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Abstract

Efficient protocols for power-constrained heterogeneous wireless ad-hoc networks

by

Ignacio Solis

With networks permeating every corner of the technological spectrum the requirements

expected from the them have expanded. They haven’t grown in the sense of more fea-

tures, they have grown in the sense of more efficient specialized features. The protocols

that were once well suited for all our network needs in the past are not well suited for

all our network needs in the future.

These heterogeneous environments have raised a number of challenges for the

network society. Interconnection between powerful and week devices needs to be ef-

ficient. The omnipresent IP [18] protocol can’t deal efficiently with all the possible

scenarios. At the lower end of the heterogeneous spectrum we have a set of application

and devices that need to be carefully optimized. The proliferation of ubiquitous scenar-

ios have made standardization a sought after path. If the trend of optimizing protocols

for unique applications continues, the different clouds of devices won’t be able to talk

to each other.

We have developed FLIP, a FLexible Interconnection Protocol in charge of

connecting devices of varying capabilities. This protocol is well suited to connect pow-

erful devices with all the current capabilities provided by IP [18]. It is also well suited to

connect power-anemic devices, like the ones used for sensor networks. For this scenario

we have also developed power efficient methods of data collection.

Our Cascading Timeouts reduce delay in the collection of sensed data from a

sensor network. We have also designed a scheme for efficient data aggregation based

on isoclusters, that is, clusters of nodes that have been grouped because they have a

similar sensed value.

Keywords: Sensor Networks, Data Aggregation, Energy Efficient Protocols
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Chapter 1

Introduction

One of the implications of ubiquitous connectivity is that networks have be-

come more heterogeneous as users have been employing a diverse set of devices ranging

from laptops, hand-helds, cellular phones, pagers, and smart badges to stay connected

anywhere, anytime. Furthermore, forthcoming applications such as smart environments

(homes, offices, buildings, highways, etc.), factory automation, surveillance, environ-

mental and biomedical monitoring will add a whole new set of devices that will need

to communicate with one another. Therefore, network heterogeneity will manifest itself

in terms of increased diversity in communication medium technology (e.g., as wired,

wireless, satellite, and optical links), as well as in the types of devices networks will

interconnect. In the near future, internetworks will interconnect not only traditional

desktop and laptop computers, but also unconventional devices whose power, process-

ing, and communication capabilities differ widely. These devices will form clouds, which

will be connected among themselves and with the existing IP infrastructure.

While many of the Internet protocols have proven successful in accommodating

the network’s exponential growth, they were not designed to handle the degree of device

heterogeneity that will characterize future internets. Consider IP: it adds an unnecessary

and sometimes prohibitive amount of complexity and overhead, especially in the case

of limited-capability devices like the ones found in sensor networks. More recently,

protocols specifically tailored for sensor networks have been implemented. Because they

are so specialized, these protocols will not be able to accommodate more sophisticated

and powerful devices.

1



1.1 Sensor Networks

Sensor networks are one of the current network research driving forces. They

have posed these and many other challenges to overcome. They have become a viable

technology due to modern hardware. It is important that network protocols play their

role and evolve with it.

Sensor networks are typically data driven, i.e., the whole network cooperates

in communicating data from sensors (information sources) to information sinks. One

of the main challenges raised by sensor networks is the fact that they are usually power

constrained since sensing nodes typically exhibit limited capabilities in terms of pro-

cessing, communication, and especially, power. Sensor networks’ power limitation is

aggravated by the fact that, often, once deployed, they are left unattended for most of

their lifetime. Thus, energy conservation is of prime consideration in sensor network

protocols in order to maximize the network’s operational lifetime.

1.2 Data Aggregation

In-network aggregation is a well known technique to achieve energy efficiency

when propagating data from information sources (e.g., sensors) to sink(s). The main

idea behind in-network aggregation is that, rather than sending individual data items

from sensors to sinks, multiple data items are aggregated as they are forwarded by

the sensor network. Data aggregation is application dependent, i.e., depending on the

target application, the appropriate data aggregation operator, or aggregator, will be

employed. For example, suppose that in a controlled temperature environment, the

average temperature needs to be monitored. As sensors generate temperature readings

periodically, internal nodes in the data collection tree (rooted at the information sink

and spanning relevant data sources average data received from downstream nodes and

forward the result toward the information sink. The net effect is that, by transmitting

less data units, considerable energy savings can be achieved. However, how much energy

is saved depends on the type of aggregator employed. For instance, in the running

average scenario just depicted, a number of packets containing temperature readings

from individual sensors are averaged and result in a single packet of the same size as

2



the ones that carry individual temperature readings. However, if the only possible

aggregator is concatenation, i.e., multiple data items are concatenated and transmitted

as a single packet, then the sole source of energy savings is more efficient medium access.

From the information sink’s point of view, the benefits of in-network aggrega-

tion are that in general (1) it yields more manageable data streams avoiding overwhelm-

ing sources with massive amounts of information, and (2) performs some filtering and

pre-processing on the data, making the task of further processing the data less time-

and resource consuming.

Because of its well-known power efficiency properties, in-network aggregation

has been the focus of several recent research efforts on sensor networks. As a result,

a number of data aggregation algorithms targeting different sensor network scenarios

have been proposed. Directed diffusion [5], TAG [39], eScan [24], and Sensor Protocols

for Information via Negotiation (SPIN) [45] are some notable examples.

Monitoring (including monitoring of continuous environmental conditions like

temperature, humidity, seismic activity, etc.) is a good example of such applications.

One of the constraints imposed by periodic data generation on aggregation algorithms

is timing. In other words, how long should a node wait to receive data from its children

(downstream nodes in respect to the information sink) before forwarding data it already

has received. Note that the tradeoff is between data accuracy and freshness, i.e., the

longer a node waits, the more readings it is likely to receive and therefore, the more

accurate the information it sends out. On the other hand, waiting too long may result

in stale data. Furthermore, if a node waits too long, it may interfere with the next

“data wave”.

The more complex forms of monitoring require data collection from all nodes

including location, this is the essence of environmental monitoring, map generation. In

these situations simple aggregation techniques don’t work as well. When calculating a

maximum the information did not grow in size as it flowed down to the sink. Figure 1.1

illustrates the argument.

In order to achieve good energy savings better methods for aggregating data

must be found. eScan [24] proposes to save energy by the use of polygons which get

3
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Figure 1.1: Aggregation methods

merged as the data flows down the aggregation tree. Madden proposes a similar method

in his advanced aggregation techniques [23] that uses a grid to define the polygons.

1.3 Contributions

The main contributions of this dissertation are:

• FLIP: A base protocol architecture for use in heterogeneous network scenarios.

The requirements posed on the network by different systems can vary greatly. This

is normally a source of overhead for the small devices or a source of constraints for

the large ones. Some architectures such a sensor networks require tight coupling

with between applications and the network, others prefer the more abstracted view

provided by systems designed cleanly around the ISO-OSI [49] layering scheme.

Since sensor networks layers are tightly coupled it is important that we provide as

much flexibility as possible at the network layer. Applications will need to have

control of many of the features previously classified at the middle layers of the

ISO-OSI [49] layering scheme. The FLIP architecture establishes a flexible packet

structure which will allow us to provide the applications with this functionality.

The price for this flexibility is a very minimal overhead.

FLIP, or Flexible Interconnection Protocol, has a flexible header. A meta header

defines the fields included in the header itself, allowing an application to limit the

header to the data it really needs. Having a standardized header structure will

permit various protocols to coexist under the same network without requiring a

complex set of protocol schemes.

• Cascading Timers: We have established an efficient way to collect data from all

4



the nodes in the network. When gathering data from a single source there are

certain methods for optimizing the communication in terms of various factors.

These have been addressed by the numerous works on routing and traditional

communications. Multicast has addressed the distribution of data to multiple

sources and had to deal with a new set of challenges. Monitoring sensor networks,

where all the nodes produce information present yet again a new set of problems

to deal with.

We have studied the effects of timing in data collection and how to make the whole

network collect data more efficiently by careful tuning of the timeout parameters.

Cascading Timers are our approach to timeouts in data gathering scenarios. These

timers are essential to data collection specially when doing aggregation. And due

to the fact that sensor networks never have perfect communication, it is important

for us to consider packet drops. When all nodes are transmitting it is essential

that we consider errors, specially when aggregating data and a single drop can be

very costly.

• Isoline Aggregation: Monitoring sensor networks deal with the strain of gathering

data from all nodes. Aggregation and careful timing help in this respect. They

are however not the only things we can do to ease our burden. When all nodes

are producing data that can’t be easily aggregated (i.e. location information); we

have to find ways to optimize collection. We carefully studied the generation of

maps and come up with an aggregation algorithm specially tailored for such a

scenario; Isoline Aggregation.

Isolines are basically the contours of a contour map. Nodes on the field will

detect only the relevant data, the isolines, and report when required. Redundant

information will be suppressed and not transmitted. Our approach can deal with

random node placement and uneven node density distribution without incurring

extra overhead.
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1.4 Publications

• Solis, Obraczka. ”Isolines: Efficient Spatio-Temporal Data Aggregation in Sensor

Networks”. August 2005, In preparation.

• Solis, Obraczka. ”In-Network Aggregation Trade-offs for Data Collection in Wire-

less Sensor Networks”. July 05, Under Submission.

• Solis, Obraczka. ”Efficient Continuous Mapping in Sensor Networks Using Iso-

lines”. July 2005, Mobiquitous 05.

• Solis, Obraczka. ”Isolines: Energy Efficient Mapping in Sensor Networks” June

2005, ISCC 05.

• Solis, Obraczka. ”The Impact of Timing in Data Aggregation for Sensor Net-

works”. July 2004, ICC 04.

• Solis, Obraczka. ”FLIP: A Flexible Interconnection Protocol for Heterogeneous

Internetworking”. August 2004, MONET.

• Solis, Obraczka. ”A case for a Flexible-Header Protocol in Power Constrained

Networks”. March 2003, WCNC 03.

• Solis, Obraczka, Marcos. ”FLIP a Flexible Protocol for Efficient Communication

Between Heterogeneous Devices”. July 2001, ISCC 01.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 we will discuss FLIP. The

structure of a FLIP header and meta-header. It will also describe GTP, the transport

layer equivalent of FLIP. It will demonstrate via various simulations how a flexible pro-

tocol header can prove advantageous. In Chapter 3 we will detail Cascading Timers.

They will be compared to other similar approaches and evaluated under multiple con-

ditions, including a range of drop probabilities. Chapter 4 will describe our work in

mapping for sensor networks. It will present static mapping as well as dynamic map-

ping. It also explains how Isoline Aggregation deals with high node density deployments

6



and reduces the possible overhead. Finally Chapter 5 will summarize our contributions

and conclude our work.
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Chapter 2

The FLIP Protocol - Flexibility and

Efficiency

In this chapter, we describe the design and implementation of a network pro-

tocol whose main goal is to accommodate devices with varying power, processing, and

communication capabilities. The proposed protocol, Flexible Interconnection Protocol,

or FLIP, will operate among devices in the farthest branches/leaves of an intranet while

providing inter-network connectivity with other clouds and with the existing IP-based

Internet infrastructure. FLIP’s overhead (both in terms of per-packet overhead and

protocol complexity) is dependent on the capabilities of the particular device running

FLIP and the functionality needed by the application. For “anemic” devices, FLIP’s

close to optimal overhead not only saves bandwidth, but, more importantly, energy.

