymous Gossip (AG) [3] recovers from losses by having pairs of multicast group participants exchange

information on messages they have received or lost. AG uses solely local recovery for error control. AG’s local

recovery mechanism is based on the concept of gossip dissemination and works by having participating nodes

recover lost packets from anonymous nearby members instead of sending their requests directly to the source. In

AG, a node that has experienced packet losses periodically sends a gossip request message to an anonymously

chosen neighbor node. The gossip request includes information on lost packets, sequence number of the next

expected packet, the source and the group addresses. If the receiving node is a group member, it unicasts back

a gossip reply to the initiator. If the receiving node is not a member, it randomly selects a neighbor and relays

the gossip message. Periodic gossip messages can generate excessive control overhead. To reduce this overhead,

gossiping to members farther away are performed less often than to nearby members. To implement this feature,

each node is required to know the distance (in hop count) to group members. This information is obtained from the

underlying multicast routing protocol. Since gossip-based approaches are known to converge slowly, one potential

problem with the AG protocol is the delay it takes for nodes to recover from losses. Clearly, there is a tradeoff

between message delivery delay and the overhead incurred by the protocol.

3 Reliable Adaptive Congestion Controlled Multicast Transport Protocol

ReACT is a reliable multicast transport protocol designed to adapt to the varying conditions of MANETs. The

basic protocol implements a source-based recovery scheme using both congestion and error control to prevent and

recover from packet losses due to congestion. ReACT also performs local recovery at intermediate nodes to recover

from losses not necessarily due to (global) congestion. The remainder of this section describes both components

of ReACT in detail.
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3.1 Source-Based Recovery

ReACT congestion control mechanism uses feedback from the receivers to detect congestion and adjust the trans-

mission rate. Each multicast source maintains a Receiver List, which is initially empty initially. When a source

receives a NACK from a node that is not in the Receiver List, the node is added to the list. Nodes are removed

from the list when the source receives an ACK from them. In addition, the source keeps track of the end-to-end

latency between itself and each receiver that sent NACKs through a timestamp.

The source initially multicasts data packets at the rate specified by the application and continues to do so

until a NACK is received. Whenever a receiver receives a new packet, it is added to the receiver buffer and

delivered to the application in sequence. A receiver sends a NACK back to the source when it detects packet

losses. More about detection of packet losses and feedback mechanism is described in Section 3.2. Upon reception

of a NACK, the source adds the NACK sender to the Receiver List and enters the loss recovery phase. The

source initiates loss recovery by selecting a receiver from the Receiver List, or the feedback receiver. The source

multicasts a new packet or retransmits the lost packet requested by the feedback receiver. The packet header

includes information instructing the feedback receiver to reply via “unicast” with an ACK indicating that all packets

have been successfully received or specifying the sequence number(s) of packets that are still missing. All other

receivers process the packet without replying to the source.

When there are lost packets, the feedback receiver sends an ACK to the source with the sequence number of

lost packets one at a time until it has all up-to-date packets (i.e., send-and-wait). The design philosophy behind

retransmitting one packet at a time is to slow down the source when congestion is detected. Since only the feedback

receiver replies to the source, the ACK/NACK implosion problem is avoided. Moreover, to reduce the response

overhead, NACK transmissions are rate limited to no more than once every κ seconds (κ value is five in our

simulations).

By having only the feedback receiver respond to the source, we also avoid the inaccuracy of feedback sup-

pression timers. This is particularly advantageous in a mobile environment where the majority of suppression
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techniques will fail since they often rely on distances and end-to-end delay measurements. Such measurements are

often in flux when mobility exists and are ineffective in suppressing feedback.

Note that retransmitted packets are multicast to the group since other receivers may also be missing these

packets. The expectation is that as the source “visits” other receivers, those receivers would already have recovered

the lost packets previously retransmitted by the source and thus no further retransmissions are required. Duplicate

packets are discarded by the receivers. Once the feedback receiver obtains all the packets, it unicasts an ACK to

the source indicating all the packets have been received. Upon reception of the ACK, the source removes the node

from the Receiver List, chooses a new feedback receiver in a round robin fashion, and repeats this process until the

Receiver List is empty. Feedback receiver selection is not restricted to the round robin approach, although we do

so here for simplicity. Other alternatives include selecting the feedback receiver based on common loss packets to

reduce the number of retransmissions and oldest packet lost to limit latency.

