
Characterizing Energy Consumption in a Visual
Sensor Network Testbed

Cintia B. Margi, Vladislav Petkov, Katia Obraczka and Roberto Manduchi
cintia,vladi,katia,manduchi @soe.ucsc.edu

Computer Engineering Department
University of California Santa Cruz

Santa Cruz, CA 95064

Abstract— In this work we characterize the energy consump-
tion of a visual sensor network testbed. Each node in the
testbed consists of a ”single-board computer”, namely Crossbow’s
Stargate, equipped with a wireless network card and a webcam.
We assess energy consumption of activities representative of
the target application (e.g., perimeter surveillance) using a
benchmark that runs (individual and combinations of) “basic”
tasks such as processing, flash memory access, image acquisition,
and communication over the network. In our characterization, we
consider the various hardware states the system switches through
as it executes these benchmarks, e.g., different radio modes (sleep,
idle, transmission, reception), and webcam modes (off, on, and
acquiring image). We report both steady-state and transient
energy consumption behavior obtained by direct measurements of
current with a digital multimeter. We validate our measurements
against results obtained using the Stargate’s on-board energy
consumption measuring capabilities.

I. INTRODUCTION

Most wireless sensor networks to date employ nodes with
limited power, processing, storage, and communication capa-
bilities. Additionally, they typically include relatively simple
sensors (e.g., light, temperature, pressure, magnetometer, etc.).
In these deployments, energy consumed by sensing-related
tasks is relatively low, which means that the communication
subsystem (i.e., the radio) dominates energy consumption.

However, an increasing number of current and upcoming ap-
plications can benefit considerably from “media-rich” sensors
such as cameras and microphones as they typically provide
wider coverage and richer information. Such applications,
which often have considerable scientific, social, and strategic
relevance, typically require monitoring events in wide areas
over long periods of time. Examples include: a geological
survey documenting the time, duration and height of hot water
eruption from all the geyser at Yellowstone National Park over
a period of several months; estimating the number and roaming
patterns of mountain lions in the Santa Cruz mountains in
order to determine guidelines for human/predator co-existence;
keeping a large airport under continuous surveillance by
detecting movement of humans in open areas. This diverse set
of applications require a possibly large number of networked
sensors for continuous and pervasive monitoring. Wiring the
sensor network for power and communication is, in most
outdoor cases, too expensive and not practical. Hence, battery–
operated, wireless deployments are required.

The use of high–level sensors (e.g., cameras) in battery–
operated networks has received relatively little attention so
far by the research community. Unlike simpler sensors, cam-
eras produce large loads of data, which require considerable
processing for analysis (in order to extract semantic infor-
mation) and/or compression. In addition, sensing itself can
be highly power consuming. In “traditional” camera-based
networks (e.g., for surveillance), nodes are wired and plugged
to continuous power sources; thus, power and bandwidth are
not a concern. However, in wireless camera networks, both
bandwidth and power are premium resources. They must
be efficiently managed to maximize the system’s operational
lifetime. Therefore, one of the main challenges posed by
wireless visual sensor networks is the constant tension between
power conservation and performance (e.g., event detection
probability in surveillance applications).

Addressing this tradeoff between power efficiency and per-
formance is one of the main goals of the Meerkats project [3].
To study this tradeoff in a real testbed, we have been devel-
oping a wireless network of battery-operated camera-equipped
nodes that can be used for monitoring and surveillance of arbi-
trarily large (indoor or outdoor) areas. Because efficient energy
management is so critical, we have conducted a thorough
energy consumption characterization of the Meerkats testbed
which is based on the Crossbow Stargate platform [5]. In this
paper, we present results from this study. Our approach was
based on assessing energy consumption of activities represen-
tative of the target application (e.g., perimeter surveillance)
using a benchmark that runs (individual and combinations
of) “basic” tasks such as processing, flash memory access,
image acquisition, and communication over the network. In
our characterization, we consider the various hardware states
the system switches through as it executes these benchmarks,
e.g., different radio modes (sleep, idle, transmission, recep-
tion), and webcam modes (off, on, and acquiring image). We
report both steady-state and transient (i.e., when switching
states) energy consumption behavior. Besides results obtained
from direct measurement using a digital multimeter, we also
present results obtained using the Stargate’s on-board energy
consumption measuring capabilities.

