
Combining Source- and Localized Recovery to Achieve
Reliable Multicast in Multi-Hop Ad Hoc Networks

Venkatesh Rajendran1, Katia Obraczka1, Yunjung Yi2, Sung-Ju Lee3, Ken Tang4 and
Mario Gerla2

1 Computer Engineering Department, University of California, Santa Cruz
2 Computer Science Department, University of California, Los Angeles

3 Mobile & Media System Laboratory, Hewlett-Packard Laboratories
4 Scalable Networks Technologies

Abstract. This paper proposes a novel reliable multicast transport protocol for
multi-hop, wireless ad hoc networks (or MANETs). To recover from the different
types of losses that may occur in MANETs, our Reliable Adaptive Congestion-
controlled Transport protocol, or ReACT, combines source-based congestion-
and error control with receiver-initiated localized recovery. While the latter at-
tempts to recover localized losses (e.g., caused by transmission errors), the for-
mer is invoked only for losses and congestion that could not be recovered locally
(e.g., caused by global congestion). Loss differentiation is an important com-
ponent of ReACT and uses medium access control (MAC) layer information to
distinguish between different types of losses. Through extensive simulations, we
evaluate ReACT’s performance under a variety of MANET scenarios, including
different offered load and mobility conditions, and compare it against a strictly
end-to-end (i.e., no localized recovery) scheme. Our results show that ReACT
is the best performer in terms of reliability. Our results also showcase the effect
of ReACT’s local recovery mechanism which quickly corrects error- and path
breakage induced losses and thus manages to prevent the source from reducing
its rate unnecessarily , thus achieving significant throughput improvement with
lower overhead when compared to the strictly end-to-end protocol.

1 Introduction

A multi-hop, wireless ad hoc network (or MANET) [1] operates without any fixed in-
frastructure. Hosts communicate with each other through wireless packet radios. Be-
cause of the limited radio propagation range, routes can often be multi-hop. Hence,
every host may act as a packet forwarder as well as source or destination of traffic.
Because of their ease of deployment, MANETs are an attractive choice for scenarios
where the fixed network infrastructure is non-existent or unusable. Example applica-
tions include search and rescue, disaster recovery, digital battlefield, and covert military
operations.

Both unicast- and multicast routing in MANETs have been well-studied and, as a
result, a number of protocols have been proposed [2, 16]. Several research efforts have
also focused on transport-layer approaches to achieve end-to-end reliable point-to-point
communication. This includes the work on improving TCP performance in “last-hop”
wireless networks and MANETs [3–6].

2

However, the types of scenarios targeted by MANETs make group-oriented services
such as data dissemination and teleconferencing a key application domain. In particular,
the mission-critical characteristics of a number of these applications (e.g., emergency
response, special civilian or military operations) call for efficient reliable multi-point
communication protocols for MANETs. Undoubtedly, “network-supported” multicast
communication is an efficient means of supporting group-oriented applications. This is
especially true in MANETs where nodes are energy- and bandwidth limited. In these
resource-constrained environments, reliable point-to-point protocols (that may be vi-
able in wired networks) can get prohibitively expensive: the convergence of multiple
requests to a single node typically causes intolerable congestion, violating the reliabil-
ity and time constraints of a critical mission, and may drain the node’s battery, cutting
short the network’s lifetime. Despite the fact that it is a key enabling technology for
mission critical applications in MANETs, surprisingly very few efforts to date focus on
reliable multicast transport.

The Reliable Broadcast Protocol [7] addresses the problem of reliable atomic de-
livery of messages. While this protocol may work well in stable networks with low
mobility and low failure rates, its performance will likely degrade in dynamic MANET
scenarios where topology changes are frequent. Anonymous Gossip (AG) [8] recov-
ers from losses by having pairs of multicast group participants exchange information
on messages they have received or lost. AG uses solely local recovery from nearby
members for error control. In our experiments, we compare the performance of Re-
ACT against AG 5. As expected, mainly due to the fact that AG does not implement
congestion control, we observe that its performance deteriorates under heavy load.

