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Abstract—This paper introduces a modeling frame-
work to analyze spatial node density in mobile networks
under ”waypoint”-like mobility regimes. The proposed
framework is based on a set of first order ordinary
differential equations (ODEs) that take as parameters
(1) the probability of going from one subregion of the
mobility domain to another and (2) the rate at which
a node decides to leave a given subregion.

We validate our model by using it to describe the
steady-state behavior of real user mobility recorded
by GPS traces in different scenarios. To the best of
our knowledge, this is the first node density modeling
framework generic enough that can be applied to any
“waypoint”-based mobility regime.

I. INTRODUCTION

One way to characterize and describe mobility is
through the spatial density of mobile nodes. Spatial node
density can be defined as the number of nodes located in a
given unit area and has significant impact on fundamental
network properties, such as connectivity and capacity, as
well as on core network functions, e.g., medium access
and routing. To date, only a few efforts have focused
on modeling spatial density. Notable examples include
[3, 4, 5]. However, most previous work have been focusing
exclusively on the Random Waypoint (RWP) model [1].

In this paper, we introduce an Ordinary Differential
Equation (ODE) framework to mathematically model spa-
tial node density under different mobility regimes that are
in general “waypoint”-based. More specifically, our model
describes node density’s steady-state behavior under mo-
bility which is characterized by having nodes probabilis-
tically choose the next destination, or waypoint, based
on some probability density function. We contend that
waypoint mobility is one way to describe forms of human
mobility. Therefore, we validate our model by using it to
describe the steady-state behavior of real user mobility
recorded by GPS traces in different scenarios and compare
the results against the corresponding traces. Moreover,
we present comparative results for steady-state spatial
distribution analysis of a number of synthetic waypoint
mobility regimes. To the best of our knowledge, this is
the first node density modeling framework generic enough
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that it can be applied to any waypoint-based mobility
regime. As an example, we use our framework to model
the well-known RWP mobility regime. Our model confirms
the well-known result showing that node density’s steady-
state behavior under RWP mobility tends to homogeneity,
as defined in [6]?. Furthermore, we also use our frame-
work to model mobility regimes based on the preferential
attachment principle [2]. We show through the application
of our proposed model that using preferential attachment
to model human mobility leads to undesirable steady-
state behavior. More specifically, our model shows that, at
steady state, the original spatial node density distribution
is not preserved and exhibits behavior similar to random
mobility a la Random Waypoint regime. This behavior
has been observed empirically in [7], where we show that,
instead, real human mobility exhibits “persistent” density
heterogeneity.

We introduce the first generic spatial node density
modeling framework for waypoint mobility regimes and
validate our framework by applying it to real user mobility
traces.

The remainder of this paper is organized as follows. Our
ODE model is presented in detail in Section II, how its
parameters are set, and our implementation. Section III
show the validation of our proposed framework towards
modeling real human mobility.Finally, Section V concludes
the paper with a discussion of future work.

II. PROPOSED MODEL AND FRAMEWORK

Our objective is to model the spatial node density of
a mobile network. We assume a waypoint-based mobility
pattern, where nodes stay in a given location ¢ for a given
period of time and choose to leave i towards another
location j with probability p;;. Once the node arrives at
7, the process restarts.

A. ODE Framework

Assume a mobile network composed of m mobile nodes,
where all nodes are capable of moving around inside a

2The use of the term “homogeneous node distribution” refers
here to the fact that there is no significant concentration of nodes
(clusters), and should not be mistaken with uniform distribution
normally used to model the choice of next destination, speed and
pause time in random mobility models.
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delimited area a. Now assume this area is divided into
equally sized square subareas of size [ x [, defined here as
cells. The mobile nodes can then choose to move from cell
to cell with a given probability. Let X (t) be the stochastic
process that determines which cell a mobile node chooses
at time ¢. We can write then p;; = P{X () =i | X(t+v) =
j}, as the transition probability, which is the probability
that a node in cell 4, at time ¢, is going to choose to go to
cell j at time (¢ + ), after some time step +.

Thus, we are interested in the average number of nodes
in each cell i, represented by the component N;(t) Vi €
{1,...,n} of the state vector N(t) € R™*! where n is the
total number of cells for the desired scenario.

The variation in the number of nodes at each cell
N;(t) = %"’t@ is simply the difference between nodes
arriving in cell ¢ and the ones departing from the same
cell at time t, as expressed in Equation 1.