The remainder of the paper is organized as follows. Section
II describes the Meerkats testbed, while Section III describes
the methodology used on the energy consumption charac-
terization, including the benchmark and measurement setup

1-4244-0106-2/06/$20.00 ©2006 IEEE

used. Results for steady state and transition costs (delay and
additional charge) are presented in Section IV. Then we
present the in-system energy consumption monitoring tool
in Section V. We summarize related work in Section VI.
Section VII concludes the paper and discusses future work.

II. THE MEERKATS TESTBED

Currently, our Meerkats testbed consists of eight visual
sensor nodes and one information sink. A Dell Inspiron 4000
laptop with PIII CPU, 512M memory, and 20G hard disk is
used as the sink. It runs Linux (kernel 2.4.20) and uses an
Orinoco Gold 802.11b wireless card for communication.

The Meerkats visual sensor nodes use Crossbow’s Star-
gates [5] 1. The Stargate model we employ is based on the
XScale PXA255 CPU (400 MHz), has 32MB flash memory
and 64MB SDRAM, and provides PCMCIA and Compact
Flash connectors on the main board. It also has a daughter
board with Ethernet, USB and serial connectors. As shown in
Figure 1, we equipped each Stargate with an Orinoco Gold
802.11b PCMCIA wireless card and a Logitech QuickCam
Pro 4000 webcam connected through the USB. The QuickCam
can capture video with resolution of up to 640x480 pixels. The
operating system is Stargate version 7.3 which is an embedded
Linux system (kernel 2.4.19).

Fig. 1. Visual sensing node in the Meerkats testbed

The Stargate can be powered through a 5V DC adaptor or
through a battery. Both the main- and daughter boards have
battery input, but only the daughter board has a DC input.
Since we use the USB connector on the daughter board, we
need to power the Stargate through the daughter board with
5V. To achieve this, we use a customized 7.4 Volt, 1000mAh,
2 cell Lithium-Ion (Li-Ion) battery, manufactured by Energy
Sales, Inc. and an external DC-DC (with efficiency of about
80%) switching regulator. The current battery has a small form
factor (mm), which makes it ideal for encasing
the system in a small container. A number of such batteries
can be connected in parallel for increased capacity.

An important feature provided by the Stargate is its battery
monitoring capability. This is achieved through a specialized
chip (DS2438) on the main board. Two kernel modules,
namely onewire and batmon, provide access to the battery
monitor chip and retrieve information on the battery’s current
state. information.

1Other projects that use the Stargate as a sensing node include SensEye
[8].

III. METHODOLOGY

The basis for our energy consumption characterization study
of the Meerkats testbed is to define a benchmark representa-
tive of typical activities performed by wireless visual sensor
networks. Such activities include acquiring, processing, and
transmitting images. We then decompose these activities into
“basic” tasks such as processing, input/output (flash memory,
webcam), and communication (transmission and reception
over the network). Running benchmarks consisting of these
individual tasks and a combination thereof takes the system
through different hardware states, i.e. different radio modes
(sleep, idle, rx, tx) and webcam modes (off, on and acquir-
ing images). To better characterize these different states, let
us review the Meerkats node’s major hardware subsystems,
namely:

Processor core: consists of the processor itself, memory
(RAM and flash), and associated hardware;
Sensor core: includes the sensing devices, i.e. the web-
cam, together with the USB interface;
Communication core: consists of the wireless commu-
nication card, and associated PCMCIA modules.

These different components can be in different states. For in-
stance, the processor can be sleeping, idle, active (processing),
writing data or reading data; the sensor can be sleeping, idle,
or active (i.e., acquiring image/video); while the radio can be
sleeping, idle, receiving or transmitting. However, instead of
exploring the whole state space, i.e., ALL state combinations,
we only consider the physically possible ones. For example,
it does not make sense to have the processor sleeping and
radio and/or sensors idle or active, since the latter need to be
controlled by the processor.