In our previous work we demonstrated the importance of congestion control in im-
proving reliability. Congestion-controlled Adaptive Lightweight Multicast (CALM) [10]
is a multicast transport protocol that tries to achieve reliable delivery strictly through
congestion control. The Reliable Adaptive Lightweight Multicast protocol [11] uses a
congestion control scheme similar to that of CALM and recovers from losses using
source-based retransmissions. It requires multicast group member information to per-
form congestion control and error recovery. In an extended version of RALM [12], we
do away with the need to maintain group membership information at the source.

Several features unique to MANETs make the design of MANET reliable multi-
cast transport mechanisms quite challenging. Among these features, we highlight: (1)
MANET’s heterogeneous loss characteristics due to factors such as mobility, node den-
sity, time-varying channel conditions, (2) effects of lower layer protocols, e.g., inherent
unfairness and unreliability of contention-based medium access control protocols (e.g.,
IEEE802.11 [13] uses plain CSMA when broadcasting packets and thus do not provide
reliable broadcast delivery), and (3) MANET’s extreme sensitivity to offered load.

These MANET features render design choices used in reliable multicast protocols
for wired networks not at all applicable to MANET environments. Based on observa-
tions from our prior work [10], we argue that multicast reliability in MANETs cannot
be achieved solely by retransmission of lost packets as is typically done in wired net-
works with protocols such as Scalable Reliable Multicast (SRM) [14]. Our premise is
that, besides error control, effective reliable multicast delivery in MANETs must also

5 These results that are not presented here due to space limitations can be found in [9]

3

perform congestion control. As demonstrated in our previous studies [10–12], a simple
congestion control scheme results in significant increase in delivery guarantees.

MANETs’ complexity also calls for revisiting the layered system design argument
which claims that, in a system, the design and implementation of each one of its layers
should not be exposed to higher layers. We argue that in MANETs, information ob-
tained from lower layers of the protocol stack is crucial for adequate performance at
higher layers.

This motivated us to explore cross-layer mechanisms to achieve efficient reliable
multicast transport. More specifically, we use information from lower layer protocols
(in particular the MAC layer) to perform loss differentiation addressing MANETs’ het-
erogeneous loss characteristics. Thus, some of the distinguishing features of ReACT are
that (1) it combines source-based rate control with local error recovery and (2) uses loss
differentiation to trigger either source-based control or local recovery. The goal is to re-
cover from localized losses (e.g. due to node mobility, link quality, channel contention)
using nearby group members, while congestion losses are reported to the source, trig-
gering error- as well as congestion recovery.

Through extensive simulations, we evaluate ReACT’s performance under a wide
range of MANET conditions. In order to demonstrate the benefits of ReACT’s loss dif-
ferentiation and local recovery mechanisms, we also compare its performance against a
strictly source-based control scheme (RALM [12]). In our experiments, as the underly-
ing routing mechanism, we use a mesh-based multicast protocol, more specifically the
On-Demand Multicast Routing Protocol (ODMRP) [15].

The remainder of this paper is organized as follows. Section 2 presents a detailed de-
scription of ReACT’s source-based and local recovery mechanisms. Performance eval-
uation and simulation results follow in Section 3. Section 5 presents our concluding
remarks and directions for future work.

2 ReACT

2.1 Overview

Our premise when designing ReACT is that in wireless environments losses may be
caused by various factors and should be handled differently. For example losses caused
by transmission errors (e.g., due to factors such as noise, interference, etc.) or hidden
terminal collisions may be affecting only a small number of nodes in a neighborhood
and thus can be recovered locally using a (non-congested) near-by member, i.e., without
the involvement of the source. There is no need to trigger congestion control and slow
down the source because these losses are not indicative of “global” congestion. Fur-
thermore, by recovering locally, feedback and retransmissions are kept in the affected
neighborhood and do not add to traffic destined to the source, hence improving proto-
col efficiency. On the other hand, congestion losses should be reported to the source
triggering reduction of the sending rate as well as error recovery. However, special care
should be taken as local recovery can exacerbate congestion if the network neighbor-
hood performing recovery is already congested.