Arriving at cell i Departing from cell i

where, p; is the rate at which nodes decide to leave cell
1 towards another cell, which allow us to write p;; = psjis
as the rate at which nodes in cell ¢ decide to leave this cell
towards cell j. We can also define the arrival rate in cell 4
as the sum of the departing rates of all nodes going from
cell j to cell 7, over all possible values of j, including j = 1,
since we allow transitions from a cell to another position
in itself.

In reality we observe that nodes prefer some cells over
others and some transitions over others. The probability
of choosing a destination and the rate at which nodes
depart from that destination depends on how popular that
destination is and what are the nodes’ interests in each des-
tination. For example, nodes moving around on a campus
environment may go very often from the cafeteria to the
classroom, but not so often from the cafeteria to the li-
brarY' This means that Pcafeteria,classroom > Dcafeteria,library -
Moreover, since people might tend to stay inside the
library for longer than in the cafeteria, the relationship
between the departure rate from this two locations might
be such as Hcafeteria > Mlibrary-

In order to simplify our model, more specifically the
choice of the parameters (departure rates and transition
probabilities), we define the rate u; as the inverse of the
average time spent by the nodes in cell .. We also consid-
ered the transition probabilities independent of where the
transition originated. This means that the probability of
going from cell j to cell i is the same probability of simply
choosing cell i as the next destination for all j. We then
make p;; = P{X(t)=j | X(t+7) =i} = P{X(t+~) =
i} = pi.

Moreover, in order to validate our model we have chosen
to extract the model parameters from— and compare our
results with— real live GPS traces, where the number of

nodes in the system remains constant during the whole
duration of the trace. For that reason, in the results
we present in Section III-C we used a slightly simplified
version of our model, where \g = g = 0. Equation 1 gives
this version of our ODE model.

B. Implementation

In this section we present a vectorized version of Equa-
tion 1, so that we could implement it on MATLAB [9]. We
used a 4th order Runge-Kutta ODE solver, native to the
platform, to do so.

We start by defining a matrix A € R"*™ as a parameter
matrix given by A = P x M. P € R™*! is a column vector
containing in every ith position the probability p; of a node
choosing cell i as the next destination, and M € R'*" a
row vector containing in every ith position the rate u;
at which nodes choose to leave cell i. The components of
matrix A, resulting from this multiplication are a;; = p;p;.

Thus, it is possible to write Equation 1 for N (t) € R"*!
in its equivalent vectorized form as follows:

N(t)=Ax N(t) — ((AT x 1) - N(t)), 2)
Arriving Departing

where A7 is the transpose of matrix A, that we multiply
by T € R™1 a column vector of ones, to give us a
resulting n x 1 column vector in which every component
i represents the summation of all the components of the
ith row of matrix AT. After that, we perform a component
wise multiplication with the state vector N(t), which gives
us the number of nodes departing from a given cell. That
represents the second summation in the right-handed side
of Equation 1.

III. SpATIAL NODE DENSITY OF HUMAN MOBILITY

We validate our model using real mobility traces; in
other words, we show how the model can be applied to
describe the steady-state behavior of spatial node density
associated with human mobility. Three real GPS traces
were used in our validation. These traces were collected
in scenarios that are quite diverse, namely a city park,
a university campus, and a state fair. We describe these
traces in detail below as well as how we use information
from the traces to estimate the parameters of our ODE
framework.

A. Mobility Traces

Table I summarizes the GPS traces in terms of number
of users, duration of the trace, and GPS sampling period.

Quinta, refers to the “Quinta da Boa Vista Park” trace,
first presented in [10]. It is a GPS trace collected at a
park in the city of Rio de Janeiro, Brazil. The park has
many trees, lakes, caves, and trails. It houses the National
Museum of Natural History and the city Zoo. The KAIST
trace [11], on the other hand, is a GPS trace collected at
the KAIST University campus in Daejeon, South Korea.
The Statefair trace, also available at [11], is yet another
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mobility scenario showing daily GPS track logs collected
from the NC State Fair held in North Carolina, USA.

Trace # users Duration Samples

Quinta [10] 97 900s Ts

KAIST [11] 78 5000s 10s

Statefair [11] 19 8000s 10s
TABLE I

SUMMARY OF THE GPS TRACES STUDIED.