Application

FLIP

Network

Data Link

Network

FLIP

Data Link

Application

Transport

Data Link

FLIP

Application

Figure 2.1: FLIP in the protocol stack.

Figure 2.1 shows FLIP’s position in the protocol stack. FLIP is designed to

run atop a data link layer protocol and provide functionality all the way up to the

8



application layer, replacing the functionality of network and transport protocols. The

FLIP layer can be very “thin”, which means that FLIP provides minimum functionality;

this is the case of the version of FLIP that very simple devices like sensors would run.

On the other hand, FLIP could provide functionality (or a subset thereof) of a “heavy-

duty” transport protocol like TCP. It is the application designer’s choice what services

are required and should be included in FLIP.

Figure 2.2 exemplifies how functionality provided by the FLIP stack can be

selected by applications. Some functions such as fragmentation are either selected or

not. Others like scope as defined by a Time-to-Live (TTL) field require that a value be

specified. In the case of addressing, FLIP provides options for the types of addresses

that can be used (e.g., 2- or 4-byte addresses) 1. Note that a socket-style interface is

assumed. Indeed, as discussed in Section 2.2, we implemented a BSD socket interface

that provides the application layer with access to FLIP.
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Application Layer

Layers 1 and 2

Socket 1 1
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Figure 2.2: The FLIP stack

One of our focus is on how FLIP addresses the challenges posed by networks

where most devices are power-anemic. Sensor networks are typical examples: they

consist of an arbitrarily large number of sensing devices which rely on relatively short

lifetime batteries. Sensor network applications usually imply that sensors will be left on

the field unattended for extended periods of time and must conserve energy in order to

1Section 2.1.1 provides a more detailed description of FLIP’s fields
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maximize the overall network’s operational time. Furthermore, while it is often assumed

that sensor networks exhibit homogeneity (i.e., all sensors are either the same or have

similar capabilities/characteristics), this is not necessarily the case as such networks can

consist of different types of sensors. Take for example environmental monitoring, one

of typical application of sensor networks. It often employs a variety of sensors ranging

from “scalar” sensors (e.g., temperature, humidity, etc.), “boolean” sensors (motion,

magnetometers, etc.) to “streaming” sensors (e.g., cameras and microphones).

Protocols like IP (including IPv4 [18] and IPv6 [33]), which were originally

designed for “wired”, fairly homogeneous networks, impose an unnecessary and some-

times prohibitive amount of complexity and overhead, especially in the case of limited-

capability devices. Consider a sensing application that sends 1-byte packets. In an

IPv4 network, data packets would be 95.2% header (using a 20-byte IPv4 header) and

97.6% in the case of IPv6 (using 40-byte header), which is pure overhead. For wireless,

power constrained networks this is certainly wasteful and often too expensive. In such

environments, several IP features are usually dispensable. For example, fragmentation

will rarely, if ever, be needed in sensor network applications. Therefore, transmitting

and carrying IP header fragmentation information is wasteful and if avoided, will result

in valuable resource savings.

On the other hand, designing and optimizing a protocol for a single applica-

tion/network scenario is prone to many problems. Several protocols will likely have to

coexist in the same network and device interoperability will be challenging. Besides, in

a production network, the cost of redeployment to enable new features might be high,

if not prohibitive (e.g., unmanned space mission or a sea-bottom monitoring sensor

network).

In heterogeneous environments, FLIP allows devices with varying capabilities

to coexist and interoperate under the same network infrastructure. Due to its exten-

sible headers, FLIP facilitates protocol evolution and deployment of new features. We

demonstrate FLIP’s power conservation capability in a number of scenarios.

In Section 2.3, FLIP is used to provide IPv4 and IPv6 functionality. Sec-

tion 2.4 evaluates how well FLIP matches the needs of directed diffusion [5], while still

being power-efficient. Directed diffusion (described in more detail in Section 2.4.1) is a
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communication paradigm designed for data gathering applications in sensor networks.

Using an optimized FLIP architecture we were able to save more than half the energy

consumed by the unoptimized use of diffusion. We then consider in Section 2.5 a sample

sensor network application, namely running average calculation of sensed data. We use

temperature as the data being reported by sensors and develop a simple application-

level data gathering protocol. We implement this data gathering application using two

different protocol header paradigms: (1) FLIP’s adaptive header and (2) static head-

ers represented by two models, namely complete and minimal headers. Our simulation

results show that FLIP outperforms static headers by as much as 12% while providing

full functionality. Finally, in Section 2.6, we add data aggregation to the data gath-

ering protocol and show its energy-savings effects. Adding such new features is part

of protocol evolution and can be easily accomplished in the case of a flexible-header

protocol like FLIP. Employing data aggregation resulted in energy savings of as much

as 30%. Sections 2.1 and 2.2 describe FLIP’s basic design principles and a reference

implementation under Linux, respectively 2. Related work is discussed in Section 2.7

and Section 2.8 presents our concluding remarks.

2.1 FLIP Design Principles

The overhead and complexity of a protocol is directly related to the function-

ality the protocol provides. Recall that FLIP’s main goal is to accommodate a range

of devices with varying capabilities and yet provide the functionality required by ap-

plications. Thus FLIP allows application programmers to select just the functionality

they need, without incurring the overhead associated with functions they do not need.

Furthermore, the ability to select a subset of protocol functions allows FLIP to accom-

modate a range of devices from very simple sensors to desktop computers. For instance,

if the application needs packets to age, then the application programmer can ”turn on”

FLIP’s Time-To-Live (TTL) field. At each hop, the packet’s TTL value will be decre-

mented and examined, if it reaches 0 the packet is discarded; otherwise, the packet is

forwarded. Users can also “turn on” the length field, whose value will be calculated as

part of composing a packet.

2A preliminary design of FLIP was presented in [15]
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In its simplest form, FLIP does not include end-to-end reliability or ordering.

It might not even perform routing. This is because, in some scenarios, routing is done

by the application using special information such as nodes’ geographic positioning or

remaining power. Some of these scenarios may use small, very simple devices which

would only be encumbered with routing. These are just end devices and do not have

the required capability to perform routing functionality effectively. For example, in the

case of simple sensors, they may just perform one-hop broadcasts to send out their

readings each time. A nearby, more capable node can then collect these readings and

route them towards the destination.

2.1.1 The Network Layer

FLIP packets are composed of a meta-header, header fields and the payload.

The meta-header indicates which header fields are present in the packet and consists

of an array of bits, or bitmap. If a header field is included in the packet, then the

corresponding bit in the meta-header is one, otherwise, it is set to zero.

In order to minimize the bitmap’s overhead, we split it into one-byte pieces.

Each byte contains a continuation bit that indicates if more bitmap pieces follow. Figure

2.3 shows an example of the FLIP meta-header. Note that the continuation bit is the first

bit of each byte. This ensures that, in the 2-byte version of FLIP’s extra simple packet

(ESP) (FLIP’s ESP mode will be described below), the payload occupies contiguous

bits.

0 0 0 0 00 0

Continuation bit

Bitmap

0 0 0 0 00 0

Continuation bit

Bitmap

1 0

Figure 2.3: FLIP meta-headers

Consider a scenario that only requires the length field, whose presence bit lies

in the first byte of the meta-header. Then, the packet will only have to carry the first

byte of the meta-header, which will have the bit corresponding to the length field on,

and the others, including the continuation bit, off.

In some cases, the target application need only send small amounts of data
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with no header information. Sensor network environments are a good example of such a

scenario: sensors simply broadcast data related to what they are sensing. In these cases,

even a 1-byte meta-header to indicate that no header is needed is too expensive. For

instance, if sensors broadcast 1-byte data, then 1-byte headers result in 50% overhead.

To address these scenarios, FLIP offers the extra simple packet, or ESP. We designated

the second bit of the meta-header, that is, the one following the continuation bit in the

first byte, to be the ESP bit. If this bit is set, it indicates the packet at hand is an

ESP. The use of the continuation bit in the ESP allows for 1- and 2-byte ESPs. While

a 1-byte ESP, that is, one with the continuation bit off, contains 6 data bits, a 2-byte

ESP allows for 14 bits of data (all the 8 bits of the second byte will be counted as data).

Figurer 2.4 depicts both ESP cases.

0 0 0 0 00 00 0 0 00 0

DataESP bit

0 0 0 00 01

1 11

0

Figure 2.4: Extra Simple Packet (ESP)

FLIP’s ESP addresses the need for a real “barebone” protocol, which will be

used by applications that need to send small pieces of data with no overhead. FLIP’s

regular meta-header bitmap covers the more general cases where some fields are required

and some are not, thus optimizing average use.

As shown in Figure 2.5, FLIP’s current meta-header bitmap spans 3 bytes,

including three continuation bits and the ESP bit. The last meta-header byte has been

left unspecified as it will be used for adding new features as part of FLIP’s evolution.

We should point out that the ordering of the fields was determined so as

to optimize packet overhead for very simple applications and devices. More complex

devices and applications can normally amortize the cost of having more meta-header

bytes. Fields are ordered so that the most commonly needed ones appear in the first

meta header byte(s). More infrequently used fields appear last so that the corresponding

meta-header byte does not have to be included when these fields are not used. The

definition of each FLIP header field follows.
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Destination bits

Continuation bit
ESP bit
Version bit

Type bit
TTL bit
Flow bit

0 0 0 0 00 0

Continuation bit
Source bits

0 0 0 0 00 0

Reserved
Don’t Fragment

Length bit
Checksum bit

Continuation bit
Fragment Offset

0 0 0 0 00 0

Last Fragment
Reserved bit

1

0

1

Figure 2.5: The FLIP meta-header bitmap

• Version is 1 byte in length. The 4 higher order bits represent the version field.

The current FLIP version is 0. The 4 lower order bits represent the priority field.

If a packet lacks the version field, version 0 and priority 0 are assumed.

• Destination is a variable-length field. The corresponding meta-header field is

composed of 2 bits, whose value determines the size of the destination field. If the

bitmap bits are set to:

– 00 indicates the destination field is not present.

– 01 indicates we have a destination field of 2 bytes in length carrying a FLIP

address.

– 10 indicates it is a 4-byte destination address.

– 11 indicates the destination field is of variable length.
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In the case of a variable length address, the first byte indicates the size of the

field, which could range from 5 to 255. Values of 0 to 4 are reserved for future use,

such as geo-location. IPv4 [18] addresses correspond to 4-byte FLIP addresses

and IPv6 [33] addresses to variable length addresses of size 16.

• Type (Protocol) is 1 byte in length and indicates the protocol type. This

matches the IPv4 field by the same name and IPv6’s next header field.