ReACT performs receiver-based loss differentiation to distinguish congestion- from
local losses. A multicast receiver samples its MAC queue to detect congestion building

4

up. Receivers also detect congestion building up anywhere on the path from the source
by having intermediate nodes set a “congestion” flag in multicast data packets they
forward. The congestion flag is set by any intermediate node whose MAC queue grows
beyond a certain fraction of the maximum MAC queue size. By detecting incipient
congestion (instead of waiting to take action until actual packet drops occur), ReACT
tries to avoid persistent congestion conditions.

ReACT ensures that only multicast members that are situated in a non-congested
area will be used to perform local recovery. This avoids contributing to congestion in
an already congested neighborhood. The remainder of this section describes ReACT in
detail by presenting its two main components, namely source-based (error and conges-
tion) control and receiver-based error recovery.

2.2 Source-Based Control

ReACT employs a rate-based congestion control scheme that has two main modes of
operation: initial rate set-up (i.e., determining the initial sending rate) 6, and congestion
control. ReACT tries to determine the appropriate sending rate in order to avoid (1)
initial bandwidth under utilization by starting too low, and (2) congestion by starting at
too high of a rate.

One approach at setting up the initial rate is to probe the entire network and then
decide on the rate based on the aggregate network condition. Though this approach can
provide information on the overall state of the network, it is not scalable. Alternatively,
in ReACT we establish the initial rate based on the set of members that are directly con-
nected to the source. This provides the source with an estimate of its neighborhood’s
current conditions. The rate is decided so as to satisfy the worst receiver in this neigh-
borhood.

The first data packet sent by the multicast source serves as a probe packet and
each directly connected member replies with a PROBE REPLY packet.After sending
the first packet, the source waits for PROBE WAIT TIME to receive replies to its probe.
PROBE WAIT TIME is set based on the network diameter (NET DIAMETER) and an
estimate of average time to traverse one hop (NODE TRAVERSAL TIME) accounting
for queuing and transmission delays (similar to the route reply timeout of AODV [17]).
If the source does not hear from any receiver in response to the probe packet, it will
continue to send (probe) packets every PROBE WAIT TIME interval. The source then
computes the inverse of the largest round-trip time reported during the initial probing
period and uses that as its initial sending rate.

The rate is periodically updated once every PROBE INTERVAL by directly con-
nected neighbors. If no feedback has been sent to the source for the last PROBE INTERVAL
seconds, the receiver generates an explicit PROBE REPLY packet. Receivers only send
an update to the source if they detect significant changes to the time it takes them to get
packets from the source. PROBE INTERVAL is set sufficiently large to prevent oscilla-
tions in the source sending rate and also to reduce feedback overhead due probing. The

6 In our previous approaches [10–12], we start at the application sending rate and then react to
congestion based on receiver feedback. Our experiments indicate that setting an initial rate too
high may lead to extreme (sometimes unrecoverable) congestion and thus numerous packet
losses (e.g., if the feedback path from the receivers to the source gets blocked.)

5

source continues to send at this rate, until it hears a negative acknowledgment (NACK)
from any receiver experiencing congestion. In that case, it reverts to congestion control.

ReACT’s congestion control works as follows. The source initially multicasts data
packets at the rate decided using initial probing as described above. Upon reception of a
NACK, the source adds the NACK sender to its Receiver List and enters loss recovery.
The missing sequence numbers reported by the NACK are added to a global retransmis-
sion list, which is an aggregate of lost sequence numbers from all reporting receivers.
This list is updated whenever the source retransmits a packet to prevent duplicate re-
transmissions. In addition, the source keeps track of the end-to-end latency between
itself and each receiver that sent NACKs.