B. Parameter Estimation

We extract from the traces the distributions of speed,
pause time, and node density. We use the trace’s sampling
period, e.g., for example, in the Quinta trace, the sampling
period is T' = 1 seconds. Node speed is defined as % where
d is the distance traveled between two consecutive entries
in the GPS trace at times ¢; and to and At = t5 — t;.
Pause time is defined as P = At, if d < threshold, or
zero otherwise. The threshold is used to account for GPS
error. We set this threshold to be 2 meters for KAIST and
Statefair traces and 0.5 meter for the Quinta trace, due to
jitter in GPS update frequency.

To extract spatial node density, the area covered in the
trace is divided into squared cells of 140 x 140 meters. The
choice of cell size was based on empirical observations,
i.e., we picked a cell size that provided both adequate
resolution as well as clustering. An alternate approach
could be based on identifying "attraction zones”, as was
done in [12]. This is one of the topics of future work we
plan to address. At the limit, i.e., where the cell is either
infinitesimal (lower limit) or the size of the whole area
(upper limit), all the traces and synthetic mobility regimes
would have the same relative spatial density, namely one
or zero nodes per cell for the lower limit and all the nodes
in the same (unique) cell for the upper limit.

After dividing the area into cells, we took a snapshot of
the number of nodes at every cell every T seconds. The
value of T' = 10 was used since, for the size of the cells
and the speeds sampled from the traces, a node could not
on average change between more than two cells during 7T'.
For every cell, at every interval T we counted the number
of nodes in each cell. We then averaged the number of
nodes in each cell over the course of the whole duration of
the trace. The result is what we refer to as Intensity Map
(IM) which we use to estimate the probability a node will
choose a given cell as its next destination.

In the case of real mobility, e.g., as described by GPS
traces, we set the probabilities of choosing a given cell, p;
of our ODE model to be the normalized value of the IM
for cell 4, such that p; = %, where IM(¢) is the
intensity in cell 7.

The rate u;, as mentioned before, is computed as the
inverse of the average time spent by the nodes in cell i.
This time has two components. The time spent by the node
moving towards or from a given point in the cell, and the
time spent in pause at this point, which reflect both main

basic parameters of human mobility, speed and pause time.
This two components were empirically measured from the
GPS traces and used to compute p;.

C. Results

As highlighted in previous sections, the goal of our
model is to describe the steady-state behavior of spatial
node density in waypoint-like mobility regimes in which:
(1) a node chooses its next destination following some
given probability distribution, (2) moves to that destina-
tion, (3) pauses for some time, and (4) repeats from step
(1).

Spatial node density is defined as the percentage of
cells containing > k nodes. It can also be expressed as
the probability of finding a cell containing > k nodes. It
describes the degree of “clustering” exhibited by mobility
regimes and can be used to evaluate how close to reality
a given synthetic mobility regime is as far as its ability to
mimic the degree of clustering exhibited by real mobility.

We followed the guidelines presented in Section ITI-B to
estimate the parameters of our model for each of the traces
studied. Figures 1, 2 and 3 plot spatial node density in the
Quinta, KAIST, and Statefair scenarios, respectively. Each
figure shows three curves plotting the spatial density: (1)
at the beginning of the trace, (2) at the end of the trace,
i.e., at 900 seconds for the Quinta Trace, 500 seconds for
KAIST, and 8000 seconds for the Statefair, and (3) by
applying our ODE framework. Note that the plots for the
KAIST and Statefair traces are zoomed into the region
of interest. In those two plots, the only point not shown is
k = 0, where the percentage of cells containing 0 or more
nodes P[k > 0] is the same for every curve and it is, of
course, equal to 100%.

The largest deviation of our ODE model from the final
density distribution measured from the traces, for any
value of k at any instant is 5.36%, 0.58% and 7.52%; the
average deviation from the initial distribution measured
in all the instants for all values of k is 1.45%, 0.06%
and 2.02% for the Quinta, KAIST and Statefair traces
respectively.

—O©— Quinta Final 900s
0.8 Quinta Initial 7
—#— ODE Framework

% of cells with node density > k

0 5 10 15 20 25°

Number k of nodes in a cell
Initial and final spatial node density distribution for the
Quinta trace, and the respective steady-state density distribution
using the proposed ODE framework.

Fig. 1.
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Fig. 2. Initial and final spatial node density distribution for the
KAIST trace, and the respective steady-state density distribution
using the proposed ODE framework.
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Fig. 3. Initial and final spatial node density distribution for the
Quinta trace, and the respective steady-state density distribution
using the proposed ODE framework.

