
1

Characterizing System Level Energy Consumption
in Mobile Computing Platforms

Cintia B. Margi , Katia Obraczka, Roberto Manduchi
Computer Engineering Department
University of California Santa Cruz

1156 High Street
Santa Cruz, CA 95064

Abstract— This paper approaches energy consumption charac-
terization in mobile computing platforms by assessing energy con-
sumption of ”basic” application-level tasks, such as as processing,
input/output (disk, display, etc.), communication (transmission
and reception over the network), and combinations thereof. Be-
sides providing information on the energy consumption behavior
of typical tasks performed by mobile computers, task-level energy
characterization enables power management decisions, such as
whether, in a distributed computation, the task at hand can be
executed locally or should be assigned to a different machine
(given the machine’s current energy budget, the energy cost of
executing the task locally, and the cost of sending the required
information over the network to a peer). We employ a task-level
energy consumption characterization benchmark that accounts
for basic tasks such as processing, disk access (including reads
and writes), terminal usage, and communication (transmission
and reception). Using the benchmark, we perform an energy
characterization case study using the Dell Latitude C600 running
two versions of the Linux operating system.

I. I NTRODUCTION

Due to a combination of technology advances in fields such
as wireless communications and circuit integration, the last
ten years have witnessed a proliferation of mobile computing
platforms. Examples of such platforms, which vary widely
in terms of capability and functionality, include laptops (e.g.,
notebooks, tablets, etc.), pocket PCs, personal digital assistants
(PDAs), cell phones, wireless single-board computers, sensor
nodes, etc. Following the general trend in the consumer
electronics market, the cost of these devices has been steadily
decreasing while their capacity (i.e., processing, storage, com-
munication) has been steadily increasing. However, the fact
that they are typically powered by non-continuous energy
sources imposes serious limitations to these devices’ utility
from the end user’s point-of-view.

As a result, energy consumption in mobile computing
platforms has been an area of intense research spanning
many fields such as computer architecture, operating systems,
computer networks, and application design1. In the computer
architecture community, energy characterization is usually
performed at the instruction level. Proposed power savings
mechanisms include shutting off parts of the processor not
currently being used, designing machine-level instructions that
trade generality for power efficiency, etc. At the operating

Cintia Margi is supported by CNPq/Brazil.
1Section VII reviews related research in areas that are more closely related

to the focus of this paper.

systems level, example of power management strategies in-
clude disk spin-down, periodic system hibernation, etc. Power-
efficient network protocols have also been attracting consid-
erable attention from the networking research community and
include a variety of techniques such as hibernation of idle
nodes, controlling transmission power and/or direction, routing
based on remaining energy in nodes, etc.

This paper takes a different approach to energy consump-
tion characterization and focuses on characterizing energy
consumed by ”basic” application-level tasks. Our focus is
on mobile computing platforms, e.g. laptops. Applications
executed by multi-purpose mobile devices like laptops can
be as general as “fixed computing” applications and typically
consist of basic tasks such as processing, input/output (disk,
display, etc.), communication (transmission and reception over
the network), or a combination thereof. Consider reading e-
mail: it includes communication with the email server and thus
network transmission and reception, processing information
received, and storing it on disk.

Characterizing energy consumption at the task level allows
us to (1) predict whether the energy currently available is
sufficient to execute a given application, and (2) perform
application-level power management. For example, in a dis-
tributed computation, given the task at hand and how much
energy there is left, a machine’s task manager decides whether
the task can be executed locally or needs to be shipped else-
where. In order to make that decision, the task manager, given
the machine’s current energy budget, considers the amount
of energy the execution of the task will consume versus
the amount of energy consumed by sending the necessary
information over the network to another machine.

In this paper, we identify a set of basic tasks representative
of mobile computing workloads. Based on these tasks, we
define a set of benchmarks that consider each task in isolation
or task combination. To observe the battery discharge behavior
as a benchmark executes, we employ the Advanced Configu-
ration and Power Interface (ACPI)[13] to monitor the battery’s
discharge rate. A brief description of the ACPI is presented in
Section II.