• Time to Live (TTL) is 1 byte in length and is typically used to limit the scope

of a packet. It may define the scope in number of hops, i.e., at every hop the TTL

is decremented and when it reaches 0, the packet is discarded. Applications may

also define the scope of their packets in terms of other metrics, such as geographic

area, etc.

• Flow is 4 bytes in length. As the name implies, this field is intended for flow iden-

tification. Flow identifications are useful to implement features such as support

for flow-based quality of service (QoS). Packets belonging to a given flow will be

subject to QoS parameters negotiated for that flow.

• Source is a variable-length field and its length is determined by 2 bits in the

meta-header exactly the same way as the destination field.

• Length is 2 bytes, which means that the maximum packet size is limited to 64

KBytes.

• Checksum is 2 bytes in length and checks the packet payload. It is calculated

similarly to the IP Checksum.

• Don’t Fragment is a flag which means it does not require the corresponding

header field. It explicitly informs the forwarding nodes not to fragment this packet.

• Fragment Offset is a 2-byte field indicating this fragment’s offset with respect

to the original packet.

• Last Fragment is a flag used to indicate this is the last fragment of a packet.

• Reserved are still to be defined fields.
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A sample of a FLIP packet is depicted in Figure 2.6. The shaded area rep-

resents the header, and the remainder, the payload. In this example, the meta-header

is 1-byte long (continuation bit set to 0) and signals the presence of the version field,

a 2-byte destination address, and the type field. All other fields, including the source

address, are not included in the packet

1

32 bits

Version Destination

Data

0 0 0

DataType

0 01 1

Figure 2.6: FLIP sample packet

For increased flexibility, FLIP also allows for user-defined header fields. If

the continuation bit of the third meta-header byte is set, it indicates that user-defined

header fields are included in the packet. Each user-defined header field definition is one

byte in length: the first bit is the continuation bit, and the remaining 7 bits are defined

and interpreted by the application.

An example of a user-defined field is the velocity of the source, in case the

source is currently moving. The destination may use this information to compute

its velocity relative to the source to evaluate the “stability” of its connection to the

source. User-defined information may also include a list of hosts this packet has traveled

through. A node might use this information for packet processing or routing. Another

example is current energy level. In power-constrained environments (e.g., sensor net-

works), this information might be useful to determine the current power limitations of

a certain route.

FLIP header fields are usually fixed size. For example, TTL is always 1 byte

and length is always 2 bytes long. Addresses are a special case. Assigning 2 bits to

the meta-header address field allows FLIP addresses to be of variable length. 2-byte

addresses are adequate for scenarios where addresses need not be globally unique (i.e.,

system-unique or locally-unique addresses suffice). Addresses that are 4-byte long give

us effective compatibility with IPv4 networks. Variable length addresses can be used

to emulate other addressing schemes, including IPv6, Ethernet, or even hierarchical
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address types.

In some cases, source and/or destination addresses may be omitted. If a packet

does not include destination address, it is assumed to be a broadcast packet. If a source

address is not present, it is assumed to be irrelevant or somehow implied by the packet.

When present, fragmentation information is handled in a similar way to IP. A

don’t fragment flag indicates that this packet should not be fragmented. The fragment

offset is a two-byte field, and the last fragment flag is again a single flag. These two fields

are included in the third byte of the meta-header, leaving two unused bits in the second

byte. This is because not many packets are fragmented, and when they are, it normally

means they are large, so we can amortize the cost of the extra meta-header byte. We

anticipate that fields that might be needed in the future may be of more frequent use

and hence it would be more efficient to use the space in the second meta-header byte.

A clear example is security-related fields, which we have currently not included.

FLIP allows application developers to customize its header by selecting fields

required by the target application. Allowing direct manipulation of header fields by

the application layer can be considered a violation of layered system design. However,

exposing network-layer features to higher layers allows for protocol optimization, which

is especially critical in power-constrained environments such as the ones in which FLIP

will likely be more widely used. Our reference implementation of FLIP in the Linux 2.4

kernel, which is described in the next section, provides access to header manipulation

functions through the socket() and set/getsockopt() interfaces.

2.1.2 The Transport Layer

As previously discussed, FLIP provides the basic substrate on which to build

network- as well as transport-layer functionality. In this section, we present an example

transport protocol, we call GTP or Generic Transport Protocol, built atop FLIP. GTP’s

design is based on the same principles as FLIP, i.e., generality with flexibility. In other

words, GTP provides support for a variety of transport-level functionality yet allows

the application developer to select only the functions required by the target application.

To this end, it also employs customizable headers through a meta-header describing the

transport-layer header fields.
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Destination bits

Continuation bit

Source bit

Seq # bit

Timestamp bit

0 0 0 0 00 0

Flags bit

ACK bit

Continuation bit
Window Size bit

0 0 0 0 00 0

Reserved
Next Protocol bit

Urgent bit
Length bit

Checksum bit

1

0

Figure 2.7: GTP meta-header

Figure 2.7 depicts GTP’s meta-header and its fields. GTP’s header includes

fields used by existing transport protocols, specifically TCP [19], UDP [17], and RTP [13].

Similarly to FLIP, the most general fields were placed in the first byte to optimize for

more common use. It is noteworthy that FLIP packets can contain various transport

protocol data units (TPDUs), which can come in handy when performing data aggre-

gation.

GTP’s header fields are described below.

• Flags is a variable-size bitmap field which, similarly to the meta-header, can grow

dynamically through the use of continuation bits. Currently, only the first byte

has been defined. Figure 2.8 shows the composition of GTP’s flag field and the

description of each flag follows.

– Extended mode indicates that this packet uses extended addressing, in

which case the source and destination fields are four bytes long as opposed

to two bytes.

– SYN is the normal synchronization flag used for three-way handshake at
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connection establishment.

– FIN is the flag used to end a connection.

– Reset is used to reset a connection to an initial state.

– Push informs the receiver to pass the received data to the application without

waiting for the internal buffer to fill.

– Marker is a application-level mark on a stream. It can be used for example,

to mark frames in a video stream.

– Padding informs the receiver that this data unit was padded to the next

4-byte boundary.

• Source is a 2-byte field used for addressing multiple sources within the same host.

It is the equivalent to a TCP/IP source port. On extended mode, this is a 4-byte

field.

• Destination is similar to Source.

• Sequence # is a 4-byte field that determines the position of this packet in the

data stream. The position is by default in bytes.

• ACK is a 4-byte field used to acknowledge the reception of data from the other

end of the connection. Its value is in bytes.

• Timestamp is a 4-byte field with a relative value. Timestamps are relative to

each other and can be scaled by the application.

• Checksum is a 2-byte field used to check the integrity of the data unit.

• Window Size allows the receiver to inform the source the amount of data it can

receive. It is a 4-byte field (to avoid having to use scaling factors a la TCP).

• Urgent is a 2-byte field to indicate to the receiver this 2-byte field is carrying

urgent data.

• Length defines the size of the data unit and is 2 bytes long. This is used normally

for multiple data units in the same packet, since the size of a single data unit can

be inferred from the packet length.
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• Next Protocol is a single byte that specifies the type of the next data unit.

• Reserved are fields that have not yet been defined.

FIN flag

Continuation bit

Push flag

0 0 0 0 00 0

Extendend mode flag
SYN flag

Reset flag

Marker flag
Padding flag

0

Figure 2.8: GTP Flags field

The use of a flags field as opposed to including the flags as part of the meta-

header (a la FLIP) is due to the fact that (1) there are more transport-layer flags and

(2) they will only be used in some packets. Thus adding them to the meta-header would

have meant that the meta-header’s average size would have increased. With the current

design, packets that do not require SYN and FIN, for example, do not need to carry

the extra bits.

We should also point out that some of TCP’s flags are implicit in GTP’s meta-

header. Hence there is no need for an extra flag for ACK or urgent data. Note that in the

case the packet is not carrying an acknowledgement nor urgent data, the meta-header

bits corresponding to these fields will be 0 or not present.

Figure 2.9 shows a sample FLIP/GTP packet. The shaded area corresponds

to the FLIP and GTP headers. In this example, the FLIP meta-header is 2 bytes and

indicates the presence of 2-byte destination and source addresses, plus the protocol type

(which should be set to GTP), the TTL and length fields. GTP’s meta-header is also

2 bytes long. It signals the presence of source and destination addresses, as well as

sequence number, acknowledgment and window size information.

Like FLIP, GTP’s design makes use of flexibility to address heterogeneity and

accommodate devices with different capability. Yet, it provides a variety of transport-

level functions that can be combined to address the application’s needs. Section 2.3,
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which evaluates GTP for providing different transport-level functionality, demonstrates

that GTP’s ability to include only the functions required by the target application leads

to higher efficiency when compared to static protocols like TCP and UDP.

32 bits

Destination

Type TTL Source

Length

10 0 0 00 1 0

10 1 0 01 0 0

Source Destination

Sequence Number

ACK

Window Size

Data

Data

11 0 01 0

01 1 0 00

1 0

1 0

Figure 2.9: FLIP/GTP packet

2.1.3 FLIP and Heterogeneity

One of the main goals in designing FLIP was to construct a protocol that

allows a diverse set of devices to speak to each other in an efficient manner using the

same protocol suite. As an example, consider deploying an ad hoc network consisting of

thousands of different types of sensors (temperature-, humidity-, and motion sensors, as

well as microphones, cameras, etc.) for environmental monitoring in a remote location.

Simple sensors such as temperature would use FLIP’s ESP packets to report

their readings. Data collection nodes would gather sensed data received from local

sensors. Using a more complex FLIP header, they would form data collection structures

(trees, meshes) and reliably convey data they collect to information sinks. For energy

efficiency, data would be aggregated as it flows from collection points to sinks.

For energy conservation reasons, sensors such as cameras and microphones

would be kept in “stand-by” mode most of the time. As soon as an event is detected

(e.g., wind sensors notice winds picking up above a certain threshold), cameras and

microphones in that area would receive a “wake-up” signal from the local data collecting

node and would start collecting information to register a possible weather phenomenon
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(e.g., dust devil, tornado, etc.). The “wake-up” signal could use FLIP’s priority field

to indicate that this information needs to be forwarded by intermediate nodes with

higher priority. Cameras and microphones are attached to more powerful nodes that

can keep up with their data generation rate and perform local processing in order to

avoid overloading sinks with too much information and consuming too much network

resources. Some cameras and microphones in the same neighborhood could also perform

information fusion among them to decide whether they should send information to

sink(s), and if so, what kind of information representation to use (e.g., if the probability

of event occurrence is deemed low, send only the base layer of the compressed stream

from the camera that is closest to where the action is). These real-time streams could

be sent using FLIP/GTP’s unreliable stream functionality a la RTP.

Scientists on the field equipped with hand-held devices could also be collecting

sensed information in real-time. They could then communicate among them sharing in-

formation and/or exchanging files using FLIP/GTP’s reliable end-to-end delivery func-

tionality. They might also need to communicate with their collaborators connected to

the wired Internet; this would be accomplished via translation gateways, which convert

FLIP/GTP packets to TCP/IP and forward them onto the wired infrastructure.