The source initiates loss recovery by selecting a receiver from the Receiver List,
which we call Feedback Receiver. The source then retransmits a lost packet requested
by the Feedback Receiver or multicasts a new packet (e.g., if all lost packets requested
by that receiver had already been retransmitted). The packet header includes informa-
tion instructing the Feedback Receiver to reply via “unicast” with a (positive) acknowl-
edgment (ACK) indicating that all packets have been successfully received or specify-
ing the sequence number(s) of packets that are still missing. All other receivers process
the packet without replying to the source.

The source then responds by retransmitting the requested packets one at a time until
the Feedback Receiver receives all packets (i.e., send-and-wait). The design philosophy
behind retransmitting one packet at a time is to slow down the source when congestion
is detected. Since only the Feedback Receiver replies to the source, the ACK/NACK
implosion problem is avoided. NACKs are rate-limited to prevent excessive feedback
overhead. The mechanism for controlling NACK generation is described in Section 2.3.

Once the Feedback Receiver obtains all packets, it unicasts an ACK to the source
indicating successful reception of all packets. Upon reception of the ACK, the source
removes the node from the Receiver List, chooses a new Feedback Receiver in a round
robin fashion, and repeats this process until the Receiver List is empty.

When the Receiver List is empty, the source reverts to the latest sending rate decided
based on periodic probe packets. If, however, the source does not receive a NACK or
ACK from the Feedback Receiver within the time interval given by the measured round-
trip time from the source to the Feedback Receiver, the source backs off and tries again
up to a maximum number of times (which is three in our simulations) before removing it
from the Receiver List. The removed receiver may later re-synchronize with the source
through the normal NACK mechanism.

The round-robin send-and-wait approach does not require retransmissions of the
same lost packets multiple times to each receiver. In the best-case scenario, lost pack-
ets are retransmitted only once by the source since retransmissions are multicast. For
instance, if a set of receivers lost the same packet, it is retransmitted only once assum-
ing the retransmitted packet is received by all the receivers. In the worse-case scenario,
each receiver experiences different packet losses. In this case, all lost packets must be
retransmitted to each receiver.

6

2.3 Receiver-Based Error Recovery

The main goal of ReACT’s receiver-based recovery mechanism is to detect losses that
can be recovered locally avoiding source involvement (and hence avoid triggering con-
gestion control). Congestion losses, however, should be reported to the source so that it
knows to slow down.

In order to recover from losses “locally”, nodes must obtain information about other
group members as potential Recovery Nodes. Our scheme gathers member information
using multicast data packets as they get forwarded over the multicast tree or mesh.
Hence it is independent of the underlying multicast routing protocol. We are only inter-
ested in Recovery Nodes that are in the forwarding path from the source. More specifi-
cally, ReACT only uses immediate upstream member node(s) for recovery.

The way recovery requests and replies (or retransmissions) are routed has signif-
icant impact on the overall performance of the reliable multicast mechanism. If the
underlying unicast routing protocol does not have a valid path for the recovery request
and performs flooding for route discovery, significant additional load may result. Our
simulation study indicates that local recovery based protocols that do not address this
problem (e.g., AG) suffer from congestion even at moderate loads. ReACT employs a
source routing approach that makes use of valid cached paths. The main advantage of
this approach is that it makes ReACT independent of the underlying unicast routing pro-
tocol. The tradeoff is the overhead involved in maintaining source routes, especially in
highly mobile environments. ReACT restricts the maximum distance between a mem-
ber and its Recovery Node to LR ROUTE LEN hops to reduce the failure probability
(e.g., due to node mobility) of source route.

Every node maintains a Member Table that stores information about current Re-
covery Nodes. To account for route volatility, Member Table entries are assigned an
expiration time (LR VALID TIME). Additionally, each node maintains a metric of reli-
ability, i.e., the rate at which it receives multicast data packets from Recovery Nodes.
This information is used in selecting a Recovery Node if multiple ones exist. Each entry
also has a flag to indicate if the path to the Recovery Node is congested. This flag is set
if any intermediate node on the path to the Recovery Node has MAC queue size beyond
the CONGESTION THRESHOLD.