When the Receiver List is empty, the source reverts to the application sending rate. If, however, the source does

not receive a NACK or ACK from the feedback receiver within the time interval given by the measured round-trip

time from the source to the feedback receiver, the source backs off and tries again up to a maximum number of

times (which is three in our simulations). Since we use a stop-and-wait approach, we also fix up the maximum

back-off time to prevent the source from reducing the rate too much. If the source still does not hear from the

feedback receiver after the maximum number of retransmissions, it removes the node from the Receiver List and

moves on to the next node in the list. The removed receiver may later re-synchronize with the source with the

normal NACK mechanism.

The round-robin send-and-wait approach does not require retransmissions of the same lost packets multiple

times to each receiver. In the best-case scenario, lost packets are retransmitted only once by the source since

retransmissions are multicast. For instance, if a set of receivers lost the same packet, it is retransmitted only

once assuming the retransmitted packet is received by all the receivers. In the worst-case scenario, each receiver

experiences different packet losses. In this case, all lost packets must be retransmitted to each receiver. Remember
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Figure 1: ReACT in operation.

also that when loss recovery mode is entered, the source first limits its rate and sends a new packet to the feedback

receiver. This prevents the source from retransmitting packets multiple times.

Figure 1 shows an example of ReACT’s basic protocol operation. Node 1 is the source and nodes 2 � 5 � 6 and

7 are the multicast receivers. Node 1 begins by multicasting packets at the application sending rate. Assume that

after some duration, nodes 6 and 7 detect packet losses and each transmits a NACK to node 1. Upon receiving

NACKs, node 1 adds nodes 6 and 7 to its Receiver List. Node 1 then selects a node from the list, say node 6 as the

feedback receiver, and multicasts a new packet (if any) or retransmits the requested lost packet. This data packet

will instruct node 6 to respond to the source. All other receivers, including node 7, are prohibited from sending any

feedback, thus avoiding the feedback implosion. Node 1 waits for either node 6 to reply or a timeout to occur. If

an ACK is received from node 6 requesting retransmissions, node 1 continues to multicast the lost packet indicated

in the ACK. If a timeout occurs, the packet is retransmitted after a back-off. When an ACK is received without

any request for retransmissions, node 1 removes node 6 from the Receiver List and chooses node 7 as the next

feedback receiver to perform loss recovery. It is important to note that retransmitted packets are multicast. If node

7 missed the same packets as node 6 and node 7 received them when they were retransmitted, node 7 does not need

to request retransmission of those packets in the ACK. Upon receipt of an ACK from node 7, node 1 removes node

7 from the list. Since the Receiver List is now empty, node 1 reverts to the original application sending rate.
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Figure 2: Member table maintained for local recovery.

3.2 Local Recovery

In wireless environments, losses may be caused by various factors. For the purpose of our congestion and error

control mechanisms, we classify losses broadly into two categories: congestion- and transmission losses. Con-

gestion losses include drops due to queue overflows and hidden terminal problems (we assume a contention-based

MAC protocol IEEE 802.11 DCF [2]). Since the underlying multicast routing protocol (either tree- or mesh-

based) uses broadcasting for data delivery, hidden terminal losses increase as traffic load increases. This is mainly

due to the fact that in 802.11, channel access is performed as plain carrier sense multiple access (CSMA) with no

ACKs for broadcast packets. Hidden terminal losses are also dependent on node density. Transmission losses in-

clude packet drops due to errors in the wireless channels (e.g., interference, noise) which can be caused by various

factors including node mobility.

Recall that in the basic protocol, a receiver sends a feedback NACK to the source whenever it detects that

packet losses are due to congestion using a fixed threshold for number of lost packets(three in our simulations). The

sender then enters loss recovery mode and reduces its rate assuming network congestion. Since the losses are highly

unpredictable in MANET environment, the nodes cannot effectively determine whether losses are due to congestion
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or transmission errors. In either case, the source will try to recover the lost packets and will automatically slow

down its rate. This may reduce throughput unnecessarily as reported losses may not be due to congestion. ReACT’s

local recovery mechanism tries to recover from transmission losses in the local neighborhood of the affected node,

hence avoiding the source to unnecessarily reduce its sending rate.