Switching the Meerkats node through its state space requires
executing specific utilities made available by the operating
system. More specifically, to put the processor in sleep mode,
one must execute the utility sys suspend, proving as parameter
the sleep interval. cardctl suspend puts the wireless card in
sleep mode, while cardctl resume switches the wireless card
from sleep to idle. The mechanism we use to put the webcam
in sleep mode is to remove the corresponding modules (rmmod
usb-ohci-sa1111) from the kernel, while changing the webcam
from sleep to idle requires inserting back the corresponding
modules (insmod usb-ohci-sa1111).

It should be noted that, in the Stargate platform, when
the timer for the sys suspend command expires and the node
”wakes up”, the wireless card goes to idle no matter what
its previous state was. This is not the case for the webcam
because of the way the sys suspend script is implemented. In
our measurements, we unplugged the wireless card as well as
the webcam to obtain the different combinations of hardware
subsystems.

A. Measurement Setup
For our direct measurements, we use the HP E3631A

power configured to provide 5.4V to power the Stargate. The
HP34401A digital multimeter (DMM) is used to measure the
current flow as the different hardware subsystems become
active/inactive while the different benchmarks are executed.

Figure 2 shows a block diagram describing to our measure-
ment setup.

HP E3631A
Power Supply

Stargate

HP 34401A
Multimeter

+ +

−

−

GPIB cable

Fig. 2. Measurements setup

As shown in Figure 2, a GPIB cable is used to connect
the HP 34401A DMM to a computer to collect and record
measurement samples. The DMM was configured to provide
a reading rate of 60 Hz. This setup allows us to measure steady
state currents (via time integration) as well as transients.

B. Energy Consumption Characterization Benchmark

As previously discussed, we define an energy consump-
tion characterization benchmark consisting of a set of basic
operations that are representative of activities performed by
visual sensor nodes. Our benchmark consists of five main
task categories, namely: idle, processing intensive, storage
intensive, communication intensive and visual sensing. The
descriptions of these tasks follow.

a) Idle: The idle– or baseline benchmark captures the
energy consumption behavior of the node when only basic
operating system tasks are running. This benchmark charac-
terizes energy consumption when the system is idle and also
serves as baseline for all other tasks.

b) Processing-intensive: The characterization of
processing-intensive tasks is performed using the FFT
benchmark [2], which is part of SPEC’s CPU2000 [14], an
industry-standardized CPU-intensive benchmark suite.

c) Storage-intensive: The storage media available on the
Stargates is flash memory. In order to understand its energy
consumption behavior, we use a program that reads and writes
files with random data.

d) Communication-intensive: To characterize the energy
consumed by communication-related tasks, we use a set of
UDP client/server programs. The client program transmits a
certain amount of random bytes (provided as a argument) to
the server. To obtain the energy cost of transmission, we run
the client program on the Stargate being monitored. Then we
monitor the Stargate running the server program to obtain the
energy cost of reception.

e) Visual sensing: Power consumed by the webcam is
characterized using the videotime program available on the
Stargate 7.3, to acquire a sequence of frames.

IV. RESULTS

This section reports steady-state (Section IV-A) and tran-
sient (Section IV-B) energy consumption behavior for the
Meerkats visual sensing node. Task execution (e.g. processing,

acquiring image, communication, etc.) characterizes steady-
state, while transients are captured when state changes occur,
e.g., node goes to sleep and wakes up, or webcam is sus-
pended.

A. Steady state
Using the setup described in Section III-A, we executed

each of the benchmarks described in Section III-B activat-
ing different combinations of Meerkats node components
(i.e., processor core, processor/sensor core, processor/radio
core, and processor/radio/sensor core). Table I shows aver-
age current (over five runs) in milli-Amperes drawn from
the Meerkats node when running the different benchmarks
with different combinations of active hardware subsystems.
Standard deviations are also presented.

Task Processor Proc./Sensor Proc./Radio Proc./Sensor/
Core Core Core Radio Core

idle
fft
read
write
image - -
TX - -
RX - -
sleep

TABLE I
AVERAGE CURRENT (OVER FIVE RUNS) IN MILLI-AMPERES AND

STANDARD DEVIATION DRAWN BY THE MEERKATS’ NODE.