The IP option fields in the multicast data packet is used to carry route, hop count
and congestion information. These fields are updated as the packet is forwarded to the
group. The route field contains the path traversed by the packet from the upstream mul-
ticast group member. The hopCount field carries the length of the path. The isCongestion
field denotes if any of the node in the path is congested. Whenever a node decides to
perform local recovery, it selects a non-congested member that has the highest receive
rate, lowest hop-count, and latest timestamp. Figure 1 shows a sample Member Ta-
ble maintained by member node F when using either a tree- or mesh-based protocol.
Mesh-based protocols may yield more than one upstream member because of path re-
dundancy. As tree-based protocols also use broadcast for delivery, it is possible that a
receiver might receive a packet from a node other than its parent node. Selecting an
upstream Recovery Node based on its reliability and proximity increases the likelihood
of successful local packet recovery.

7

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� 	�	

	�	
	�	
	�	

�

�

�

�

���
���
���
���

���
���
���
���

Mesh−based Protocols

Source

A

B

D

E

F

FG

FG

FG

FG

C

H

G

Member Table at F (for source A)

55

G−A

2

t1 t2

H−B

2

45

A B
IsCongestion
MemberId

NumRecd

Route

HopCount

Timestamp

TRUEFALSE

�
�
�
�

���
���
���
���

Multicast Group Members

Forwarding Group Nodes
or

Multicast Tree members

Fig. 1. Member table maintained for local recovery

Feedback generation is rate-limited to once every MIN FEEDBACK INTERVAL sec-
onds to prevent excessive feedback overhead. Thus, every MIN FEEDBACK INTERVAL,
receivers check if they need to perform error recovery by sending a NACK to a near-
by member. There is a tradeoff in setting MIN FEEDBACK INTEVAL. When smaller
intervals are used, we observe higher packet delivery ratios at the expense of higher
overhead and lower throughput.

A NACK packet consists of an request array that is filled with the node’s missing
sequence numbers. The NACK is then sent to the selected Recovery Node if losses
are found to be localized. Nodes use cached source routes to communicate with the
Recovery Node. On the other hand, if losses are due to “global congestion” or if the
node finds that it is experiencing congestion, then it sends the NACK to the source
using the underlying unicast routing protocol.

A node checks if losses are due to “global congestion” by examining the paths
to Recovery Nodes. If all paths are congested, then all valid Recovery Nodes in the
Member Table will have the isCongestion flag set. Additionally, the node also examines
its queue to check if it is congested. If any of the above conditions is true, then losses
are classified as due to “global” congestion and feedback is sent to the source directly
triggering congestion control.

Besides missing sequence numbers, a NACK packet destined to the source also
includes the average delay multicast packets take to reach the node from the source.
Receivers update the average delay to a multicast source every time they receive a
data packet from that source. The average delay is computed as an exponential aver-
age with more weight to recent measurements. Receivers sending NACKs to the source
are placed in the Receiver List. The source then transmits to each Receiver List receiver
based on its reported delay using a send-and-wait approach as described in Section 2.2.

3 Experimental Setup

As our simulation platform, we use the QualNet network simulator [19]. ODMRP [18]
and AODV [17] are used as the underlying multicast and unicast routing protocols, re-
spectively. The transmission range for the radio is 447.807m with a data rate of 2Mbps.
The MAC protocol used is IEEE 802.11 DCF [13].

We evaluate the performance of ReACT in comparison with plain Reliable Adap-
tive Lightweight Multicast (RALM) [12], a strictly source-based control scheme. We

8

Table 1. Simulation parameters

ReACT Parameters Value
LR ROUTE LEN 3
LR VALID TIME 3 s
MIN FEEDBACK INTERVAL 5 s
NODE TRAVERSAL TIME 50 ms
NET DIAMETER 35
PROBE INTERVAL 50 s

evaluate ReACT’s performance subject to a wide range of network conditions. We are
particularly interested in how ReACT performs under various offered loads, and what
is the impact of node mobility. Table 1 shows the values of the parameters used by
ReACT.