Local recovery is also helpful in large, heterogeneous networks where different parts of the network might have

different levels of “local” congestion. This eliminates the need for the source to restrict its rate just to satisfy a

single member (or a small number thereof) located in a highly congested area. The affected member(s) can recover

lost packets locally from nearby members. Recovering packets locally not only decreases the number of NACKs

sent back to the source, hence avoiding unnecessary sending rate reductions, but also avoids unnecessary “global”

retransmissions (as retransmissions from the source are multicast to the entire group) which may further increase

incipient congestion.

Any local recovery scheme must obtain information of other group members as potential recovery nodes. In

Anonymous Gossip [3], nodes get this information by adding additional fields to the underlying routing protocol’s

control packets. Our scheme gathers member information using the IP header, without relying on the underlying

routing mechanism. Our local recovery scheme is thus routing-protocol independent. The main difference be-

tween our scheme and gossip style schemes is that we get information only about group members that are in the

forwarding path from the source, whereas gossip tries to get information about all members.

Our mechanism of getting member information and selecting a recovery node works as follows:

� We add two fields in the the multicast data packet IP option field: � memberId, reliability � . These fields are

updated as the packet is forwarded to the group. The memberId field contains the node-id of the multicast

group member which forwarded the packet. Reliability field contains the current measure of reliability for

the multicast source at that instant. Since node’s reliability changes with time depending on the mobility

and link conditions, we calculate reliability over a time window and take a moving average over the past. It

is given by, reliabilityt � 0 � 3 � reliabilityt � 1 � 0 � 7 �	� Ar 
 Er � where, Ar is the number of packets received
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in the time window t and Er is the number of packets that the node is supposed to receive in the window

t. Note that we give more weight to the recent time window’s reliability to address the dynamic nature of

MANET’s.

� Each member node maintains a member table of � memberId, prevHop, reliability, timestamp � for each

multicast source and updates the table whenever it receives a multicast data packet using the IP option. It

also updates the IP option fields with its own IP address as memberId and reliability based on the above

formula. The prevHop field in the table identifies the node through which the multicast packet is received

and the timestamp field denotes the time the entry was updated.

� Whenever a member decides to perform local recovery, it selects a member that has the highest reliability.

The timestamp entry is used to timeout old entries and keep member information fresh. This is particularly

important in MANETs where the topology can be very dynamic.

The above mechanism gathers upstream member (i.e., members that are on the path from the source to the node)

information and is independent of the underlying multicast structure. Figure 2 shows a sample table maintained

by a member node F both in mesh-based and tree-based protocols. In a mesh-based protocol we may have more

than one upstream member because of path redundancy. As tree-based protocols also use broadcast for delivery,

it is possible that a receiver might receive a packet from a node other than its parent node. Selecting a upstream

recovery node based on its reliability increases the likelihood of successfully recovering packets locally, as nodes

that are farther away from the source are less likely to have the requested packet(s).

Recall that one of the main goals of local recovery is to avoid the source to enter congestion control backing

off its sending rate when it is not necessary. In ReACT, this is accomplished by: (1) trying to differentiate losses

that are due to congestion from those that are not and (2) suppress feedback reporting losses not due to congestion.

In order to report different types of losses, the ReACT receiver generates three different types of feedback packets

according to the number of missing sequence numbers as follows:
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� The LR feedback packet type is generated when � missing packets � � LR THRESH � . LR packets are

always suppressed by the recovery node assuming that when losses do not persist for some time, they are

likely not caused by congestion.

� If � LR THRESH
�

missingpackets
� � REPAIR THRESH � , feedback packets of type REPAIR are gener-

ated; REPAIR requests are forwarded to the source if � unrecovered packets � LR THRESH � . If a reason-

able number of losses can be recovered locally, the REPAIR request is suppressed. In this case, the recovery

node adds the sequence numbers of the packets that could not be recovered and the repair initiator id to its

missing packet cache hoping that they could be recovered later. Whenever a new packet is received at a

recovery node, it checks its missing packet cache and if there is a match, it will forward the packet to the

request initiator and remove the entry. To avoid multiple retransmission, we forward the packet only if it is

recovered locally from some other node than the request initiator.