These measurements highlight a number of interesting
observations. For instance, the considerable difference in
power consumption when comparing results from the “sleep”
and “idle” benchmarks. It is also interesting to note that
communication-related tasks (i.e., RX and TX) are less expen-
sive than intensive processing and flash access when the radio
modules are loaded. Additionally: the processing-intensive
benchmark results in the highest current requirement; flash
reads and writes cost about the same; and TX is only about
5% more expensive than RX.

The relatively small difference between RX and TX modes
has been observed before, e.g., in [7] which reported the
power consumption of a WaveLAN wireless card at 2 Mbps.
The reported difference, however, considerably higher than the
difference we see here. This is partially due to the fact that the
difference reported in [7] was computed based on the current
drained by the wireless card only. In our measurements, we
consider the overall system, which also includes the processing
associated with communication.

Figure 3 plots the results shown in Table I, highlighting
other interesting results. For instance, we observe that the
webcam adds about 185mA to Processor Core, while the
wireless card adds about 165mA to Processor Core; i.e., the
additional current consumed by activating a system component
is constant over all tasks.

B. Transients
To characterize transient power consumption behavior when

the Meerkats node switches between operational states, we

Fig. 3. Steady-state current draw in the Meerkats node

added and removed the corresponding operating system mod-
ules/drivers controlling each subsystem (e.g., webcam, net-
work card) being activated/deactivated. In some cases, switch-
ing states involves powering on/off electronic components
(USB/webcam, network card). This typically causes short
transients with possibly high currents. The length of a transient
depends both on the electrical characteristics of the subsystem
being powered on/off and the processing/response time of
the operating system when executing the task(s) required to
switch states. The graph in Figure 4 gives an example of
power consumption transients for the Meerkats node. This
particular run starts with the node fully operational, i.e., with
both the network card and webcam activated. The first transient
corresponds to deactivating the network card followed by
deactivating the webcam, and switching the board to sleep
mode. Then, at time 6.5 sec, the board wakes up, and the
webcam and network card are reactivated, respectively.

Fig. 4. Transients from complete system to suspend wifi, suspend webcam,
and switch board to sleep state; then, wake up board, reload webcam, resume
wifi and start tx

Another example of power consumption transients for the
Meerkats node is shown in Figure 5. This particular example
considers that the Meerkats node is in idle mode with only

the board active, and that some application running on the
node requests an image to be taken. Th is request will require
turning the camera on, taking the picture, writing to flash, and
then turning the camera off.

Fig. 5. Tasks involved when acquiring an image.

It is clear from Figures 4 and 5 that transients are not
at all negligible in the Stargate (and likely in other sensor
network platforms). For accuracy, energy characterization for
these platforms must account for both the additional power
consumed by transients as well as the associated delay.

Using our measurements, we are able to calculate the delay
and the additional energy consumption due state transitions.
The transitions considered are:

Suspend/resume webcam: a script that removes/reloads
related kernel modules is used;
Suspend/resume wireless card: this is achieved using
the command line utility cardctl suspend/resume;
Put node to sleep: the script sys suspend performs the
necessary tasks to put the processor and the whole board
in sleep mode for a given amount of time;
Wake up node: the node wakes up to service an interrupt.
The default for the Meerkats node is to wake up when
the time interval given as a parameter to the sys suspend
script expires.

Transient delay is defined as the interval between the time
the corresponding command to activate/deactivate a specific
device is issued and the time current consumption becomes
stationary, i.e., when all operations associated with the tran-
sient have been completed. Table II presents the delay associ-
ated with each transition considered.

As previously pointed out, transients are not at all negligible
neither in terms of power consumed nor in terms of delay
incurred. For instance, as shown in Table II, resuming webcam
activities is the transition that takes the longest (about 1.2
seconds). Clearly, this has direct impact on node duty-cycling.
Suspending the webcam takes about 300 milli-seconds, which
is about the same for the wireless card. But resuming the
wireless card takes about 500 milli-seconds, which is less than
half the time necessary to resume the webcam. This happens
because the operating system has support to suspend the
PCMCIA modules, which makes this process more efficient.

Task Processor Proc./Sensor Proc./Radio Proc./Sensor
Core Core Core /Radio Core

Resume cam - -
Suspend cam - -
Resume wifi - -
Suspend wifi - -
Go to sleep
Wake up

TABLE II
TRANSITION DURATIONS IN MILLI-SECONDS (AVERAGE AND STANDARD

DEVIATION CALCULATED OVER FIVE DIFFERENT RUNS).