As case studies, we use the benchmark set to characterize
the energy consumption of a mobile computing platform (the
Dell Latitude C600) under different operating systems, namely
Debian [21] and Mandrake [16] Linux. We used the Dell
Latitude C600 because it was easily available to us (we have

2

several of them in our lab). As future work, we intend to run
the benchmark on other mobile computing platforms.

In summary, the main contribution of this work is a task-
level energy consumption characterization benchmark that ac-
counts for basic tasks such as processing, disk access (includ-
ing read and write access), terminal usage, and communication
(transmission and reception). Such characterization is critical
to power management decisions.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of the ACPI standard. Sections III
and IV describes the proposed energy consumption benchmark
and our experimental methodology. Section V presents results
from our case studies, while Section VI discusses benchmark
set results application. We summarize related work in Sec-
tion VII. Section VIII concludes the paper and discusses future
work.

II. BACKGROUND

The Advanced Configuration and Power Interface (ACPI)
is an open standard developed by a consortium involving
Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba [13].
It is a standard that defines power and configuration manage-
ment interfaces between an operating system and the BIOS [6].

The ACPI provides both static information about the battery
such as model number, serial number, design voltage, etc.,
as well as current battery status, e.g., whether the battery is
charging or discharging, current voltage, discharge rate, esti-
mate of the remaining battery capacity, etc. In Linux, the ACPI
name space is mapped to the/proc filesystem. For example, in
Debian, the ACPI name space is mapped to/proc/acpi/; and
battery related information is in/proc/acpi/battery.

The ACPI updates battery information (both static
and dynamic) every time the corresponding file (i.e.,
/proc/acpi/battery/info /proc/acpi/battery/stateis read 2.
Therefore the frequency these information is updated depends
on the application doing the battery monitoring.

III. E NERGY CONSUMPTIONBENCHMARK

As previously discussed, our goal is to characterize energy
consumption macroscopically at the task level (instead of,
for example, at the machine instruction level). To this end,
we define a set of ”basic” application-level tasks that are
representative of typical mobile computing workloads. In the
case of laptops, basic tasks include: processing, input/output
(disk, display, etc.), and network communication (transmission
and reception). Since the focus of this work is mobile nodes,
we consider wireless network interfaces. Often, applications
consist of a combination of such tasks.

For our benchmarks, we define four main task categories,
namelybaseline, processing intensive, storage intensive, and
communication intensive. We also consider the effect of the
display by turning it off and on when executing some of the
benchmark tasks.

a) Baseline:The baseline benchmark captures the energy
consumption behavior of the mobile when no user activity
is taking place, i.e., only basic operating system tasks are
running. This benchmark characterizes energy consumption

2Simon Fowler, maintainer ofwmacpi [12], provided this information.

when the system is idle and also serves as a reference for all
other benchmarks. We disable the wireless network interface
to isolate the effects of this device on energy consumption.

b) Processing-intensive: To characterize processing-
intensive tasks, we use the FFT benchmark [1], which is
part of SPEC’s CPU2000 [20], an industry-standardized CPU-
intensive benchmark suite. FFT, short for fast Fourier trans-
form, is an efficient algorithm to compute the discrete Fourier
transform (DFT) and its inverse.

c) Storage-intensive:We chose the IOzone [18] filesys-
tem benchmark to characterize energy consumed by tasks that
are disk intensive. IOzone can be configured to perform a
variety of disk access operations.

We run IOzone in two different modes, one which performs
only read accesses and another that only writes to disk. In
both cases, it accesses a 3GB file. We use an option which
purges the disk cache before each file operation. The write tests
includes writes of new files and re-writes of existing files, and
the read tests reads and re-reads a file.

d) Communication-intensive: We characterize
communication-intensive tasks by using Iperf [23], a
tool designed to measure TCP available bandwidth.

Network transmission is implemented using Iperf in client
mode, while the reception task uses Iperf in server mode.
In both cases, Iperf is configured to generate UDP traffic at
10Mbs for all the experiment duration. A 10Mbs rate was
chosen because this is maximum nominal capacity of the
wireless card.

e) Display: When we needed to turn the display off, we
used thexset [19] utility. xset can be run from the command
line and allows the setting of several user preference options
for the display, including an option that turns the video card
and LCD display off.