Clearly, all exchanges in this heterogeneous scenario could be carried out using

different protocols to handle the different types of communication. The main advantage

of using the FLIP stack is that it provides a single, yet efficient protocol architecture

which can be used for simple data gathering, point-to-point data communications as

well as more complex exchanges.

2.2 Implementation

As proof of concept, we implemented a barebone version of FLIP in the Linux

2.4 kernel. We generated a patch for the kernel which allows the inclusion of FLIP at

compile time or as a loadable module. Linux is making its way into devices of various

kinds and capabilities; having a Linux implementation of FLIP will allow us to conduct

live experiments in heterogeneous environments.

Below the FLIP code lies the device code, specifically the device output/input

queues, through which FLIP sends/receives data. When data is received, the receiving
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device passes it to the FLIP layer which queues the data on the corresponding socket.

FLIP uses the BSD socket abstraction to interface with applications. In order

to send and receive data using FLIP, application programmers will use the same set of

socket system calls they would use to handle TCP/IP communication endpoints. For

instance, to create a FLIP socket, all they have to do is request a socket of family

AF FLIP.

char* buf = "Hello World";

__u16 addr;

s = socket(AF_FLIP,SOCK_RAW,FLIP_NO_ESP);

addr = htons(1000);

setsockopt(s,SOL_FLIP,FLIPO_DESTINATION,

&addr,sizeof(addr));

write(s, buf, strlen(buf));

Figure 2.10: Sample application code

Figure 2.10 illustrates the FLIP API. In this example, a FLIP socket of type

SOCK RAW (allowing the programmer to modify most of the fields) is defined. The

CAP NET RAW capability is required to use the socket if capabilities are being used. FLIP

sockets will eventually be able to support datagram and stream once transport layer

functionality is implemented. Socket’s last parameter is used to select ESP or non-

ESP mode. With the current implementation, the programmer cannot change from one

mode to another once the socket is created.

The programmer can then use setsockopt() to set the necessary header fields.

For instance, address fields (source and destination) identify a given communication

end-point. If a socket is assigned an address, that socket will only receive packets

with that address in the destination field. The address of a FLIP traffic source is set

through the FLIPO SOURCE option. If no address is assigned to a socket, FLIP will

not set the source address on outgoing packets from that socket. In the example of

Figure 2.10, the destination field is defined as a 16-bit FLIP destination and is set with

the FLIPO DESTINATION option.
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Since ESP packets have no headers, and thus no destination or source addresses

specified, ESP sockets always receive all packets.

The getsockopt() call is used to read header definitions for a certain socket,

as well as to read the header fields of incoming packets on that socket. As previously

pointed out, to achieve flexibility and efficiency, our design exposes the network layer

to the application programmer.

In order to speed up packet header construction, we cache header information

for every socket that has been defined. Dynamic header fields, which change from packet

to packet, are computed on the fly before the packet is sent. Packet length and checksum

are examples of dynamic header fields.

In the current implementation, we use Ethernet and 802.11b as the MAC layer

protocols. Like RF wireless access, Ethernet assumes a shared broadcast medium. A

unique protocol number was selected as Ethernet’s next protocol field. Using these

underlying MAC protocol means that FLIP packets must be at least the size of the

minimum frame payload. Consequently, in this implementation, we cannot take full

advantage of FLIP’s ESP mode.

2.3 Evaluation

In this section we compare FLIP’s functionality and overhead against a more

“traditional” protocol, namely IP. We also evaluate FLIP in the context of a sensor

network environment.

2.3.1 FLIP and IP

We should point out that both FLIP and IP were designed to address different

goals and target environments. Thus comparing them is not really fair to either. While

the IP layer provides a fixed set of functions, FLIP’s functionality and overhead are

application-dependent. In other words, the application determines which fields are to

be included in the FLIP packet header. Therefore, applications send just what they

need, avoiding the cost of transmitting and processing unnecessary information.

Take for example an application that sends out data in 1000-byte chunks. Us-

ing IPv4, the overhead would be 20 bytes (corresponding to the IPv4 header), which is
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Table 2.1: FLIP-IP comparison in terms of packet size

Functionality Protocol
IPv4 IPv6 FLIP

Full IPv4 (header only) 20 N/A 24
Full IPv4 (1b payload) 21 (2000%) N/A 24 (2300%)
Full IPv4 (1000b payload) 1020 (2%) N/A 1024 (2.4%)
Typical IPv4 (header only) 20 N/A 17
Typical IPv4 (1b payload) 21 (2000%) N/A 18 (1700%)
Typical IPv4 (1000b payload) 1020 (2%) N/A 1017 (1.7%)
Full IPv6 (header only) N/A 40 44
Full IPv6 (1b payload) N/A 41 (4000%) 45 (4400%)
Full IPv6 (1000b payload) N/A 1040 (4%) 1044 (4.4%)
Dest. & Source (header only) 20 40 10
Dest. & Source (1b payload) 21 (2000%) 41 (4000%) 11 (1000%)
Dest. & Source (1000b payload) 1020 (2%) 1040 (4%) 1010 (1%)
Dest. only (header only) 20 40 3
Dest. only (1b payload) 21 (2000%) 41 (4000%) 4 (300%)
Dest. only (1000b payload) 1020 (2%) 1040 (4%) 1003 (0.3%)

not significant given the size of the payload. However, if hosts are just sending 1-byte

heartbeat messages (e.g., either their address or some form of identification), then 20

bytes of header would seem unacceptable. Fields such as fragmentation information,

ToS, or even packet length (in the case of fixed-size packets) would be adding unneces-

sary overhead and wasting network, and even more importantly, device resources (such

as power). If IPv4 is used, the message would be 21 bytes long, where only 1 byte

is payload. The corresponding barebone FLIP packet could be 5 bytes long: 1 meta-

header byte, a 4-byte destination address, and 1-byte heartbeat, which results in a 400%

increase in efficiency (when compared to the IPv4 packet).

When comparing the functionality of IP and FLIP, we need to examine the is-

sue of header compatibility. IP header fields are easily mapped into FLIP fields. Indeed,

FLIP was designed with IP-compatibility in mind. It is fully compatible with IPv6. To

emulate IPv6 functionality, the version, flow, length, protocol (for next header), and

TTL (for hop limit) header fields need to be enabled. Moreover, 16 byte addresses for

source and destination should be selected. The overhead of using FLIP instead of IPv6

is four bytes: two bytes for the meta-header, one extra flow id byte (FLIP’s flow id

is 4 bytes long while IPv6’s is only 3) and the size specification of the address. This
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additional overhead is relatively low: it results in only 10% header size increase.

IPv4 emulation varies a little bit. If we provide “full IPv4 functionality”,

including fragmentation, we would need to choose the same fields as IPv6 plus checksum

and fragment offset. We would use the 4-byte flow field as IPv4’s id. This would waste

2 bytes. IPv4 options can be included as FLIP user defined fields. The overhead of

using FLIP to emulate a header like this would be 4 bytes: three meta-header bytes,

two extra bytes in the flow field, a smaller priority (ToS) field and no header length

field. When providing “typical IPv4 functionality”, there is no need for fragmentation

or flow id; the version field can also be omitted. This results in a header of 17 bytes for

the typical case of IPv4 functionality.

In homogeneous environments (e.g., where all devices are capable of speaking

IP), FLIP’s flexibility is dispensable, and thus even a small increase in overhead may

be unwarranted. However the main point in comparing FLIP’s and IP’s functionality

is to show that FLIP can be used by very simple devices with minimum overhead, and,

at the same time, provide IP-style functionality when needed with minimum cost.

FLIP’s main drawback, when compared to IP (or any “fixed-header” proto-

col), is associated with the fact that header parsing becomes a more involved task.

Clearly, higher header processing overhead implies that it takes longer to forward pack-

ets. Regarding protocol implementation, communication between layers becomes more

complex since now varying-size data has to be passed between layers. Furthermore,

allowing users to modify protocol header fields raises implementation correctness issues.

Table 2.1 shows a comparison between FLIP and IP (IPv4 and IPv6) in terms

of packet size. Each column is associated to one of the protocols, namely IPv4, IPv6,

and FLIP. The rows list the required functionality. “Destination and Source” uses 4-byte

addresses for the the destination and the source only, while “Destination” includes only

a 2-byte destination address. The cells show the packet size. The number in parenthesis

is the size of the header compared to the payload (given as a percentage). We consider

3 payload sizes: 0- (or header only), 1-, and 1000 bytes. For instance, in the case of

the 1-byte payload, IPv4 uses a 20-byte header. Thus the header to payload ratio is

(200/1) = 2, 000%.

As previously pointed out, the purpose of this table is to showcase FLIP’s
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Table 2.2: GTP - TCP/UDP comparison in terms of packet size (in number of bytes)

Data size TCP/UDP GTP

Setup Packet 0 40 (20 + 20) 34 (17 + 17)

Reliable Packet 50 90 (20 + 20 + 50) 82 (17 + 15 + 50)

Unreliable Packet 50 78 (20 + 8 + 50) 74 (17 + 7 + 50)

flexibility-overhead tradeoff when compared to fixed-header protocols. FLIP can provide

both functionality of “traditional”, more complex internetworking protocols, such as

IPv4 and IPv6, at reasonably low cost, as well as functionality of a barebone protocol

incurring minimal overhead.

Table 2.2 compares GTP (running atop FLIP) to TCP/UDP (atop IPv4).

The rows represent different types of exchange: connection setup (SYN), reliable and

unreliable data packets. The first column shows the data size, that is, the payload. The

following columns show the packet size for TCP/UDP and for GTP. The number in

parenthesis is the breakdown of header and payload sizes.

The FLIP header size of 17 bytes supports typical IPv4 functionality require-

ments as previously derived. The setup packet includes flags, source and destination

address, sequence number, checksum and window size, resulting in a GTP header size

of 17 bytes. For reliable exchanges, the GTP header includes the ACK field in addition

to source, destination, sequence number, and checksum. Note that, when compared to

the connection setup case, flags and window size (assuming it does not change during

the connection) are not included, resulting in a header size of 15 bytes. The header

for unreliable exchange includes source, destination and checksum. GTP meta-header

requirements are 2 bytes for the setup packet (need to include flags) and 1 byte for the

last 2 cases.

We should reiterate that the goal of FLIP/GTP is not to replace the TCP/IP

network architecture but to extend its scope to interconnect heterogeneous devices

among them and to the existing IP infrastructure. The comparison in Table 2.2 shows

the benefits of using a flexible, customizable protocol suite in heterogeneous network

environments. Essentially, FLIP/GTP is able to provide the same functionality as

TCP(UDP)/IP at lower cost. This is due to FLIP/GTP’s ability to include only the

functionality needed by target applications.
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2.3.2 FLIP-IP Integration

FLIP’s goal is not to replace but rather extend the scope of IP to interconnect

clouds of varying capability devices to the existing IP infrastructure.