� Finally, persistent losses are considered indication of congestion; in this case, feedback type generated are

NACK (i.e., if missing packets � REPAIR THRESH and are forwarded to the source if they cannot be fully

recovered locally.)

Currently in our simulations, the values of LR THRESH , REPAIR THRESH , and REQ LEN are 3, 10, and

20, respectively. Note that REQ LEN is the maximum number of sequence numbers a packet can carry. Similar

to TCP, we set LR T HRESH to three; this means that a node needs to experience at least 3 losses before gen-

erating congestion indication. These parameters should be decided based on the environment under which the

protocol is operating. Preliminary simulations showed that REPAIR THRESH � 10 yielded reasonable indication

of persistent congestion. The complete pseudo-code description of the algorithm at the sender and the receiver or

intermediate node is presented in figure 3 and figure 4 respectively.
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Initialization:
RX LIST � ���

; FEED BACK RX � NONE
If (FEED BACK RX � NONE) Then Goto Normal Mode Else Goto Recovery Mode
Normal Mode:
If (QUEUE EMPTY ) Then Wait forPACKET from Application or Network
Else

If (PACKET � DATA FROM APP) Then
Transmit Data
Add to send buffer
Goto Normal Mode

Else If (PACKET � ACK) Then Goto Process ACK
Else Goto Process NACK:

Process ACK:
If (ACK � SENDER �� RX LIST) Then

If (ACK � RETX SEQ � 0) THEN GOTO NORMAL MODE
Else

(RX LIST � RX LIST � ACK � SENDER)
(FEED BACK RX � ACK � SENDER)
Retransmit requested seq number with feedback flag set
Increment RET X COUNTER and Set BACKOFF TIMER
Goto Recovery Mode

Else
FEED BACK RX � GET NEXT RX FROM RX LIST
If (FEED BACK RX � NONE) Then Goto Normal Mode
Else

Transmit new data with feedback flag set
Increment RET X COUNTER and Set BACKOFF TIMER
Goto Recovery Mode

Recovery Mode:
Wait forPACKET from Application or Network or Timer Event
If (PACKET � DATA FROM APP) Then

Add to the application queue and Goto Recovery Mode
Else (PACKET � ACK) Then Goto Process ACK
Else Goto Process NACK
Process NACK:
If (NACK � SENDER �� RX LIST ) Then

RX LIST � RX LIST � NACK � SENDER
IF (FEED BACK RX � NONE) THEN

FEED BACK RX � NACK � SENDER
Transmit new data with feedback flag set
Increment RET X COUNTER and Set BACKOFF TIMER
Goto Recovery Mode

Timer Event:
If (RETX COUNTER � MAX RET X) Then

Retransmit packet with feedback flag set
Increment RET X COUNTER and Set BACKOFF TIMER
Goto Recovery Mode

Else
Remove FEED BACK RX From List
FEED BACK RX � GET NEXT RX FROM RX LIST
If (FEED BACK RX � NONE) Then Goto Normal Mode
Else

Transmit new data with feedback flag set
Increment RET X COUNTER and Set BACKOFF TIMER
Goto Recovery Mode

Figure 3: Algorithm at the sender.

4 Experimental Setup

As our simulation platform, we use the QualNet network simulator [1], GloMoSim’s [14] commercial successor.

We evaluate the performance of our protocol for two different multicast routing protocols, namely ODMRP [8] and

MAODV [13] 2. For all the experiments, 50 nodes are placed randomly in a 1500m � 1500m area and a randomly

chosen group of 10 nodes join the multicast group. All the nodes join at the start of the simulation with some jitter

and stay subscribed to the group till the end of the simulation. Five randomly selected members continuously send

CBR traffic throughout the whole duration of the simulation with data payload size of 512 bytes.