As we target applications that require the highest possible delivery guarantees, pro-
tocol reliability is a critical performance metric. We define Reliable Delivery Ratio as
the fraction of packets successfully (or reliably) delivered to ALL receivers over the to-
tal number of packets sent. We also measure Reliable Goodput defined as the through-
put of packets reliably delivered, i.e., packets that are received by all members. Finally,
we measure the overhead incurred by the protocols. To account for control packets sent
by underlying unicast/multicast protocols, we measure the total number of packets sent
by each node at the MAC layer. Normalized Overhead is thus computed as the ratio
of total packets sent at the MAC layer to total data packets delivered to all members.
This measures the total number of packets transmitted to successfully deliver one data
packet to all members.

First, we study the importance of congestion control by simulating a scenario with
multiple sources generating different traffic loads and then we analyze the impact of
node mobility. For these sets of experiments, 50 nodes are placed randomly in a 1500m×

1500m field and 10 randomly chosen nodes join the multicast group. These group nodes
join at the start of the simulation and stay subscribed to the group till the end of the sim-
ulation. Five randomly selected members continuously send CBR traffic throughout the
whole duration of the simulation with payload size of 512 bytes. The results are aver-
aged over several runs and presented with 95% confidence.

4 Simulation Results

4.1 Effect of Congestion

Figure 2(a) shows reliable delivery ratio under different loads. The error bars corre-
spond to reliable delivery ratio’s 95% confidence intervals. As the load increases, so
does packet loss due to congestion and hidden terminal collisions. Both RALM and Re-
ACT perform error recovery and congestion control and hence they achieve very high
reliability. RALM employs strictly source-based error recovery using NACKs. NACKs
are generated when lost sequence numbers are detected upon arrival of a new data
packet. Hence, if a node stops receiving data from a particular source, it will never gen-
erate NACK to recover lost packets. This leads to the reduced reliability of RALM at
low loads and also higher reliability variance when compared to ReACT. On the other
hand, ReACT achieves perfect reliability under various loads due to its robust error
recovery mechanism.

9

 0.96

 0.98

 1

 1.02

 1.04

 50 100 150 200 250 300 350 400 450

R
el

ia
bl

e
D

el
iv

er
y

R
at

io

RALM
ReACT-80
ReACT-50

(a) Reliable delivery ratio

 11000

 11500

 12000

 12500

 13000

 13500

 14000

 14500

 15000

 50 100 150 200 250 300 350 400 450

R
el

ia
bl

e
G

oo
dp

ut
 (

bp
s)

Total Offered Load (kbps)

RALM
ReACT-50
ReACT-80

(b) Average reliable goodput

Fig. 2. Effect of congestion

We show results for two different versions of ReACT: one that detects congestion
when queues grow above 80% of their maximum size, while the other version uses
50% as the queue threshold indicating congestion. As observed from Figure 2(a), both
versions deliver almost perfect reliability.

Figure 2(b) illustrates the impact of ReACT’s combined local- and source-based re-
covery mechanisms on goodput. We observe that ReACT achieves considerably higher
(reliable) goodput when compared with RALM. Furthermore, ReACT is able to keep its
goodput steady even at higher loads, while RALM suffers severe degradation at higher
traffic rates. This is mainly because local recovery prevents the source from backing off
its rate when packet losses are recovered locally. It should also be noted that RALM
starts sending at the application rate and then performs congestion control when it re-
ceives feedback from the receivers. This aggressive behavior can potentially lead to
severe congestion preventing NACKs from receivers to reach the source. This is one
of the reasons for RALM’s reliable goodput degradation as we increase the load. On
the other hand, ReACT’s initial setting of the sending rate also contributes to its high
reliable goodput.

Figure 2(b) also illustrates the effect of CONGESTION THRESHOLD, which is set
to 80% and 50% of the maximum MAC queue size. As expected, goodput is lower at
50% as ReACT becomes more conservative, generates feedback sooner and thus causes
more frequent rate decreases.