FLIP and IP can co-exist and inter-operate using different integration strate-

gies. One way of integrating the two protocols is through simple encapsulation. For

example, in order to interconnect FLIP-capable islands across an IP infrastructure,

FLIP tunnels can be used. Upon leaving a FLIP cloud, FLIP packets are encapsulated

into IP datagrams by a FLIP-IP gateway. When reaching the FLIP-capable network

destination, IP-FLIP gateways restore the original FLIP packets, stripping off the IP

envelope. An alternate mechanism is to tunnel IP traffic through FLIP networks. IP

datagrams could be encapsulated in a header indicating a “IP-in-FLIP” type and an

address.

In fact, we foresee that, even though FLIP-IP encapsulation will likely be more

common, both tunneling mechanisms will be needed in heterogeneous networks and will

be used complementary to one another.

2.4 Sensor Networks

Sensor networks are one of FLIP’s key target application domains. In most

sensor network scenarios, the goal is energy conservation as sensing devices rely on

batteries with relatively short lifetime. Typically, sensor network applications imply

that sensors will be left on the field unattended for extended periods of time and must

conserve energy in order to maximize the whole network’s operational lifetime.

Sensor devices, and implicitly sensor networks, are data driven in the sense

that the whole network cooperates on the task of communicating data from sensors to

end users. In these kinds of scenarios, FLIP optimizes communication among nodes

by only transmitting required information with minimum protocol overhead. For in-

stance, FLIP’s ESP provides application programmers with a considerably lightweight

packet. ESPs can be used in scenarios such as coordination between peers in radio

range or transmission of small data chunks (e.g., readings from temperature, humidity-,

and motion sensors). The inclusion or exclusion of destination and source fields could
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determine the scope of the data as routable or one-hop (such as “running out of bat-

tery” or “hello” messages). FLIP’s different address types allow proposals such as the

address-free architecture [20] to coexist with more traditional addressing schemes.

In order to evaluate how FLIP addresses the needs of sensor network appli-

cations, we selected as a case study the directed diffusion architecture [5]. Directed

diffusion is a communication paradigm for sensor networks which establishes interests

for specific data (e.g., number of cars that flow through busy intersections during rush

hour). Relevant data flows towards nodes that expressed interest in named information.

Routing is done by the application, which aggregates data when possible. Since these

applications are very involved with the network, a transport layer is not used.

Directed diffusion’s original header is 22 bytes long. If IPv4 was used to imple-

ment directed diffusion, it would incur an overhead of 9 bytes, and would have to carry

packet number information in the payload. In the case of IPv6, the overhead would

increase to 29 bytes. Using FLIP, the overhead would be only 2 bytes, corresponding

to FLIP’s meta-header.

2.4.1 Directed Diffusion and FLIP

Directed diffusion [5] is a communication paradigm especially targeted at data-

centric sensor networks. In such environments, nodes collaborate to get the data from

its source(s) across the sensor network to the data sink(s). A sink node sends an interest

for a certain data. This interest will be broadcast to the whole network. As a result,

a gradient will be set up along the path. If a node has relevant information to that

interest, it will send the data along the gradient back to the sink.

Originally, directed diffusion was implemented as a very specialized application-

level protocol. Diffusion implementors’ main goal was to develop a working architecture

for data-driven sensor networks, rather than build a generic network-layer protocol. In

this section, we evaluate the tradeoff between FLIP’s flexibility and efficiency as the

network-layer protocol underlying diffusion.

We implemented “diffusion-over-FLIP” in two ways. In the first approach, we

constructed diffusion’s complete header using FLIP and evaluated the resulting pro-

tocol’s overhead when compared to “plain” diffusion. In other words, we left every
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diffusion field intact and did not perform any sort of optimization. Secondly, we imple-

mented diffusion from scratch assuming FLIP as the underlying protocol. In this case,

we optimized where possible.

2.4.2 Diffusion over FLIP

We use the diffusion packet definition from their 3.0 beta release [40]. Fig-

ure 2.11 shows a sample diffusion packet. We then map each diffusion field to the cor-

responding FLIP field. Most diffusion fields can be directly translated to FLIP header

fields: last hop is mapped to source, next hop to destination, etc. More specialized

diffusion fields are carried in the payload. number of attributes and sender port

are two examples. The resulting FLIP packet is 2 bytes longer than the original diffusion

packet since we have the overhead of the meta-header.

LengthVer Type

Packet Number

Next Hop

Last Hop

32 bits

Random id

# Attributes Sender port

Op Length

Val

Header

Attribute key

Type Payload

Figure 2.11: Diffusion packet for an int attribute

The goal of this exercise is to show that it is relatively simple for an existing

application to adopt FLIP as its underlying network protocol without incurring excessive

overhead.
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2.4.3 Optimizing Diffusion with FLIP

The second approach to evaluating FLIP in the context of diffusion is to address

the following question: how would one re-design diffusion assuming FLIP as the underly-

ing protocol? We consider diffusion’s different packet types: interest, reinforcement,

and data. As expected from a fixed-header protocol, all packet types use the same packet

header. The question then becomes: can one take advantage of FLIP’s flexible headers

to optimize diffusion’s exchanges?

In the case of interest packets, the header only needs to carry source, flow

(packet id), and type fields. This customization reduces interest headers to 11

bytes, including the meta-header overhead. The payload portion of this type of packet

can be reduced to 10 bytes for simple interests. That is, interests that have only one

attribute and that can deduce the type of data from the attribute key. The total

packet size for interests will be 21 bytes, in contrast to 36.

In addition to interest header fields, reinforcements also require a destina-

tion field because they reinforce a specific path. This results in 25-byte packets as we

are using 4-byte addresses.

Data packets flow in the opposite direction to interests. Similarly to reinforcements,

they carry both source and destination fields because they need to leave a trail for

reinforcements. Data and reinforcement packet headers end up being the same. In

their payload, we are able to save one byte used for specifying query on attributes,

making it 9 bytes long for an int attribute type interest. The total packet length will

be 24 bytes. Figure 2.12 shows the resulting optimized diffusion packets. Shaded and

unshaded areas denote header and payload, respectively.

2.4.4 Simulation Results

To evaluate these FLIP-based diffusion variants, we modified the original dif-

fusion code in the ns-2 network simulator [12]. We ran a data gathering experiment

with the diffusion algorithm, a sink sends out an interest and one node responds with

information (data source). In our experiments, we use sensor networks consisting of 300

nodes scattered across a 2000 x 2000 meter area. 802.11 is the underlying MAC proto-

col. The energy values for radio transmission and reception are based on the original
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... Flow Forwarder

Meta−Header Destination

8 bytes

Reinforcement

Opt

ValueAttribute Key

# Attr

Type Flow...

... Flow Forwarder

Figure 2.12: FLIP-optimized diffusion headers

diffusion evaluation values, i.e., 395mW in reception mode and 660mW when transmit-

ting. Nodes remain static in the sensor network and have a 250m transmission range.

To accentuate the difference between diffusion variants we reduce idle energy dissipation

to 0, which suppresses the effects of lower layer (data link and physical) overhead. Node

failures were not considered.

Figure 2.13 shows average node energy over time. Nodes’ starting energy is 1.0

Joules. Data points represent averages over 10 runs with different random topologies.

We use one sink, one source and a requested data rate of 10 packets/second. The graph’s

“step” shape is due to how the diffusion algorithm operates: it resends interests every

5 seconds. Simulations were run for 21 seconds.

As expected, diffusion over FLIP consumes slightly more energy than diffusion

since the packets are 2 bytes longer. However, difference in energy consumption between

the two protocols is relatively small.
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Figure 2.13: Energy levels over time for different diffusion variants.

Optimized diffusion on the other hand yields considerable energy savings when

compared to the other diffusion variants. It consumes less than half the energy for

the same period of time. This means that FLIP-optimized diffusion could double the

lifetime of a sensor network when compared to “plain” diffusion. Table 2.3 summarizes

energy consumption results for the different diffusion variants.

We should point out that, when implementing the original diffusion protocol,

diffusion developers were likely not trying to implement a completely optimized protocol.

Table 2.3: Diffusion variant energy consumption

Energy consumed packet size

Diffusion 0.109 36

Diffusion + flip 0.114 38

Optimized Diffusion 0.050 varies (21 - 25)
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The original diffusion header includes extra functionality that our optimized header

does not provide as it is not required by this diffusion implementation. Of course, if

this functionality is required by future diffusion variants, it can easily be incorporated

by FLIP.

It is also noteworthy the fact that FLIP’s optimization of diffusion which results

in three different types of packets to implement diffusion’s interest, reinforcement, and

data exchanges also showcases FLIP’s ability to accommodate heterogeneity.

2.5 Effects of Flexible Headers

In this section, we demonstrate FLIP’s energy efficiency in the context of an-

other data gathering application for sensor networks. The specific scenario we consider

is temperature running average calculation.

We designed a simple data gathering protocol which works as follows. A re-

questing node sends a query for a certain variable, for example temperature. Each

node then sends back an answer reporting their current temperature measurement.

The requesting node can then perform some calculation over the requested data. This

calculation might be something like finding the average over each round of reported

temperature values. This is a simplified example since this average would not take into

account node location. Nodes perform two basic exchanges: the query that originates

at requesting nodes, and the resulting replies. The TTL is decremented at each hop. We

will explain the use of the TTL in Section 2.6. We describe the different packet formats

below.

2.5.1 Header Models

We compare FLIP’s flexible headers with two static header models: minimal

and full headers. Figure 2.14 show the three header models considered.

In FLIP, the query packet header consists of source (2 bytes), TTL (1 byte),

and type (1 byte). The response header includes destination (2 bytes) and type

only. Query and response header sizes (including meta-headers) are 6- and 4 bytes,

respectively. The payload in the two cases is 2- and 4 bytes long. Query packets carry
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the query id; in the case of response packets, the data being reported is also included.

This makes the packets 8 bytes long. Ring nodes, defined below, reset FLIP’s meta-

header bit corresponding to the TTL field.

Minimal static headers are 6 bytes long. They consist of the union of all FLIP

header fields, i.e., source, destination, type, and ttl. The corresponding query

packet is 8 bytes, like in FLIP. But responses are 10 bytes long.

The full header mode includes all fields typically present in “traditional”

network-level protocols: version, source, destination, type, TTL, size, CRC, and

sequence number. The total header size is 15 bytes which makes queries 17- and re-

sponses 19 bytes long.

TypeSourceMeta−Header

32bits

FLIP header
Query Response

32bits

Meta Destination

TTL Type

Query and Response

32bits

SourceDestination

TTL Type

Full static header
Query and Response

SourceDestination

TTL

CRC

Sequence Number

Version

32bits

Size

Type

Minimal static header

Figure 2.14: Header models

In this particular application scenario, since flows in different directions need

to carry different information, FLIP’s flexible headers are able to minimize protocol

overhead, while not limiting protocol functionality. As our simulation results show,

FLIP yields the highest energy efficiency even when compared to the minimal header
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model case.