On the other hand, to suspend the webcam we need to remove
both the webcam and USB kernel modules, which takes longer.
We also notice that when the node wakes up with the wireless
card on, the process will take longer since the node must
first have the board operational, and then power the PCMCIA
hardware so that the wireless card can become operational.

In order to verify the delays reported in Table II, we use
the operating system utility time to obtain the time necessary
to execute the programs that trigger the transitions. Table III
shows these results which are consistently smaller than the
corresponding results in Table II. This confirms that the times
reported in Table II correspond to the times it takes for
the operating system to execute the corresponding software
modules (as reported in Table III) plus the time for the
corresponding hardware sub-system to become active/inactive.

Program Time (s)
Remove wcam 0.21
Suspend wcam 0.259
Remove wifi 0.06
Suspend wifi 1.92

TABLE III
TIME TO EXECUTE SOFTWARE ASSOCIATED WITH TRANSITIONS.

The amount of charge consumed by a transition can be
obtained by integrating over time the difference in current
between the ideal and actual transient behavior. For example,
Figure 6 shows a transition from idle to sleep and then again
to idle for the Processor/Sensor Core. The gray area in the
figure represents the amount of additional charge consumed
due to transitory current fluctuations.

Table IV summarizes the charge needed for the state tran-
sitions mentioned above. The results presented are averaged
over five different runs. Some of the results are noteworthy.
For instance, for the Proc/Sensor Core sub-system, resuming
the webcam consumes about the same charge as going to
sleep, although the delay is about three times larger. Another
interesting result is that there is no correlation between delay
and charge, e.g., transitions with the same delay may need
different charge. For instance, switching to sleep mode for
the Processor Core takes 372 milli-seconds and requires 65
milli-Coulombs on average, while for the Proc/Sensor Core it
takes 397 milli-seconds and requires 119 milli-Coulombs on
average.

Fig. 6. Charge consumed by transitions from idle to sleep and back to idle
of the Processor/Sensor Core.

Task Processor Proc./Sensor Proc./Radio Proc./Sensor/
Core Core Core Radio Core

Resume cam - -
Suspend cam - -
Resume wifi - -
Suspend wifi - -
Go to sleep
Wake up

TABLE IV
CHARGE IN MILLI-COULOMBS (AVERAGE AND STANDARD DEVIATION

CALCULATED OVER FIVE RUNS) REQUIRED FOR TRANSITIONS.

The results presented in Tables II and IV show that both
the hardware and software involved in the transition play a
significant role in determining the delay and charge of each
transition.

We should again emphasize that delay and additional
amount of charge due to transitions are an important consid-
eration when scheduling duty cycles for visual sensing nodes.
For example, in some cases, it may be more energy efficient
to keep radio and webcam modules loaded rather than loading
and unloading them very frequently.

V. IN-SYSTEM ENERGY CONSUMPTION MONITORING

As we mentioned before, an important feature provided by
the Stargate is its built-in battery monitoring capability. This
is achieved through a specialized chip, the DS2438, located
on the main board. In this section, we describe how on-board
battery monitoring works on the Stargate, how we extended
it, and the power consumption measurements we obtain using
it.

A. DS2438 Battery Monitor
Crossbow’s Stargate smart battery monitoring capability,

using the DS2438 chip, is normally found permanently mated
to a rechargeable battery in a battery pack. The DS2438 8-
pin chip has the capability to measure the voltage across the
Stargate’s power source and the current flowing out of the
battery and into the Stargate. Measuring current is achieved
by measuring the voltage at the ends of a low-value shunt
resistor, as shown in Figure 7.

Fig. 7. Battery monitor connection diagram. Voltage across the shunt resistor
is measured by and . Current can be determined using

.

The DS2438 chip [12] takes current measurements at a rate
of 36.41 times per second. These measurements are stored
in the chip’s RAM and can be acquired through the one-
wire interface (DQ pin). The readings are stored in units
of 0.2441mV () and the maximum voltage difference
between the pins is 300mV.