IV. RELATED WORK

Mobility models are vital in the design, testing, and
evaluation of wireless networks and their protocols. Re-
cently, network researchers and practitioners have been
trying to use more realistic scenarios to drive the evalua-
tion of wireless network protocols. This motivated initia-
tives such as the CRAWDAD [16] trace repository, which
makes real traces available to the networking community.
These traces can then be used to run trace-driven sim-
ulations. Even though initiatives like CRAWDAD have
greatly increased availability of real traces, relying exclu-
sively on traces to design and evaluate network protocols
would not allow a broad enough exploration of the design
space.

A number of efforts have proposed mobility models
based on realistic mobility patterns [17]. Notable examples
include [18, 19, 20, 21]. More recent work focuses on the
“scale-free” properties observed in many real networks
like the Internet, the Web, and some social networks, to
name a few. The seminal work of Barabdsi and Albert [2]
proposes a model that generates scale-free networks, i.e.,
networks whose node degrees follow a power law distribu-
tion, and demonstrate that many real large networks are
scale free, that is, the node degree in the network graph
follows a power law. The authors discuss the mechanism
responsible for the emergence of scale-free networks and
argue that understanding this problem will require a shift
from modeling network topology to modeling “network
assembly and evolution”. To this end, they define the
Barabasi-Albert model based on growth and preferential

attachment, in order to generate more realistic simulated
network connectivity. Growth refers to the fact that the
number of nodes in the network increases over time, where
a new node is placed with m edges connecting it to other
m nodes. Preferential attachment means that a node will
choose to connect to another node ¢ with probability
II(k;) = fk based on the degree k; of node i and any

J
node j connected to node i.

In other words, this key concept underpinning the
Barabési-Albert model, referred to as the preferential
attachment principle, states that “the more connected a
node is, the more likely it is to receive new links”. Several
recently proposed mobility models (e.g., [22, 12, 8, 23,
24, 25]), try to mimic real human mobility by following
the preferential attachment principle: they define attrac-
tion points, whose probabilities of attracting other nodes
increase as more nodes congregate around them. The main
goal of these preferential attachment based approaches is
to try to maintain the non-homogeneity of the spatial
node density observed in real live mobility traces, also
maintaining the clusters of nodes naturally formed in real
applications. Our model can be used to study the steady-
state of such mobility regimes to show how the long run,
they are very similar to the RWP model in terms of node
density distribution [7].

In this work, the main focus is over spatial node density.
Most previous work on modeling node spatial density have
been focusing on the RWP model, rather then trying to
characterize it in real applications. In [4], for example,
analytical expressions are derived for the spatial density
distribution that results from using the RWP model on
simulations. One-dimensional case is analyzed and an
approximation for the two-dimensional case is also given.
They also analyze the concept of attraction areas in a
modified version of the RWP regime. One other example
of analytical work towards modeling steady-state behavior
of the RWP can be found in [5]. In that work, authors
derive stationary analytical expressions for node density
and node velocity.

Bettstetter et al. point out that random mobility leads
to homogeneous node distributions [6]. They propose a
method that creates initial non-homogeneous node distri-
butions and in [3], authors analyze the impact of random
mobility in the inhomogeneity of spatial distributions via
simulations.

The proposed first order ODE framework described in
this paper differs from previous work on modeling spatial
distribution, first in its nature, the fact that it uses ODEs
as a tool for studying density distributions (never used
before). Secondly, also by the fact that our approach is
the first that is generic enough that can be applied in any
mobility regime that bases its behavior on a waypoint-
like movement. By waypoint-like movement we mean,
“pause - choose the next destination following some given
probability distribution - move to next destination in a
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straight line and constant speed - repeat”. It is yet, capable
of faithfully replicate the stead-state behavior of spatial
distributions in real scenarios, as we show through our
results, validating our model against real live traces.

V. CONCLUSIONS

We investigated in this paper the spatial density prop-
erties of waypoint-like mobility, which can describe some
instances of human mobility. To this end, we developed
an Ordinary Differential Equations (ODEs) framework to
model spatial node density. With our model, it is possible
to study the steady-state behavior of node density for
waypoint-based mobility regimes as well as real mobility
described by GPS traces. We validate our approach by
comparing its results against GPS traces.
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