2.5.2 Simulation Results
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Figure 2.15: Data gathering (temperature averaging) energy consumption

The graph in Figure 2.15 shows how average node energy varies over time for

the temperature averaging application. Similarly to the directed diffusion experiments,

we use a 300-node sensor network spanning a 2000 x 2000 meter area. We also use ns-2’s

802.11 MAC protocol and the same radio energy consumption parameters, i.e., 395mW,

660mW, and 0 for receive, send and idle, respectively. As before, these parameters are

based on the empirical values used in the original evaluation of diffusion [5]. Reported

data points are averages over 10 runs. Initial node energy is 0.2 Joules. The experiment

consists of running the average calculation algorithm once, where a node sends a query

and waits for the responses. There are no delivery guarantees of any kind nor recovery

mechanisms addressing node failures.
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Table 2.4: Total energy consumption for the data gathering application

Energy consumed Query size Response size

FLIP header 0.0493 8 (7) 8

Minimal static header 0.0499 8 10

Full static header 0.0551 17 19

In the initial part of the experiment (between 0 and 2 seconds) average energy

consumption is low since nodes are only sending the query packet away from the re-

quester node. As more and more nodes reply to this packet and forward the responses,

energy consumption increases. After a few seconds the energy levels off as packets arrive

at the requester or are lost due to collisions. The number of readings collected by the

requester were similar for all three header models with an average of 266 readings out

of (maximum) 300.

Table 2.4 summarizes the energy consumption results for the different header

models. The minimal static header model consumed 1.2% more energy than FLIP, while

full headers consumed 11.8% more. Both the minimal header protocol and FLIP provide

exactly the same functionality, which is optimized for the data gathering application.

The full static header model on the other hand includes the usual fields present in

“traditional” network-layer protocols. This extra, but dispensable, functionality results

in almost 12% additional energy consumption when compared to FLIP. For applications

that need some or all the functionality provided by a full header model, FLIP could easily

add the required fields.

One can argue that it is possible to use a different static header for each

protocol exchange. To this end, the protocol still needs a way to differentiate between

the different packet types. For example, nodes can use the packet type field to decide

how to process a packet. However, we claim that if protocol designers are willing to

make packet processing more complex, they will be better off using FLIP, which is fully

customizable. As demonstrated by our results, FLIP’s meta-header provides an efficient

way to define which fields are included in the header.
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2.6 Data Aggregation

Previous sections showed that FLIP’s flexible headers are an effective power-

conservation mechanism. The goal of this section is to showcase FLIP’s flexibility as

a way to incorporate new protocol functions seamlessly. As an example, we modify

the data gathering protocol described in Section 2.5 to include data aggregation. We

demonstrate that FLIP’s ability to incorporate new functionality may lead to a more

(power-)efficient protocol.

We assume applications where information from nodes closer to the requester

is considered more important than information from farther away nodes. An example

application that falls in this category is monitoring a controlled chemical reaction (e.g.,

temperature), where data from sensors close-by to where the reaction is taking place is

more critical than data from sensors farther away. This means that information from

close-by nodes should be received as soon and as accurately as possible. Information

from more distant nodes is not so critical and can be delivered later. The objective then

becomes to optimize energy efficiency while still delivering important data in a timely

fashion.

Our data aggregation mechanism works as follows. The requester node defines

an area it considers important. It does so by setting the TTL of the query packet, which

defines the hop count of the importance area. At every hop, the TTL is decremented

by one. Once it reaches zero, it means the packet left the importance area. After this

point the packet no longer needs the TTL field since it already knows it is far away

from the requester. Figure 2.16 shows a sample scenario. The central (gray) node is

the requester and the dashed circle defines its transmission range. The shaded area is

an approximation of a 2-hop importance area. The black, or ring nodes delimit the

importance area.

Nodes reply as soon as they get a request. Nodes inside the importance area

will forward these replies immediately so they reach the requester as soon as possible.

Nodes outside the importance area will reply and forward other nodes’ replies at their

leisure. In our experiments, outside nodes also reply immediately. However, instead of

forwarding immediately, ring nodes aggregate replies into a single packet which they

forward to the requester when new data is received.
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Ring Node

Requester Node
Importance Area

2−hop

Figure 2.16: Sample ring aggregation scenario

Data aggregation at ring nodes compensates for energy consumption at nodes

within the requester’s importance area. Of course the tradeoff is that information from

farther away nodes is delayed. However, since this information is not considered critical,

the added delay is tolerated. The same aggregation technique can be applied to other

data-driven applications such as hierarchical mapping algorithms which require accurate

information from close-by nodes and are tolerable to less accurate readings from distant

nodes.

In these experiments, we used the same simulation parameter values as de-

scribed in Sections 2.4.1 and 2.5. The radius of the importance area (number of hops

between requester and ring nodes) was set to 4. Periodic messages from ring nodes to

requester are sent every 0.5 seconds.

Figure 2.17 shows the effects of data aggregation when applied to our average

computation protocol. Note that the resulting energy level graphs for data gathering

with and without aggregation exhibit similar shape. However, data aggregation results
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Figure 2.17: Data gathering (temperature averaging) energy consumption with data
aggregation.

in lower power consumption as nodes inside the importance area end up sending fewer

packets when aggregation is used.

Table 2.5 shows total energy consumption with aggregation for the different

header models. FLIP’s energy savings is 1.1% higher than the minimal static header

model and 6.0% higher than full headers. Thus FLIP is able to achieve comparable

energy efficiency to a fully optimized protocol and still offer functionality provided by

full header models. We should also point out that, for all header models, the requester

collected similar number of readings (averaging 284 out of the original 300 readings

transmitted), which measures the data accuracy obtained by aggregation. Figure 2.18

demonstrates the energy savings obtained by aggregating data by comparing the energy

consumption of propagating data with- and without aggregation. Aggregation, in this

experiment, uses FLIP as the underlying protocol.

We used aggregation as an example functionality that can be incorporated into
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Table 2.5: Total energy consumption for data gathering application with aggregation
for different header models.

Energy consumption Energy
no aggregation aggregation savings

FLIP header 0.0493 0.0336 31.8%

Small Static header 0.0499 0.0346 30.7%

Full Static header 0.0551 0.0409 25.8%

an existing protocol and showed that it has considerable impact on energy conservation.

This aggregation example also demonstrates how FLIP allows higher-layer protocols to

add and remove functionality as needed. In the case of the ring aggregation example,

when TTL field was no longer needed, it was removed, decreasing the header overhead.

Protocol designers have to make choices. If they choose to optimize the pro-

tocol in excess, they might make it very hard (if no impossible) to add future enhance-

ments/functionality as the protocol evolves. On the other hand, if they try to provide

complete functionality (as in the full static header), they will undoubtedly incur unnec-

essary overhead in most or all cases. FLIP permits a balance between the functionality

provided by full header models and optimized overhead achieved by minimal headers.

2.7 Related Work

Communication protocols for wireless networks have been an active area or

research and include efforts such as Packet Radio [43], GloMo [6] and the IETF’s Mobile

Ad-hoc Networks (manet) working group [16]. In the early 90’s, several efforts focused

on the concept of “ubiquitous computing” [47]. Some examples include a number of

projects at Xerox PARC [48] and the Daedalus/BARWAN project [7] at UC Berkeley.

More recently, some research has turned to embedded systems and sensor networks.

To our knowledge, FLIP is the only initiative to develop a protocol to interconnect

heterogeneous devices. Almeroth et al. [25] introduced the main concepts behind FLIP.

AT&T Laboratories Cambridge (former Olivetti Research Labs) has lead sev-

eral related initiatives including: Piconet [8] and its low-range radio network, an infra-

red (IR) network [14] connecting active badges and IR-base sensors. Their efforts to
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Figure 2.18: Effect of data aggregation on energy consumption

develop a low-power protocol stack [10] focuses on optimizing the MAC layer for low-

bandwidth, low-power systems. They have also developed services atop these networks,

including the Active Badge location system [46], and the Active Floor [3].

In the Scalable Coordination Architectures for Deeply Distributed Systems

(SCADDS) project [40], nodes loose their individuality and the focus lies in the data

generated by the whole system. In this context, the directed diffusion [5] architecture

was developed to convey data from information sources (e.g., sensors) to information

sinks. Directed diffusion uses its own protocol which is specially tailored to its needs.

In Section 2.4.1, we use FLIP to implement diffusion and demonstrate FLIP’s energy

efficiency when compared with an existing diffusion implementation.

The Dynamic Sensor Networks (DSN) project [41] is also designing and imple-

menting a protocol specially tailored for their sensor network application. DSN aims to

take advantage of GPS in sensor networks and therefore their MAC-layer protocol uses
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a GPS-based TDMA while their network-layer protocol uses GPS for spatial addressing

and routing. The WINS project, Wireless Integrated Network Sensors [11], describes a

basic sensor network environment and presents a solution based on layered processing.

Research such as the Address Free Architecture [20] is related to FLIP as it

proposes new approaches to providing network-layer functionality, in this case address-

ing. They describe an architecture where nodes select probabilistically unique addresses

in order to uniquely identify data flows at any point in time.

There is also the BlueTooth [1] consortium effort whose primary goal is to

develop low-cost, low-power radios with link ranges on the order of a few meters. The

goal is to implement this technology into cheap chips to be plugged into computers,

printers, mobile phones, etc.

There has also been work on header compression. The recently proposed Uni-

fied Header Compression Framework [22] aims at creating a standard way in which

protocols in general can define header compression. Previous work [29][30] targeted

specific protocols such as TCP/IP. Unlike FLIP, current header compression schemes

require persistent data exchange between endpoints. A full-header packet establishes

state and then subsequent packets can be compressed. Another limitation of current

compression schemes is that they are intended for mostly point-to-point communication.

2.8 Conclusions

This chapter described the design and implementation of FLIP, a network pro-

tocol whose goal is to accommodate varying capability devices. FLIP uses customizable

headers to satisfy, with minimal overhead, the requirements of a wide-range of appli-

cations and devices. We implemented FLIP under Linux and used the BSD socket

abstraction to make FLIP available to application programmers.

We evaluated FLIP in a number of scenarios. First we compared FLIP’s over-

head and functionality against (IPv4 and IPv6). We showed that when providing IP

functionality, FLIP incurs relatively small overhead (1 and 3 bytes respectively), yet

provides close to minimal overhead in scenarios that require less functions than what IP

provides (specially when carrying small payloads). We presented the Generic Transport

Protocol, or GTP, a flexible transport layer protocol that runs atop FLIP. We com-
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pared GTP to TCP/UDP and showed that it yields increased efficiency when providing

transport level functionality for different application needs. GTP’s efficiency is a direct

consequence of its ability to provide only the functions needed by target applications.

We also evaluated FLIP in the context of sensor network environments. In

particular, we used FLIP to implement the directed diffusion communication paradigm.

In the first set of experiments, we performed direct translation between diffusion and

FLIP header fields. We observe a slight increase in the resulting protocol’s overhead due

to FLIP’s meta-headers. We argue, however, that even though using FLIP is slightly

more energy consuming, it would pay off if there is the need to interconnect different

types of devices with different capabilities. We then re-designed diffusion assuming

FLIP as the underlying network protocol. Using FLIP’s flexible headers, we were able to

provide just the required functionality incurring minimal protocol overhead. Simulation

results show that optimized diffusion can be 50% more energy efficient than original

diffusion.