IV. M EASUREMENTS

While the tasks run, we observe the battery discharge
behavior through measurements provided by the ACPI. In
particular, we monitor the battery discharge rate. As mentioned
in Section II, we can obtain this information by sampling
/proc/acpi/battery/state. We run the sampling script which
periodic reads the current values of the battery discharge rate,
while the benchmark is executing.

When deciding which sampling rate to use, accuracy is
an important consideration. However, making sure that the
measurements do not interfere with the observations is also
critical. In other words, we want to sample as frequently
as possible without being intrusive. Preliminary experiments
showed that a sampling rate of deci-seconds is not intrusive.

V. CASE STUDY: DELL LATITUDE C600

We use our benchmark set to characterize energy consump-
tion in the Dell Latitude C600 which has a 750 Mhz Pentium
III (Coppermine) processor with 256K cache, 256 MB RAM,
and 20Gb hard-disk. Its is powered by a Li-ion battery, with
eight cells, design voltage of 14.8 VDC and nominal capacity
of 59.0 Wh. As the network interface, we use the Cisco
Aironet 350. As the operating system, we use two of the
most widely used versions of the Linux operating system,

3

namely Debian [21] (Debian kernel 2.6.1) and Mandrake [16]
(Mandrake 10.1 kernel 2.6.8).

In the remainder of this section, we present energy con-
sumption results for this platform when executing the basic
benchmarks described in Section III as well as some combi-
nations thereof.

A. Basic Tasks

We execute all six tasks described in Section III: baseline,
processing (FFT), disk writes (IOzone write), disk reads (IO-
zone reads), network transmission (Iperf client) and reception
(Iperf server). We run both operating systems using their
default configuration. The script that monitors the battery
discharge rate runs at a one second sampling rate.

The discharge rate time series are shown in Figure 1. We
summarize these results in Table I which tabulates average
discharge rate and the corresponding standard deviation for
all tasks under both Debian and Mandrake3.

From Table I, we note that, for both operating systems, the
most energy hungry task is FFT (i.e., intensive CPU activity),
followed by disk writes. This is somewhat surprising as we
expected disk write intensive tasks to be more expensive than
processing intensive tasks in terms of energy consumption.
For Debian, network transmission is the next task in energy
consumption descending order, followed by disk reads and
network reception, both of which have about the same energy
cost. For Mandrake, the order is slightly different and has disk
reads as the third most expensive task followed by network
transmission and then network reception.

Operating System Debian Mandrake
Task Mean and St. Deviation Mean and St. Deviation

Baseline 10.586 W, 4.285 10.525 W, 4.904
Processing 25.111 W, 1.155 24.836 W, 1.189
Disk Write 19.588 W, 5.218 22.429 W, 4.838
Disk Read 16.233 W, 5.124 21.849 W, 4.747
TX 18.315 W, 4.295 18.301 W, 4.549
RX 16.041 W, 4.236 16.350 W, 4.201

TABLE I

MEAN DISCHARGE RATE FOR EACH TASK ONDELL C600

We should note that we used two laptops, one with De-
bian and one with Mandrake. They have exactly the same
configuration except for their hard disks. Even though both
hard disks are manufactured by Hitachi, they have different
specifications (e.g., number of heads) and firmware revisions.
The configuration parameters are the same for both disks, and
they use the same file system (EXT3). However, there is one
considerable difference between the disks: the disk on the
Mandrake laptop achieves much higher throughput than the
one in the Debian laptop. We executed a simple test using
IOzone in both platforms, and it took about seven minutes
(real time) in the Mandrake laptop, while it took about 10
minutes (real time) in the Debian laptop to write 3GB. This
indicates that the difference in the mean discharge rate for
both experiments could be due the fact that the Mandrake

3Since the discharge rate curves for all six tasks on Mandrake exhibit very
similar behavior to the corresponding curves obtained for Debian, we omit
the Mandrake curves.

laptop can transfer more data, i.e. do more writes and reads
per experiment.

Next, we do some back-of-the-envelope calculations to
validate the discharge rate results.