The Stargate is equipped with a shunt resistor. Since
voltage readings are stored in units of 0.2441mV, this would
allow a granularity of 48.82mA (obtained using)
for the current readings. Additionally, the DS2438 chip can
introduce an error of LSb (least significant bits), which
could result in as much as mA of error.

Considering the current range for the activities we define as
representative of visual sensor network activities (see Table I),
it is clear that the granularity of 48.82mA does not allow
accurate readings. Thus we replaced the existing shunt
resistor with a one. By doing this, we achieve a
granularity of 0.904mA with mA error.

B. Kernel Modules and Interface

As described in Section II, the Meerkats node runs a Linux-
based operating system, namely the Stargate 7.3 operating
system which provides two kernel modules that interface with
the battery monitoring hardware, namely: the onewire and
batmon modules 2. onewire implements the one-wire protocol
used to communicate with the DS2438 chip, and provides
wrapper functions for reading from and writing to the DS2348
through the one-wire data bus. batmon is a higher level
module, that uses the functions made available by onewire to
read the voltage from the chip and make it available for reading
in user-space through a device (i.e.,/dev/platx/batmon).

The original batmon provides only voltage readings, there-
fore we had to modify it to obtain current readings as well. The
function in the batmon module, which
previously only returned the battery voltage, was modified to

2Both modules were implemented by Trevor Pering

return the current across the shunt resistor as well, using the
following equation: .
Since floating point operations are not supported in the
Stargate Linux kernel, the output from
contains both the kernel space calculated current and the raw
value of the current register, so that user space programs can
calculate the value exactly.

Additionally, a new function
was added to handle the conversion of a

string representation of a hexadecimal number to an integer
representation. The reason for this is that the kernel
implementation presented a problem which prevented it from
parsing the hexadecimal string correctly. Accordingly, the

function was also modified.
Another issue with the current measurement is that the

DS2438 chip has an offset register (intended to cancel small
offset errors in the current ADC), which is added to the current
register after every reading is taken. The offset register needs
to be calibrated to avoid introducing errors 3. In order to obtain
the value currently stored in the offset register, we powered
the Meerkats node through the DC jack, and then used batmon
to measure the current. The reasoning for this is that when the
board is powered straight from the DC jack no current flows
through the shunt resistor and the reading should be 0mA.
Instead the initial result was -14mA. We account for this offset
in a user-level program (batread) that monitors batmon results.

batread is a simple program that polls /dev/platx/batmon
and records the current reading. As parameters it uses the
number of samples, the interval (in seconds) between them,
and the output filename. It is implemented as loop that
sleeps in between readings (to minimize interference with the
system’s energy consumption).

C. Battery Monitoring Performance Validation

In order to validate the current readings provided by ba-
tread, we use the same setup described in Section III-A and
followed the same methodology described in Section III to
conduct direct current measurements, while using batread
to record the current being drained by the system every
second. Table V presents the results obtained by batread, while
Table VI presents the current measured by the multimeter.

Task Processor Proc./Sensor Proc./Radio Proc./Sensor/
Core Core Core Radio Core

idle 143.5 331.4 304.4 495.7
fft 250.9 434.2 454.0 633.4
read 220.3 441.3 419.5 611.7
write 223.5 415.6 392.8 599.5
image - 352.2 - 509.8
tx - - 421.3 592.8
rx - - 324.4 526.0

TABLE V
CURRENT (IN MILLI-AMPERES) OBTAINED WITH batread.

We do not present results for sleep in Table V since the

3According to the DS2438 data-sheet [12], a calibration is done before
shipment, but the system should be calibrated altogether.

system will not be able to keep track of the current readings
if the processor is sleeping.

Task Processor Proc./Sensor Proc./Radio Proc./Sensor/
Core Core Core Radio Core

idle
fft
read
write
image - -
tx - -
rx - -
sleep

TABLE VI
CURRENT, IN MILLI-AMPERES, MEASURED WITH DMM WHILE batread

WAS RUNNING (AVERAGE AND STANDARD DEVIATION CALCULATED OVER

FIVE RUNS).