2Due to space limitations, we do not describe MAODV’s and ODMRP’s operation
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Receive Mode: Wait for PACKET from network
If PACKET � DATA Then Goto Process Data
Else Goto Process Repair
Process Data:
If (OLD DATA) Then

Drop the PACKET
Goto Receive Mode

Else
Add data to receive buffer
Check LR CACHE for possible locally requested retransmissions
If (PACKET � FEEDBACKID � NODE ID)

Check for lost sequence numbers
Send back ACK to the source with lost sequence numbers
Goto Receive Mode

Else if (TIME � LAST REQUEST SENT
�

REPAIR INTERVAL)
Goto Receive Mode

Else
Check for packet loss
If � 0 � NUM LOST � � LR THRES � Then

Send LR request to the chosen member
Else If � LR THRES � NUM LOST � � REPAIR THRES � Then

Send REPAIR request to the chosen member
Else If (NUM LOST

�
REPAIR THRES) Then

Send NACK request to the chosen member
Process Repair:
Check for lost seq in the receiver buffer
Send the requested packets found immediately
If (REPAIR � TYPE � LR) Then

Add unrecoverable seq number and source of request to LR CACHE
Goto Receive Mode

Else (REPAIR � TYPE � REPAIR) Then
If (UNRECOVERED PKTS � LR THRES) THEN

Forward repair to the source
Else

Add unrecoverable seq number and source of request to LR CACHE
Goto Receive Mode

Else (REPAIR � TYPE � NACK) Then
If (UNRECOVERED PKTS

� 0) Then
Forward repair to the source

Figure 4: Algorithm at the receiver or intermediate node.

For MAODV, we allow some time at the start of the simulation, i.e., before sending any data, for tree establish-

ment. We followed MAODV’s IETF draft [12] specification as close as possible. However, the current version of

the MAODV draft leaves unspecified many issues that can drastically impact MAODV’s performance in a negative

way. Thus we had to change MAODV’s “standard” implementation to address these issues so that we conduct a

fair performance comparison. We describe the important changes to MAODV below.

While caching group hello information for checking duplicate group hellos, MAODV draft specifies to use a

cache with � group address, sequence number � pair. This creates major problem when many nodes join the group

at the same time. When multiple nodes join at the same time to form a new multicast group, it is highly possible

that all of them declare themselves as leaders as there is no initial multicast tree and the nodes will not get a RREP.

This creates number of small groups with independent leader, which have to build together as a single group if

they are connected. To detect the existence of multiple groups with in reach and combine them, MAODV uses

group hello messages for this detection. Hence just � group address, sequence number � is not enough as you can

receive a new group hello from a different leader with same group address and sequence number pair which will
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be ignored as a duplicate. So we included the leader information in the cache to effectively detect multiple trees

with in reach.

Another modification we made to MAODV is to maintain the tree effectively without any ambiguity between

the upstream and downstream members. As per the MAODV specification, a link is assumed to be broken if you

do not hear from your neighbor with in retransmit ttime after multicast data. Only a node which is downstream to

the link breakage initiates the repair and the upstream node removes the link from the nexthop. Since in a static

network with high network density, hidden-terminal losses are more, a may detect its nexthop as a failed node

erroneous. If the node which does this false detection of link failure is an UPSTREAM node and not the member

of the multicast group, it may prune after a timeout if it is a leaf node. This will cause inconsistency in the tree as

the downstream will still be thinking it is a part of the tree until it multicasts data. If it is just a receiver and not in

the forwarding path from the source, then the detection is very difficult and may not detect this at all. To prevent

this starvation, we added a new timer, which keeps track of the last heard time of the nexthop and eliminates this

problem.

The values for MAODV and ODMRP parameters we use in our simulations are summarized in Table 1.

Table 1: Simulation parameters for MAODV and ODMRP
MAODV Parameter Name Value

allowed hello loss 2
group hello interval 5 sec
hello interval 1 sec
hello life 3 sec
pkt id save 3 sec
prune timeout 750 msec
rev route life 3 sec
rreq retries 2
route discovery timeout 1 sec
retransmit timer 750 ms

ODMRP Parameter Name Value

JOIN DATA refresh interval 3 sec
Ackowledgement timeout for JOIN TABLE 25 ms
Maximum JOIN TABLE retransmission 3

In our study, we use the following performance metrics:
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(b) Packet delivery ratio: ODMRP

Figure 5: Effect of congestion: Packet delivery ratio

� Reliability is the ratio of the number of packets successfully (or reliably) delivered to each receiver over the

number of packets supposed to be received by each member.