According to Intel’s 750 Mhz Pentium III Coppermine
data-sheet, the voltage and current for the processor core is
Icccore = 15A and V cccore = 1.65V and for the processor
in sleep state isIccsleep = 2.5A and V ccsleep = 5V . If
we calculate the power from these two values, we obtain
Pcccore = 24.75W and Pccsleep = 12.5W . If we compare
Pccsleep and average discharge rate for baseline experiment,
we notice thatPccsleep is about 20% higher. As forPcccore

and average discharge rate for the FFT experiment,Pcccore

is about 4% lower.
During the network transmission experiment, 6.7GB were

transmitted at an average bandwidth of 5.7Mb/s. In the
network reception experiment, 12.1GB were received at an
average bandwidth of 6.6Mb/s. Note that the network reception
experiment runs for a longer time than network transmission
one because it has lower discharge rate (and thus take longer
to reach the cutoff voltage). Since we are using UDP as the
transport layer protocol, packet size is 1472 bytes. Since the
two laptops are the only two wireless nodes in the lab and
they are close to each other, we can assume that in the trans-
mission experiment the time spent in the transmission state
(e.g., when compared to the time spent sensing the medium,
backing off, performing the 802.11 [8] handshake) dominates.
Similarly, for the reception experiment, the time spent in
receiving dominates. Thus, we can do a simple calculation
considering the bandwidth and the power consumed by a
wireless card to verify that the results measured are reasonable.
According to the measurements done by Feeney et al [10], a
WaveLAN wireless card at 1 Mbps consumes 1400 mW while
transmitting and 1300 mW while receiving. If we consider that
the mean discharge rate for baseline is about 10.5 W, and we
add to this5.7 ∗ 1.4 = 7.98W , we obtain a total of 18.3W
for the power consumed, which is similar to the 18.48 W
mean discharge rate observed in our experiments. Similarly
for the reception, if we add 10.5 W to6.6 ∗ 0.9 = 5.94W , we
obtain 16.44 W, comparable to the 16.04 W mean discharge
rate observed in our experiments.

A similar validation for the disk experiments is not as
straightforward (and is one of our future work items) since
other factors such as disk seek times, default power manage-
ment techniques as well as the effect of disk caches need to
be accounted for.

B. Effect of the Display

In all previous experiments, we had the display off. How-
ever, it is a well-known fact that the display is a major source
of energy consumption. In this set of experiments, we monitor
the energy consumption for some of the basic tasks while the
display is on. In particular, we show results for baseline and
processing. We ran these experiments on the Debian laptop.

The discharge rate for the baseline experiment is shown in
Figure 2 (a). We notice that during part of the experiment the
bottom of the discharge rate decreases to about 9 W, and this
is because the display was turned off and then the discharge

4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Baseline

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Processing

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Disk write

Time
(s)

Battery Discharge Rate
(mW)

(a) (b) (c)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Disk read

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Network Transmission

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Network Reception

Time
(s)

Battery Discharge Rate
(mW)

(d) (e) (f)

Fig. 1. Discharge Rate for Dell C600 with Linux Debian: (a) baseline, (b) processing task (c) disk write, (d) disk read, (e) network transmission, (f) network
reception

rate is about the same we obtained for the baseline task. Thus
we observe that the display consumes about as much energy
as a disk read or a network reception task.

Figure 2 (b) shows the discharge rate for the processing
experiment. Again we observe that the discharge rate decreases
to about 24W, which is the mean discharge rate for the basic
processing task. This happens because at this point the display
was turned off.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

12400

16800

21200

25600

30000

lcd baseline

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

12500

17000

21500

26000

30500

35000

lcd Processing

Time
(s)

Battery Discharge Rate
(mW)

(a) (b)

Fig. 2. Battery discharge rate for Dell C600 with Linux Debian and display
on: (a) baseline, (b) processing

Table II shows the mean discharge rate and standard de-
viation for the basic tasks with display on. When comparing
this table with Table I, we notice, as expected, an increase in
the mean discharge rate, since the display increases the energy
consumption.