Comparing the results in Tables VI and V, we can quantify
the interference of on-board battery monitoring. For exam-
ple, for tasks that are more power-demanding (e.g., fft), the
average current readings obtained from batread are smaller
than the corresponding DMM readings. This is expected since
the processor needs to switch between tasks (e.g., fft and
batread) to execute the in-system current measurements and
because batread is less power-demanding, the average current
consumed is lower that when just fft runs. For less power-
consuming tasks, the interference may happen in the opposite
direction, i.e., the current readings by batread may be higher.

Figure 8 summarizes the results from Tables VI, V and I
for the Proc/Sensor/Radio Core subsystem.

Fig. 8. Current (in Amperes) measured with DMM with and without batread
running, and batread results. The results apply to the Proc/Sensor/Radio
Core).

We also have to keep in mind that the DS2438 chip has
an error of LSb (mA in the current Meerkats node
configuration). Another issue is the rate at which batread is
recording current readings, which is one reading every second.
When compared to the multimeter reading frequency (60 Hz),
this is very low and therefore may cause loss of information.
On the other hand, the higher the reading rate for batread, the
more interference it will cause.

Figures 9 and 10 illustrates the effect of Stargate’s in-system

energy consumption monitoring interference with respect to
readings of current drawn.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

C
ur

re
nt

 (A
)

Time (sec)

Fig. 9. Current being drained by Processor Core when fft is being executed.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

C
ur

re
nt

 (A
)

Time (sec)

Fig. 10. Current being drained by Processor Core when batread is monitoring
the system at 1 Hertz and fft is being executed.

In-system energy consumption monitoring is important in
order to track battery discharge and be able to make decisions
influencing the trade-off between power conservation (and thus
operation lifetime of the system) and performance. Although
in-system monitoring interferes slightly with energy consump-
tion, we were still able to cross-validate on-board monitoring
measurements against DMM readings.

VI. RELATED WORK

In this section, we summarize related work in areas relevant
to our work, including energy consumption measurements
for network interfaces, sensor networks platforms and mobile
devices.

Stem et al. [15] measures the power consumption of
some network interface cards (NICs) when used by different
end-user devices. The work also report on transport– and
application–level strategies to reduce energy consumption by
NICs. Later, in Feeney et al. [7], detailed energy consumption

measurements of some commercially-available IEEE 802.11
NICs operating in ad hoc mode are provided. Along the same
lines, Erbert et al. [6] assesses the impact of transmission
rate, transmit power, and packet size on energy consumption
in a typical wireless network interface. Pering et al. [9]
presents a mechanism to exploit radio hierarchies for wireless
devices, and reports energy consumption on Bluetooth and
IEEE 802.11 NICs.

The Panoptes sensor hardware [4] is similar to the Stargate
hardware, but has higher power requirements. When we com-
pare the power requirements of both platforms, we observe
that the Stargate provides energy savings of up to 25%.

Another widely used platform in sensor networks are the
Berkeley Motes [16]. A detailed accounting of the energy
consumed by the Motes is presented in [13]. A detailed power
profile of the Consus platform, a personal data repository, is
presented in [10]. The work reports energy consumption for
basic tasks such as sleep, idle, processing, and communication
over IEEE 802.11 and Bluetooth radios.

More recently, some research efforts have focused on de-
veloping visual sensing nodes. For example, Cyclops [11]
is a low-power, small sensing node composed of a micro-
controller, complex programmable logic device, external
SRAM, external Flash and an CMOS imager. SensEye [8]
is a multi-tier video surveillance network, which makes use
of several different visual nodes including: Cyclops [11],
CMUcam [1], Crossbow Stargate and webcam, and a high-
end camera.

VII. CONCLUSIONS

In this paper we presented a thorough energy consumption
characterization of a visual sensor network testbed. Each sens-
ing node in the testbed consists of a ”single-board computer”,
namely Crossbow’s Stargate equipped with a wireless network
card and a webcam. We assessed energy consumption of
activities representative of the target application (e.g., perime-
ter surveillance) using a benchmark that runs (individual
and combinations of) “basic” tasks such as processing, flash
memory access, image acquisition, and communication over
the network. In our characterization, we considered the various
hardware states the system switches through as it executes
these benchmarks, e.g., different radio modes (sleep, idle,
transmission, reception), and webcam modes (off, on, and
acquiring image). We reported both steady-state and transient
energy consumption behavior obtained by direct measurements
of current with a digital multimeter (DMM). Our results show
that delay and additional amount of charge due to transitions
are not at all negligible and must be accounted for when
determining important system parameters such as the duty
cycle.