Normalized overhead for RALM and ReACT are depicted in Figure 4(a). ReACT
incurs significantly lesser overhead than RALM due to its local recovery mechanism
at higher loads. It prevents unnecessary source retransmissions (which are multicast)
for errors that are recoverable locally. Source route caching used by local recovery also
helps to reduce the overhead incurred by local recovery. Otherwise, route discovery
flooding by the underlying unicast routing protocols can significantly increase the to-
tal overhead. However, at low loads, probe replies sent by receivers for updating the
source sending rate and the corresponding route discovery initiated by AODV slightly
increases the overall normalized overhead.

10

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 5 10 15 20 25

R
el

ia
bl

e
D

el
iv

er
y

R
at

io

Maximum node velocity (m/s)

ReACT-80
RALM

(a) Reliable delivery ratio

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 5 10 15 20 25

R
el

ia
bl

e
G

oo
dp

ut
 (

bp
s)

Maximum node velocity (m/s)

ReACT-80
RALM

(b) Average reliable goodput

Fig. 3. Effect of mobility

4.2 Effect of Node Mobility

In these experiments, we use the random-way-point mobility model with no pause time
and 0m/s minimum speed. We vary maximum speed from 5m/s to 20m/s. The total
network load injected in these mobile scenarios is 200Kbps.

Figure 3(a) shows the reliable delivery ratio achieved by RALM and ReACT for
different node velocities. Both RALM and ReACT are able to achieve perfect reliability
even at high mobility. As previously discussed, the slight variation in RALM’s reliable
delivery ratio is due to the NACK generation mechanism driven by received data. As
expected, Figure 3(b) shows that both protocols exhibit degradation in goodput as we
increase node mobility. In ReACT, the sending rate is updated based on the measured
delay reported by the probed set of receivers. As we increase node mobility, the delay
experienced by nodes becomes highly variable. ReACT uses the highest delay reported
to update the sending rate, which can substantially reduce throughput. Thus, probing
more frequently can improve the goodput with increased node mobility, at the expense
of increased overhead due to probe replies. ReACT’s local recovery mechanism is able
to recover locally some mobility-induced losses, and thus achieves higher goodput than
RALM.

As shown in Figure 4(b), ReACT’s overhead is significantly lesser than RALM
for all mobility conditions. This is mainly due to ReACT’s local recovery mechanism
which recovers mobility losses locally. As we increase mobility, ReACT’s overhead in-
creases as its local recovery effectiveness decreases: mobility leads to frequent timeouts
of source routes maintained in the Member Table. This invalidates potential Recovery
Nodes and forces receivers to resort to the source for error recovery. As previously
discussed, this effect also contributes to the reduction in goodput with increased mo-
bility. In our future work, we plan to overcome this problem by expanding cross-layer
interaction and using more information from the lower layers (e.g., unicast routing).

11

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Total Offered Load (kbps)

RALM
ReACT-50
ReACT-80

(a) Effect of congestion

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 5 10 15 20 25

N
or

m
al

iz
ed

 O
ve

rh
ea

d

Maximum node velocity (m/s)

RALM
ReACT-80

(b) Effect of mobility

Fig. 4. Normalized overhead

5 Conclusion and Future Work

In this paper, we presented ReACT, an adaptive, congestion-controlled multicast trans-
port protocol for reliable and timely multicast delivery in MANETs. One of ReACT’s
main distinguishing feature is its combination of source-based control and local recov-
ery. ReACT’s source-based control includes initial rate setup and congestion recovery
which adjusts the sending rate using a simple stop-and-wait mechanism based on re-
ceivers’ feedback.