� Goodput measures throughput of packets reliably delivered, i.e., packets that are received by all members.

� Overhead measures the total number of packets sent (i.e., packets forwarded by the network layer). This

includes control and data packets sent by the underlying multicast structure.

5 Results

We evaluate ReACT’s performance when subject to range of network conditions. We are particularly interested in

how ReACT performs under various offered loads, how it reacts to transmission losses, and what is the impact of

node mobility. We also test ReACT TCP-friendliness.

16



6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

40 60 80 100 120 140 160 180 200 220

Go
od

pu
t (

bit
s/s

ec
)

Offered load in KBPS

ReACT-MAODV
UDP-MAODV

BASIC-MAODV
AG-MAODV

(a) Average goodput for each source over MAODV

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

40 60 80 100 120 140 160 180 200 220

Go
od

pu
t (

bit
s/s

ec
)

Offered load in KBPS

ReACT-ODMRP
UDP-ODMRP

BASIC-MAODV
AG-ODMRP

(b) Average goodput for each source over ODMRP

Figure 6: Effect of congestion: goodput
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Figure 7: Effect of congestion: overhead and congestion control in action
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5.1 Effect of Congestion

MANETs are extremely sensitive to congestion which can greatly impact packet delivery ratio. To study this effect

we varied the network offered load. Figure 5 shows the packet delivery ratio under different loads. Nodes are

kept static (no movement is applied) and we measure packet delivery ratio, goodput and overhead for the different

protocols over MAODV and ODMRP. As expected, packet delivery degrades as load increases. In particular

ODMRP as a mesh-based protocol is more affected by congestion because of path redundancy in forwarding.

AG performs poorly as the load increases. Indeed AG does not improve the reliability of pure ODMRP. AG’s

poor performance is due to the fact that it does not perform congestion control and attest to the importance of

congestion control in achieving reliable multicast in MANETs.

ReACT achieves near 100% reliability for all cases. The reason we do not achieve perfect reliability is because

the application continuously sends packet and ReACT does not have a chance to recover all packets before the

simulation ends.

Figure 6 illustrates the goodput achieved by the different protocols. As expected, ReACT’s exhibits lower

goodput than both AG and UDP as the latter do not employ congestion control. However, we observe that ReACT’s

local recovery mechanism is able to improve the protocol’s overall goodput when compared to ReACT without

local recovery (curve labeled “Basic”). This is because local recovery prevents the source from backing off its rate

when packet losses are recovered locally. It also reduces the number of retransmissions at the source increasing

its throughput. The price to pay is increased overhead due to its its aggressiveness in recovering packets without

reducing the source sending rate (see Figure 7(a)). This effect is more pronounced in a mesh-based protocol than

in a tree-based one. Nevertheless, as shown in Figure 7(b), which plots the number of packets dropped at the IP

layer due to queue overflow, ReACT still minimizes network congestion by a large factor as shown in. The effect

of congestion is more pronounced in ODMRP rather than MAODV. As expected, UDP exhibits the highest number

of drops followed by AG since both protocols do not perform congestion control.
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Figure 8: Effect of transmission losses: packet delivery ratio

5.2 Effect of Random Transmission Losses

In these experiments we focus on the performance of ReACT when subject to random link errors. We simulate

link errors at the physical layer by generating random link losses according to a pre-defined error rate. Figure 8

shows the delivery ratio of the different protocols for different error rates. We can observe that without reliability

mechanisms, the delivery ratio of plain UDP (which reflects the reliability that is delivered by the underlying

routing protocol) goes down considerably as link error rates increase. In particular, the impact on tree-based

protocols like MAODV is more severe as link errors may cause tree breaks and tree repairs are initiated. Whereas

ReACT is able recover from these losses showcasing its local recovery feature. We should also point out that

ReACT outperforms AG in terms of reliability under all conditions. Furthermore, because it uses local recovery, it

is able to recover from errors without necessarily having the source reduce the sending rate as shown in Figure 9.