We also presented the extensions we implemented to ob-
tain current readings using the Stargate’s on-board energy
consumption measuring capabilities. On-board energy con-
sumption monitoring is important in order to track battery
discharge and be able to make decisions influencing the trade-
off between power conservation (and thus operation lifetime of
the system) and performance. We showed that on-board mon-
itoring interferes slightly with energy consumption but were

still able to cross-validate on-board monitoring measurements
against DMM readings.

As future work, we intend to use the characterization
presented here to develop a probabilistic energy consumption
model to predict energy consumption behavior of the Meerkats
node. This energy prediction model will then be used to
implement a resource manager that will be able to predict
the node energy consumption, verify its current state (using
the on-board energy consumption measuring capabilities), and
decide the node’s actions optimizing the energy consumption–
performance trade-off.

VIII. ACKNOWLEDGEMENTS

The Meerkats project is supported by NASA under contract
NNA04CK89A. Cintia Margi was supported by a scholarship
from CNPq/Brazil until 31/Aug/2005.

REFERENCES

[1] The CMUcam Vision Sensors. http://www.cs.cmu.edu/ cmucam/, 2005.
[2] A. Aburto. FFT double precision benchmarks.

ftp://ftp.nosc.mil/pub/aburto/, 2001.
[3] J. Boice, X. Lu, C. B. Margi, G. Stanek, G. Zhang, R. Manduchi,

and K. Obraczka. Meerkats: A Power-Aware, Self-Managing Wireless
Camera Network for Wide Area Monitoring. Technical Report ucsc-crl-
05-04, University of California Santa Cruz, 2005.

[4] W. chi Feng, B. Code, E. Kaiser, M. Shea, W. chang Feng, and L. Bavoil.
Panoptes: scalable low-power video sensor networking technologies.
In MULTIMEDIA ’03: Proceedings of the eleventh ACM international
conference on Multimedia, pages 562–571, New York, NY, USA, 2003.
ACM Press.

[5] Crossbow. Stargate. http://www.xbow.com/, 2004.
[6] J. Ebert, S. Aier, G. Kofahl, A. Becker, B. Burns, and A. Wolisz.

Measurement and simulation of the energy consumption of an WLAN
interface. Technical Report TKN-02-010, Technical University Berlin,
Telecommunication Networks Group, Germany, June 2002.

[7] L. M. Feeney and M. Nilsson. Investigating the energy consumption
of a wireless network interface in an ad hoc networking environment.
In Proceedings of the Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies.INFOCOM 2001, volume 3,
pages 1548–1557. IEEE, April 2001.

[8] P. Kulkarni, D. Ganesan, and P. Shenoy. The case for multi-tier camera
sensor networks. In International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV 2005), 2005.

[9] T. Pering, V. Raghunathan, and R. Want. Exploiting radio hierarchies
for power-efficient wireless device discovery and connection setup. In
Proceedings of the 18th International Conference on VLSI Design held
jointly with 4th International Conference on Embedded Systems Design
(VLSID’05), 2005.

[10] E. W. A. L. P. W. M. C. Platform. Vijay raghunathan and trevor pering
and roy want and alex nguyen and peter jensen. In ISLPED 2004, 2004.

[11] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava. Cyclops: In situ image sensing and interpretation in
wireless sensor networks. In SenSys 2005), 2005.

[12] D. Semiconductor. DS2438: Smart battery monitor datasheet.
http://www.maxim-ic.com, 2004.

[13] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network appli-
cations. In ACM SenSys 04, Baltimore, MA, November 2004.

[14] Standard performance evaluation corporation. http://www.spec.org,
2004.

[15] M. Stemm and R. H. Katz. Measuring and reducing energy consumption
of network interfaces in hand-held devices. IEICE Trans. on Communi-
cations, 8(E80-B):1125–1131, 1997.

[16] A. Woo. Mote documentation and development information.
http://www.eecs.berkeley.edu/ awoo/smartdust/, 2000.