Task Mean St. Deviation

Baseline 14.516 W 6.129
Processing 28.648 W 2.147

TABLE II

MEAN DISCHARGE RATE FOR BASIC TASKS WITH DISPLAY ON ONDELL

C600WITH L INUX DEBIAN

C. Combining Tasks

When we were in the process of choosing the tasks for
our energy consumption benchmark, we conjectured that a

generic user task consists of a combination of idle, processing,
disk access and network communication. In this section, we
aim at evaluating the energy consumption and the battery
discharge behavior for different combinations of basic tasks.
For instance, we choose the following combinations:
• Combo 1: processing (1.2s real time) and disk access:

write (10MB of data, 2.8s real time) and read (10MB,
0.4s real time);

• Combo 2: processing (1.2s real time) and network trans-
mission (10M o data, 2.3s real time);

• Combo 3: processing (1.2s real time), network transmis-
sion (10M o data, 2.3s real time) and disk reads (10MB,
0.4s real time).

We ran these benchmarks on the same platform, i.e. Dell
C600 running Linux Debian.

Figure 3 presents the battery discharge rate curves for each
of the composite tasks, i.e. Combo 1, Combo 2 and Combo
3.

The mean discharge rate and the standard deviation for
each task are presented in Table III. The mean discharge rate
for Combo 1 is less than the basic processing task (Table I,
second row), but it is more that the disk access (Table I, third
and fourth rows), which is the dominating task, i.e. the task
that takes longer to execute within the combo. For Combo 2,
the mean discharge rate is higher than the discharge rate for
network transmission (Table I, fifth row), while for Combo 3
it is about the same as the discharge rate for disk writes (Table
I, third row). From this results we note that the dominating
task influences the most the discharge rate.

VI. D ISCUSSION

Our premise in this paper is that task-level energy consump-
tion information is key to achieving adequate power-aware
task distribution in wireless distributed computing environ-
ments. Consider, for instance, the case of emergency rescue

5

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 1

Time
(s)

Battery Discharge Rate
(mW)

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 2

Time
(s)

Battery Discharge Rate
(mW)

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 3

Time
(s)

Battery Discharge Rate
(mW)

(a) (b) (c)

Fig. 3. Battery Discharge Rate for (a) Combo 1, (b) Combo 2 and (c) Combo 3, all on Dell C600.

Task Mean St. Deviation

Combo 1 22.455 W 4.343
Combo 2 19.511 W 6.754
Combo 3 17.486 W 4.392

TABLE III

MEAN DISCHARGE RATE FOR COMBINATION OF TASKS ONDELL C600

RUNNING L INUX DEBIAN

operations needed after a major (e.g., natural) disaster which
destroyed (completely or partially) basic infrastructure such as
the power grid and data communication network. Emergency
rescue crews would then use their mobile wireless devices
to perform all needed computation to assess damage, find
survivors, etc. For example, in collapsed buildings, the rescue
crew can use information from seismic sensors embedded in
the building to perform structural assessment in order to find
portions of the building that have (or not) been affected, what
is the probability they will collapse (if they haven’t yet), and
when that will occur. This computation should be distributed
among all (or some) of the participating networked nodes to
load balance the computational load and the energy spent. To
do so effectively, information on the current energy budget
of the nodes as well as the amount of energy consumed by
”basic” tasks must be employed. By looking at the typical mix
of ”basic” tasks to be executed, the ”task distribution manager”
will be able to assess whether some node can take part on
the computation and what is the operational lifetime of the
network.

VII. R ELATED WORK

In this section, we summarize related work in areas that
are more relevant to our work, including energy consumption
measurements for network interfaces and mobile devices, sys-
tem’s power management, storage energy consumption issues,
etc.

Stem et al [22] measures the power consumption of some
network interface cards (NICs) when used by different end-
user devices. Authors also report on transport- and application-
level strategies to reduce energy consumption by NICs. Later,
Feeney et al [10] reported detailed energy consumption mea-
surements of some commercially-available IEEE 802.11 NICs
operating in ad hoc mode. Along the same lines, Erbert et al
[9] assessed the impact of transmission rate, transmit power,
and packet size on energy consumption in a typical wireless
network interface.

In [15], energy consumption in ad hoc mobile terminals
is modeled using the Advanced Configuration Power Inter-

face [13], or ACPI. ACPI was used to measure energy con-
sumption due to transmission/reception. The resulting energy
consumption model includes two states:high consumption
state, where the host receives and transmits, andlow con-
sumption state, where the node receives or is in idle. While
this approach to model battery discharge empirically is based
on values that laptop power management would see in real
systems, it is platform-dependent.