5.3 Effect of Node Mobility

In this section we study the effect of node mobility on performance. We use the random-way-point mobility model

for mobility with 10S pause interval and we vary the average node velocity from 20m/s to 100m/s. As we can see

from figure 10 packet delivery ratio of tree based protocol is affected a lot by mobility than a mesh based protocol.

This is mainly because of the overhead in maintaining the tree with mobility. Frequent link breaks and tree repairs
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Figure 9: Effect of transmission losses: Goodput

causes significant overhead. We can see that in a highly mobile scenario with a high load, AG fails to improve the

performance. This is mainly due to the additional overhead incurred by the repair request and repair reply packets.

ReACT is able to successfully recover the packets even with mobility and guarantees perfect reliability both over

tree- and mesh-based protocols.

5.4 TCP Friendliness

In addition to analyzing ReACT’s performance under a variety of MANET scenarios, we also needed to ensure that

ReACT will compete fairly with other protocols, and in particular with TCP as it is very sensitive to congestion.

The results presented in this section measure how fair ReACT is to TCP. We initiate a multicast group application

with 10 receivers and 5 senders with sources generating traffic at the rate of 10 packets/second. In parallel, we run

FTP and telnet traffic among 7 pairs of randomly chosen nodes. Table 2 shows the average throughput achieved

by the TCP flows when competing with (multicast) UDP and ReACT. As can be observed, the throughput of TCP

when competing with UDP is significantly lower than when ReACT is the competing protocol. This discrepancy
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Figure 10: Effect of mobility: packet delivery ratio
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Figure 11: Effect of mobility: goodput
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Table 2: Average throughput (in Kbps) achieved by TCP sessions when competing with UDP and ReACT
Competing Transport
Protocol

Over MAODV Over ODMRP

UDP 83.48 49.26
ReACT 107.8 85.23

is even more accentuated when ODMRP is the underlying routing protocol as it is more sensitive to congestion.

The numbers shown in parenthesis in Table 2 denote the throughput of the protocol competing against TCP. In

other words, in the first and second rows, these numbers refer to the throughput achieved by the competing UDP

and ReACT session, respectively. They verify the hypothesis that by virtue of its congestion control mechanism,

ReACT leaves a considerable portion of the bandwidth to competing TCP flows.

6 Conclusions

In this paper we presented the Reliable, Adaptive, Congestion-controlled multicasT (ReACT) transport protocol for

reliable and timely multicast delivery in a wide range of MANET scenarios. One distinguishing feature of ReACT

is that it combines source-based and local recovery. ReACT’s source-based control includes a congestion control

algorithm that adjusts the sending rate using a simple stop-and-wait mechanism based on receivers’ feedback.

ReACT’s error control mechanism combines source-based and local recovery. Ideally, the local recovery mech-

anism will mend no-congestion losses, avoiding the multicast source to back-off its transmission rate unnecessar-

ily. Local recovery also tries to catch losses due to “localized” congestion (e.g., caused by the hidden terminal

effect). Besides preventing the source from unnecessarily slowing down, ReACT’s local recovery mechanism also

manages to reduce “global” congestion by suppressing feedback ultimately addressed to the source as well as

source-originated retransmissions. Also, by recovering locally, timeliness is preserved.

Through simulations, we evaluated ReACT’s performance for a wide range of MANET scenarios using both

mesh- and tree-based multicast routing protocols. We compare ReACT’s performance against plain UDP and

Anonymous Gossip. Our results show that ReACT is the best performer in terms of reliability, delivering close to
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perfect reliability under a wide range of conditions. Our results also demonstrate the benefits of ReACT’s local

recovery mechanism which manages to prevent the source from reducing its rate unnecessarily, thus improving

throughput considerably when compared to ReACT’s throughput when local recovery is not employed. Finally we

show that ReACT’s performance is fairly insensitive to the underlying routing structure and that when competing

for network resources, ReACT is fair to TCP.

As future work directions, we plan to investigate other congestion control schemes including window- as well

as rate-based schemes. As a follow-on to our study of the interactions of ReACT with different routing protocols,

we will also study the interactions of ReACT as a reliable transport protocol with MAC-layer protocols that provide

link-level reliability.
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