Data gathering applications in sensor networks were the other scenario we used

to evaluate FLIP. We designed a simple protocol to perform running average calcula-

tion and compared the efficiency of FLIP’s flexible header against static headers. We

used two static header models: full headers include most fields present in “traditional”

network-layer protocols, while minimal headers, which are optimized for the target ap-

plication, only carry required fields. We showed that FLIP is more energy efficient than

both header models. It outperforms optimized static headers by a small margin and

still has the additional advantage of being able to accommodate other devices if needed.

FLIP is able to match the functionality of the full header model and yet yields 12%

higher energy efficiency.

As networks become more heterogeneous, FLIP’s flexibility allows devices of

widely varying power, communications, and processing capability to be networked to-

gether. We also showed FLIP’s ability to evolve seamlessly and include new protocol

functionality as needed. We demonstrated that FLIP’s ability to incorporate new func-

tionality may lead to a more (power-)efficient protocol. To this end, we enhanced the

running average calculation protocol by adding data aggregation. When compared to

the original version of the average calculation protocol, data aggregation reduced the
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system’s overall energy consumption by as much as 30%. The addition of this feature

required the use of the TTL field. TTL (or any other fields) could be easily incorporated

into the FLIP header. Had any of the static header protocols not been implemented

with this feature from the start, they would not have been able to take advantage of

such an enhancement.

This highlights the fact that, good design (including plans for protocol evolu-

tion) is of extreme importance. However, no matter how much protocol designers plan,

they are not able to predict all possible features a protocol should have. One good

example is IP evolution. IP designers predicted that IP’s (IPv4) address space would

likely last for several more decades. Now we know this is not the case and to fix that

limitation, IPv6 was born. Given that the Internet became a complex, intricate com-

munication infrastructure whose uninterrupted operation is critical, deployment and

compatibility with IPv4 are the big challenges faced by IPv6. Flexible protocols such as

FLIP enables application-specific optimization leading to maximal protocol efficiency,

and yet allows seamless protocol evolution.

In the following chapters we will use FLIP as the underlying network protocol,

optimizing our exchanges to take advantage of the flexibility it gives us. Future work

on FLIP includes defining a generic routing structure and implementing it for use in

devices like the Motes developed by USC/ISI and UCLA. This will allow the devices

to take advantage of the FLIP packet structure flexibility. Our work on FLIP has had

conference and journal publications [15][34] [35].
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Chapter 3

Data Collection - Optimizing through

aggregation and timing

This chapter explores in-network aggregation as a power-efficient mechanism

for collecting data in wireless sensor networks. In particular, we focus on sensor network

scenarios where a large number of nodes produce data periodically. Such communication

model is typical of monitoring applications, an important application domain sensor

networks target. The main idea behind in-network aggregation is that, rather than

sending individual data items from sensors to sinks, multiple data items are aggregated

as they are forwarded by the sensor network.

Through simulations, we evaluate the performance of different in-network ag-

gregation algorithms, including our own cascading timers, in terms of the trade-offs

between energy efficiency, data accuracy and freshness. Our results show that tim-

ing, i.e., how long a node waits to receive data from its children (downstream nodes

in respect to the information sink) before forwarding data onto the next hop (toward

the sink) plays a crucial role in the performance of aggregation algorithms for appli-

cations that generate data periodically. By carefully selecting when to aggregate and

forward data, cascading timers achieves considerable energy savings while maintaining

data freshness and accuracy. We also study in-network aggregation’s cost-efficiency

using simple mathematical models.

Since wireless sensor networks are prone to transmission errors and losses can

have considerable impact when data aggregation is used, we also propose and evaluate
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a number of techniques for handling packet loss. Simulations show that, when used in

conjunction with aggregation protocols, the proposed techniques can effectively mitigate

the effects of random transmission losses in a power-efficient way.

Our hypothesis is that timing models play a crucial role in the accuracy and

freshness delivered by data aggregation. In this chapter, we study how different tim-

ing schemes affect the performance of in-network aggregation algorithms. Based on

their timing model, we classify existing periodic data aggregation protocols into three

categories, namely: periodic simple, periodic per-hop, and periodic per-hop adjusted.

Periodic simple aggregation works by having each node wait a pre-defined pe-

riod of time (referred to as timeout), aggregate all data items received, and send out a

single packet containing the result. As discussed in Section 3.6 below, the directed diffu-

sion [5] sensor network communication paradigm belongs to this category. Aggregation

mechanisms in the periodic per-hop category have nodes send the aggregated packet as

soon as they hear from all their children. A maximum timeout interval equal to the

data generation period is used in case reports get lost. Finally, periodic per-hop adjusted

uses the same basic principle of periodic per-hop but schedules a node’s timeout based

on its position in the distribution tree (rooted at the information sink and spanning

all reporting- as well as appropriate intermediate nodes). Our own cascading timers

aggregation mechanism falls within this category, and, when compared to other existing

periodic per-hop adjusted algorithms, presents benefits such as not requiring clock syn-

chronization among nodes and minimizing timer scheduling overhead. Cascading timers

schedules a node’s timeout based on the time it takes for a packet to travel a single hop,

or the single hop delay and the number of hops to reach the sink. We also study how

the value selected for the single hop delay impacts the performance of cascading timers.

In summary, contributions include: (1) development of cascading timers aggre-

gation for periodic data generation applications including a detailed analysis of cascading

timers’ dependence on per-hop delay, (2) trade-off analysis of in-network data aggre-

gation using simple analytical models (3) comparative performance study of different

aggregation algorithms using extensive simulations, and (4) development of different loss

recovery mechanisms and study of how they impact performance of data aggregation

under lossy environments.
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For evaluating the performance of the different in-network aggregation mecha-

nisms, energy efficiency, data accuracy and freshness, and communication overhead are

used as performance metrics. We should also point out that, unlike previous evaluation

studies targeting sensor network protocols, a wide range of network scenarios including

different information sink placement strategies are used.

The remainder of this chapter is organized as follows. The next section dis-

cusses related work including existing periodic data aggregation mechanisms. In-network

aggregation with cascading timers is described in Section 3.1. Other aggregation types

are mentioned in Section 3.2. Section 3.3 investigates in-network aggregation’s cost-

efficiency using simple mathematical models. Section 3.4 describes the simulation ex-

periments we conduct to compare the performance of different in-network aggregation al-

gorithms, including the experimental setup used, results obtained, as well as the impact

of the per-hop delay on the performance of cascading timers. Techniques for handling

packet losses and their performance are introduced in Section 3.5. Section 3.6 discusses

related work. Finally, Section 3.7 presents our concluding remarks and directions for

future work.

3.1 Cascading Timers Aggregation

As previously discussed, our cascading timers[36] aggregation algorithm targets

periodic data generation applications in which nodes produce data at regular periods.

A given node aggregates data received from its children into a single data item, which is

then forwarded upstream towards the information sink1. Application scenarios that fit

well within this communication model include monitoring of continuous environmental

conditions like temperature, humidity, seismic activity, etc. While we focus on the

single information sink scenario, the proposed technique can be applied to multi-sink

scenarios.

Some of cascading timers’ design goals include:

• Simplicity: given that sensor network nodes are typically anemic devices regarding

energy, processing, storage, and communication capabilities, designing simple aggrega-

1As explained in more detail below, data is aggregated over a tree rooted at the information sink
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tion algorithms is key.

• Efficiency: generate close to minimal control overhead. Again, this is a critical

requirement in the resource-constrained environments our algorithms target.

• No clock synchronization: cascading timers does not require clock synchronization

among nodes. No matter how efficient clock synchronization mechanisms become, they

will require additional message exchange among nodes and thus incur additional energy

consumption. Efficient synchronization algorithms [21] have emerged recently and might

allow other tradeoffs.

• Routing protocol independence: no specific underlying routing protocol is assumed.

Similar to most periodic aggregation mechanisms, cascading timers starts by

having the sink broadcast the initial request to all nodes. This initial request triggers

a simple tree establishment protocol which sets up reverse paths from all nodes back

to the sink or root of the tree. Upon receiving the request message, nodes send a reply

back to their parent in the tree. Each node can then deduce how many children it

has. Nodes assume a broadcast medium and forward data using one-hop broadcasts.

In order to avoid collisions, transmissions are scheduled using a small staggering delay.

The setting of the staggering interval will be discussed in detail in Section 3.4.3.

Note that tree establishment is essentially the overhead incurred by cascading

timers and most other in-network aggregation mechanisms. Even if no aggregation is

employed, a distribution tree is typically used to collect data from information sources

to sinks.

In cascading timers, instead of having nodes schedule randomly their timeout,

i.e., the time interval they wait to receive data from their children before forwarding

the next data aggregate, a node’s timeout is set based on the node’s position in the

data distribution tree. Thus, a node’s timeout will happen right before its parent’s.

This causes the so-called “cascading” effect: data originating at the leaves is clocked

out first, reaching nodes in the next tree level in time to be aggregated with data from

other leaf nodes and locally generated data, and so on. The net effect is that a “data

wave” reaches the sink in one period. This is the main reason behind cascading timers’
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ability to achieve power efficiency and yet deliver fresh data at sink nodes.

Timeout scheduling is part of the distribution tree setup protocol and is trig-

gered by the initial request from the sink. The sink’s request contains a “hop count”

field which gets incremented as the request travels toward the leaf nodes. Using this hop

count information, nodes can estimate their distance, in time, to the sink and schedule

their timeout to produce the cascading effect.

Figure 3.1: Cascading timers timeout calculation

Figure 3.1 shows graphically timeout calculation in cascading timers, where t

is the data generation period, h is a node’s distance to the sink in number of hops, and

shd, the single hop distance, is the delay to traverse one hop. Once the request packet

is received, a node schedules its timeout to happen after 2e. Subsequent timers will

continue to be scheduled every t interval.

Note that a node’s timeout depends on the single hop distance, or shd. We

investigate this dependence in detail in Section 3.4.3 and show how it affects the per-

formance of the algorithm. As previously pointed out, cascading timers’ timing scheme

is parallel to the ones employed by both TAG and Covergecasting. According to our

taxonomy, all three mechanisms are classified in the periodic per-hop adjusted category.

In our simulations, we compare the different aggregation techniques. Our cascading

timers and TAG represent periodic per-hop adjusted algorithms.

Our implementation of TAG tries to follow their algorithm as closely as possi-
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ble. The data generation period is equivalent to TAG’s epoch. We divide the generation

period by an estimate the number of hops. To avoid collisions, nodes transmit at a ran-

dom uniformly distributed time within the slot corresponding to their height on the

aggregation tree.

3.2 Other Periodic Aggregation Mechanisms

Below we describe in detail the other classes of aggregation algorithms we use

in our comparative study. As baseline, we employ no in-network aggregation when

sending data from information sources to the sink. As previously pointed out, even in

the no-aggregation case, we employ a distribution tree rooted at the information sink

and spanning all (relevant) data sources. As packets flow from the leaves to the root,

nodes simply forward them along the tree.