Through simulations, we evaluated ReACT’s performance and compared it with
RALM, a strictly source-based protocol. Our results show that ReACT significantly
improves both goodput and packet delivery with lower overhead. By way of its conges-
tion control mechanism, ReACT is able to deliver perfect reliability under a wide range
of conditions. We also demonstrate the benefits of ReACT’s local recovery mechanism
which prevents the source from reducing its rate unnecessarily and restricts the scope
of receiver feedback yielding reduced protocol overhead.

In our future work, we will focus on improving the efficiency of ReACT at higher
node mobility scenarios by extending the interaction with the underlying unicast routing
layer. As a follow-on to our initial study on layer interaction, we will also investigate the
interactions between the transport- and the MAC layer. In particular, we will investigate
the synergy between ReACT and MAC protocols that provide link-level reliability for
broadcast/multicast data.

References

1. Perkins, C.E.: Ad Hoc Networking. Addison Wesley (2001)
2. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.C., Jetcheva, J.: A performance comparison of

multi-hop wireless ad hoc network routing protocols. In: Proceedings of the Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking. (1998)

3. Kim, D., Toh, C.K., Choi, Y.: TCP-BuS: Improving TCP performance in wireless ad hoc
networks. Journal of Communications and Networks 3 (2001)

12

4. Sun, D., Man, H.: ENIC - an improved reliable transport scheme for mobile ad hoc networks.
In: Proceedings of IEEE GLOBECOM 2001, San Antonio, TX (2001)

5. Liu, J., Singh, S.: ATCP: TCP for mobile ad hoc networks. IEEE Journal on Selected Areas
in Communications 19 (2001) 1300–1315

6. Sundaresan, K., Anantharaman, V., Hsieh, H.Y., Sivakumar, R.: ATP: A reliable transport
protocol for ad-hoc networks. In: Proceedings of ACM MobiHoc, Annapolis, MD (2003)

7. Pagani, E., Rossi, G.P.: Reliable broadcast in mobile multihop packet networks. In: Pro-
ceedings of the third annual ACM/IEEE international conference on Mobile computing and
networking, ACM Press (1997) 34–42

8. Chandra, R., Ramasubramanian, V., Birman, K.P.: Anonymous Gossip: Improving multicast
reliability in mobile ad-hoc networks. International Conference on Distributed Computing
Systems (2001) 275–283

9. Rajendran, V.: Reliable multicasting in ad hoc networks. Master’s thesis, University of
California (2003)

10. Tang, K., Obraczka, K., Lee, S.J., Gerla, M.: Congestion controlled adaptive lightweight
multicast in wireless mobile ad hoc networks. Proceedings of IEEE ISCC (July 2002)

11. Tang, K., Obraczka, K., Lee, S.J., Gerla, M.: A reliable, congestion-controlled multicast
transport protocol in multimedia multi-hop networks. In: Proceedings of IEEE WPMC 2002.
(2002)

12. Tang, K., Obraczka, K., Lee, S.J., Gerla, M.: Reliable adaptive lightweight multicast proto-
col. In: Proceedings of IEEE ICC 2003. (2003)

13. IEEE: Wireless LAN medium access control (MAC) and physical layer specifications.
ANSI/IEEE Standard 802.11, 1999 Edition (1999)

14. Floyd, S., Jacobson, V., Liu, C.G., McCanne, S., Zhang, L.: A reliable multicast frame-
work for light-weight sessions and application level framing. IEEE/ACM Transactions on
Networking 5 (1997) 784–803

15. Lee, S.J., Su, W., Gerla, M.: On-demand multicast routing protocol for multihop wireless
mobile networks. ACM/Kluwer Mobile Networks and Applications 7 (2002) 441–453

16. Lee, S.J., Su, W., Hsu, J., Gerla, M., Bagrodia, R.: A performance comparison study of ad
hoc wireless multicast protocols. In: INFOCOM (2). (2000) 565–574

17. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of
IEEE WMCSA, New Orleans, LA (1999) 90–100

18. Lee, S.J., Gerla, M., Chiang, C.C.: On-demand multicast routing protocol. Proceedings of
IEEE WCNC (1999)

19. Scalable Networks: http://www.scalble-networks.com.