In order to understand the issues on energy consumption of
storage on mobile devices, Zheng et al [27] evaluated three
different storage alternatives: a compact flash, a micro-drive
and a wireless LAN card (which would be used to access
a remote storage). By considering these different devices,
their different power management schemes were studied, as
well as the energy cost of their states were measured. Also
the read/write latency and bandwidth was measured. Authors
considered two types of files systems: update-in-place and log-
structured. Results show that the energy consumption behavior
depends on the device power management scheme, on the
distribution of idleness in the workload, and on the file system
strategies.

Dempsey [26] extends the Disk-Sim simulator to provide
a simulation environment that also includes an energy con-
sumption. Dempsey considers the power consumed for several
different disk tasks, such as seek, rotation, read, write and
stand-by.

Displays are a major consumer of energy. Iyer et al [14]
discuss the use of energy-adaptive displays sub-systems. Au-
thors use OLED displays and propose a software optimization
called dark windows. Dark windows allows the windowing
environment to change colors and brightness of areas that are
not of interest to the user. According to a characterization of
display usage done by authors, users use about 60% of the
screen available. Thus, by changing the colors and brightness
of areas not in the window of focus, energy can be saved.

Energy efficiency in mobile devices ranging from phones,
laptops or hand-held devices is critical. Monticelli [17]
presents an scheme using adaptive voltage scaling to control
power management on 3G phones, and suggests that this same
approach could be used in RF circuits. Yin et al [25] describe
an power-aware prefetch scheme, which dynamically adjusts
the number of prefetches based on the current energy level.
Another approach to save energy on mobile devices is the
remote power control of wireless interface cards [2], where a
remote server uses its knowledge of the workload to perform

6

traffic reshaping. Another approach isµSleep [7], which puts
the processor in sleep mode for short periods (less than a
second), and reduces energy consumption by up to 60%.

Balakrishnan et al.[4] propose a power management soft-
ware architecture developed at user level using a standard
power interface (ACPI - Advanced Configuration and Power
Interface [13]) that provides information about current hard-
ware state (e.g. estimated battery lifetime, temperature, etc.).
This architecture is implemented and tested for disk spin down
and thermal management.

Anand et al [3] developed a middle-ware for Linux on
iPAQs in order to allow better power management. The power
management implemented consider what is the state of all
devices to be used (in this platform, wireless card and micro-
drive), and hints given by the application when it requested
data access and the device was not available. It also provides
a user interface that allows one to control the priorities in
terms of performance and power conservation. By taking these
factors into account, authors show that it is possible to increase
performance and decrease energy consumption.

PowerScope [11] is a tool that combines hardware in-
strumentation to measure current level and software support
to perform statistical sampling of system activity, allowing
energy profiling of process and procedures, which can then
be optimized to reduce energy consumption.

Barr and Asanovic [5] present an interesting scheme consid-
ering the trade-offs between data transmission and compres-
sion. They used the Skiff platform4 to perform measurements
of energy consumption in wireless Ethernet card, StrongARM
CPU, DRAM and Flash memory, under different compression
algorithms. Since the energy cost of compressing data in each
part of the hardware is know, as well as the cost to transmit
data, authors propose a scheme where they compress data to be
transmitted in case this procedure will allow energy savings.

VIII. C ONCLUSIONS

Application-level power management, which is critical
when wireless computing platforms are employed, can only
be performed based on energy consumption information. In
this paper, we presented a task-level energy consumption
characterization benchmark that accounts for basic tasks such
as processing, disk access (including read and write access),
terminal usage, and communication (transmission and recep-
tion). Using this benchmark set, we characterized the power
consumption of such tasks as presented in Section V on the
Dell Latitude C600 running Linux.

Future work includes: (1) run more experiments considering
other systems variables (hard-disk power management, control
brightness on the display, test different processor speeds, etc.);
(2) run other task combinations, so that we can cover a wider
range of user-level applications; (3) run the benchmark in
other mobile platforms, including more modern laptops as
well as sensor network devices (e.g., Crossbow Stargates and
motes [24]).

4The Skiff platform is based on the iPAQ hardware, but it has a differen-
tiated circuitry to allow easy power consumption measurement.

REFERENCES

[1] A. Aburto. FFT double precision benchmarks.
ftp://ftp.nosc.mil/pub/aburto/, 2001.

[2] A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy. Remote power
control of wireless network interfaces. InProc. of PATMOS in Lecture
Notes in Computer Science, Turin, September 2003. Springer-Verlag.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine:
Interfaces for better power management. InThe Second International
Conference on Mobile Systems, Applications, and Services (MobiSys
2004), Boston, USA, June 2004.

[4] S. Balakrishnan and J. Ramanan. Power-aware operating system using
acpi. CS736 Project - Fall 2001, 2001.

[5] K. Barr and K. Asanovic. Energy aware lossless data compression.
In The First International Conference on Mobile Systems, Applications,
and Services, San Francisco, CA, May 2003.

[6] BIOS central. http://www.bioscentral.com, 2004.
[7] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz. usleep: A technique

for reducing energy consumption in handheld devices. InThe Second
International Conference on Mobile Systems, Applications, and Services
(MobiSys 2004), Boston, USA, June 2004.

[8] B. Crow, I. Widjaja, J. Kim, and P. Sakai. Ieee 802.11 wireless local area
networks. IEEE Communications Magazine, 35(9):116–26, September
1997.

[9] J. Ebert, S. Aier, G. Kofahl, A. Becker, B. Burns, and A. Wolisz.
Measurement and simulation of the energy consumption of an WLAN
interface. Technical Report TKN-02-010, Technical University Berlin,
Telecommunication Networks Group, Germany, June 2002.

[10] L. M. Feeney and M. Nilsson. Investigating the energy consumption
of a wireless network interface in an ad hoc networking environment.
In Proceedings of the Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies.INFOCOM 2001, volume 3,
pages 1548–1557. IEEE, April 2001.

[11] J. Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the
energy usage of mobile applications. In2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, Louisiana, February
1999.

[12] S. Fowler. wmacpi: A battery monitor dockapp for ACPI based systems.
http://himi.org/wmacpi-ng/, 2004.

[13] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI: Ad-
vanced configuration and power interface. http://www.acpi.info/, 2004.

[14] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan. Energy-adaptive
display system designs for future mobile environments. InThe First
International Conference on Mobile Systems, Applications, and Services
(MobiSys 2003), San Francisco, USA, June 2003.

[15] E. Lochin, A. Fladenmuller, J.-Y. Moulin, and S. Fdida. Energy
consumption models for ad-hoc mobile terminals. InMed-Hoc Net,
2003.

[16] MandrakeSoft. Mandrakelinux. http://www.mandrakelinux.com, 2004.
[17] D. Monticelli. System approaches to power management. InApplied

Power Electronics Conference and Exposition, 2002. APEC 2002. Sev-
enteenth Annual IEEE, Dallas, TX, USA, March 2002.

[18] W. D. Norcott and D. Capps. IOzone filesystem benchmar.
http://www.iozone.org/, 2004.

[19] B. Scheifler and D. Krikorian. Unix man pages: xset (1).
http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?xset+1, 2004.

[20] Standard performance evaluation corporation. http://www.spec.org,
2004.

[21] SPI. Debian – the universal operating system. http://www.debian.org/,
2004.

[22] M. Stemm and R. H. Katz. Measuring and reducing energy consumption
of network interfaces in hand-held devices.IEICE Trans. on Communi-
cations, 8(E80-B):1125–1131, 1997.

[23] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf.
http://dast.nlanr.net/Projects/Iperf/, 2003.

[24] A. Woo. Mote documentation and development information.
http://www.eecs.berkeley.edu/ awoo/smartdust/, 2000.

[25] L. Yin, G. Cao, C. Das, and A. Ashraf. Power-aware prefetch in
mobile environments. InIEEE International Conference on Distributed
Computing Systems (ICDCS), pages 571–578, 2002.

[26] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang. Modeling hard-disk power consumption. InSecond Con-
ference on File and Storage Technologies, San Francisco, USA, March
2003.

[27] F. Zheng, N. Garg, S. Sobti, C. Zhang, R. Joseph, A. Krishnamurthy,
and R. Wang. Considering the energy consumption of mobile storage
alternatives. InMASCOTS’2003, Orlando, USA, October 2003.