3.2.1 Periodic Simple

Nodes in periodic simple aggregation wait a pre-defined amount of time, aggre-

gate all the data received in that period, and send out a single packet. The aggregation

period is equal to the data generation period, which, for most our simulation experi-

ments, is set to 1 second.

This class of aggregation protocols represents the basic mechanism used by

Directed Diffusion [5] considering that all nodes have relevant data to send. Based on

feedback (or reinforcements) from the sink, every node uses a specific gradient which

determines the rate at which data is sent to the sink. Note that nodes are not necessarily

synchronized when “clocking out” data.

3.2.2 Periodic Per-Hop

According to per-hop simple aggregation, once all data items are received from

a node’s children in the distribution tree, an aggregated packet is produced and sent

onto the next hop. Each node uses a timeout for sending out packets in case their

children’s response is lost. The timeout is equal to the data generation period since

once that time is up, we will be expecting and producing new readings.
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3.3 Tradeoff Analysis

In this section, we study the performance tradeoffs raised by in-network ag-

gregation. Using simple mathematical models, we conduct a cost-efficiency analysis of

data aggregation.

3.3.1 Energy Efficiency

Recall that data aggregation’s main goal is to achieve energy efficiency. It

does so by reducing the number of packets transmitted. Ideally, when aggregation is

employed, only a single packet is sent by each node per data collection period, or round.

Thus the number of packets sent per round, or AggPkt/Round, is given by Equation

3.1.

AggPkt/Round = n (3.1)

NoAggPkt/Round =
∑

i∈N

di (3.2)

=

Max(d)
∑

d=1

d ∗ Nd (3.3)

Without aggregation, each node will send a packet that will be forwarded to

the sink. Each hop traversed by a packet counts as one packet being sent, hence, the

cost of getting a reading from a node equals its height on the data distribution tree.

The number of packets sent, or NoAggPkt/Round is thus given by Equation 3.2, where

di is the depth of node i and N is the set of participating nodes. Alternatively, we can

compute the number of packets transmitted per round as a function of the number of

nodes at every tree level. This is described by Equation 3.3, where d is the number of

tree levels and Nd is the number of nodes at depth d.

Clearly, in an average scenario, no-aggregation will send more packets per

round. No-aggregation’s best case scenario is when the data distribution tree has max-

imum depth (Max(d)) equal to 1. The number of packets sent per round without

aggregation is equal to n (Equation 3.2). This confirms that in “shallow” distribution

trees, the benefits of aggregation are not as significant. But it never performs worse

than no-aggregation.
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On the other hand, in deep trees, aggregation has significant impact in reducing

the number of packets transmitted. The worst case scenario for no-aggregation is a “line”

topology, a tree where every node has only one child. In the case of a line topology with

depth n, the summation in Equation 3.3 results in (n)(n+1)
2 packets per round.

Essentially, these are the lower and upper bounds for the number of packets

sent when no-aggregation is used. As demonstrated in Section 3.4.2, all the aggregation

algorithms studied are able to achieve ideal energy efficiency by sending only one packet

per node per round. The difference in performance between them lies in the data

accuracy and freshness they achieve.

We assume that an aggregated packet will have the same size as a non-

aggregated one. This is the case of operations like computing averages, selecting the

maximum or minimum value, etc. This implies that, as packets flow toward the sink,

they will not grow in size. Hence, our energy efficiency metric computes number of

packets-, rather than number of bytes sent.

On the other extreme, if aggregation by concatenation is employed, i.e., data

items are concatenated as they traverse the sensor network, there will still be savings on

the number of packets transmitted, but the number of bytes sent will not be reduced.

Nevertheless, aggregation will still be advantageous in terms of medium acquisition and

scheduling. Cascading timers will also yield improved data freshness due to its low

delay.

3.3.2 Complexity

Note that tree establishment is essentially the overhead incurred by cascading

timers and most other in-network aggregation mechanisms. Even if no aggregation

is employed, a distribution tree is typically used to propagate data from information

sources to sinks.

In terms of communication complexity, tree establishment costs n packets as

each node disseminates the original query that triggers formation of the tree. If the

protocol also generates a reply from every child, there will be additional n − 1 packets

since every node, except the root, will be a child. Tree establishment’s total cost is then

2n − 1 packets.
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Nodes reply back to their parents when they receive the original query so that

each node knows how many children it has. This information is used to optimize the

algorithms considered by allowing a node to know when it has received the readings

from all its children. If this optimization is not performed, tree establishment cost is

reduced to n packets, which is equal to the cost of tree formation for no-aggregation.

Note that nodes can still find out how many children they have as the algorithm runs.

In both cases, the algorithm is able to handle new nodes joining the tree as well as

existing nodes leaving/failing.

In order to adapt to topology changes, tree re-establishment is performed,

which will cost n (or 2n − 1 if nodes reply back to their parents) packets. Of course,

localized tree re-establishments can be performed so as to reduce overhead.

All algorithms we present here (including no aggregation) incur these tree

formation costs. Hence, under the conditions used in the experiments reported in Sec-

tion 3.4, the extra cost of using in-network aggregation over no-aggregation could be

n− 1 additional control packets if we want nodes to know how many children they have

right from the start of the algorithm.

In terms of storage complexity, depending on the aggregation operator used,

readings from a node’s children may need to be stored locally. In our example appli-

cation, aggregated data can be stored as a single data item which will be sent by the

node on timer expiration or when all its children’s readings are received. This requires

at most one data item size storage unit. In the case of aggregation by concatenation, a

node needs as many data item size storage units as the number of children it has. For

instance, a scenario with a single 64-bit data value plus 64-bit for control information,

assuming an average number of children of 32, would require a total of 512-byte storage.

The computational complexity is also trivial for most cases where simple aggregators

(e.g., calculating the minimum, maximum, average, sum, etc.) are employed.

3.4 Simulations

For our comparative study of the different in-network aggregation algorithms,

we ran extensive simulations using the ns-2 network simulator [44].
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3.4.1 Experimental Setup

In the experiments we conducted, 100 nodes were randomly placed in a 500 ∗

500m2 area. Nodes’ transmission range and data rate are set to 100 meters and 115

Kbps, respectively. 802.11b’s broadcast mode is used as the MAC-layer protocol and

FLIP [35] as the network protocol so we can take advantage of its optimized headers.

Based on values used by commercially available radios, we set transmission and reception

power levels to 24.75 and 13.5 milliwatts, respectively. Idle power consumption was set

to 0.675 milliwatts to reflect an optimized MAC layer, i.e., MAC protocols that switch

to low-power radio mode whenever possible.

In order to avoid collisions, nodes stagger their transmissions using a small ran-

dom interval. This is important when performing data collection over a tree, especially

when nodes try to send at scheduled intervals based on their depth in the tree. The

maximum staggering value used was 0.03 seconds. Nodes pick a uniformly distributed

random timer between 0 and this value before sending. In Section 3.4.3, we discuss the

setting of the staggering interval in more detail.

Nodes are stationary and no transmission errors were simulated for the first

set of results. However, packets can still be lost due to collisions. Mechanisms to

handle packet loss and their performance are reported in Section 3.5 below. Simulations

were run for 20 seconds with data being generated every second (round). Although

establishing the distribution tree can be initiated by the data request from the sink, in

our simulations the tree was formed at time 1 second and data collection was triggered

by the sink at time 3 seconds. We present steady state results, that is, measurements

taken during the second half of the simulation (during the last 10 seconds).

Data points were obtained by averaging over twenty different runs using dif-

ferent seeds to perform random node placement. As will be evident in our results,

information sink placement can greatly affect the performance of tree-based aggrega-

tion algorithms. For this reason, we ran experiments using three different sink placement

strategies: corner, center, and random placement. Placing the sink in corners means

that the resulting collection trees will be deeper. Center placement minimizes tree

height.

Performance metrics we use include energy consumed, data accuracy,
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data freshness, and overhead. While energy consumed measures the algorithm’s

energy efficiency, data accuracy and freshness account for its effectiveness in terms of

conveying as much information as possible to the sink in a timely manner.

In these experiments, we do not model the actual values being sensed by the

nodes, how fast they are changing or in what manner. Therefore, accuracy is measured

as the ratio of total number of readings received at the sink to the total number of read-

ings generated. We assume lossless aggregation, that is, no data is discarded. Examples

include computing the minimum, maximum, as well as counting. In these scenarios,

total accuracy is achieved when the sink can “calculate” an answer that involves one

reading from every node per round.

Freshness is computed as the difference between the round a data item is gen-

erated and the round it is received at the sink. Overhead measures the communication

complexity of the in-network aggregation algorithms.

3.4.2 Results
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Figure 3.2: Data accuracy and freshness

Figure 3.2 shows the freshness and accuracy of the aggregation algorithms.

Periodic simple is labeled as “Simple”, periodic per-hop as “Per-hop”, TAG refers to

our implementation of TAG’s aggregation mechanism, and “Cascade” represents our

cascading timers. The sink placements evaluated were corner, random and center. The

total number of readings collected (bar height) depicts accuracy and the bar divisions
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(shades), freshness. For comparison purposes, as baseline we use the no-aggregation

strategy (labeled as “None”).

In terms of data accuracy, we observe that there is not a big difference in

performance when comparing the different aggregation mechanisms. No aggregation and

TAG exhibit a high percentage of fresh data. Cascading timers practically eliminates

old data. Periodic simple exhibits the largest range of data ages; this is because nodes

simply send data periodically, thus it can take up to D periods for the readings to arrive

in the worst case, where D is the diameter of the network.

Our implementation of TAG is a simple one. We do not calculate the maximum

number of hops at runtime and so in some paths the real hop count is higher than

our estimation of the network diameter. This leads to TAG having some 1 round old

readings. For more accurate calculation we would have required extra message exchanges

which we chose not to implement for this experiment.

Even though most data aggregation studies often do not account for sink place-

ment, we observe from Figure 3.2 that sink placement has an impact on data freshness.

Even for the no-aggregation case, where packets are forwarded immediately after they

are received, placing the sink in the center yields fresher data.
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Figure 3.3: Number of data packets transmitted per round

From Table 3.1, which shows the energy consumed by the different algorithms,

we observe that, for our experimental setup, energy consumption can be reduced to a

57



None Simple Per-Hop TAG Cascade

Corner sink 0.1418 0.0485 0.0483 0.0467 0.0421

Random sink 0.1302 0.0486 0.0484 0.0464 0.0419

Center sink 0.1134 0.0487 0.0487 0.0454 0.0404

Table 3.1: Energy consumed by the different in-network aggregation algorithms

third when data aggregation is used. Note that all aggregation schemes exhibit similar

energy efficiency. These values will be affected by the choices of radio and MAC layers.

As an another way to compare the performance of the aggregation algorithms

with respect to freshness, we introduce a metric that accounts for a data item’s age. We

call this metric weighted accuracy. The motivation behind measuring weighed accuracy

lies in the fact that while some applications are interested in historical data, others may

only want the most up-to-date information. This is the case of real-time monitoring,

where information sinks are only interested in the latest data sensed. For the latter type

of applications, aggregation algorithms should not delay data delivery beyond a certain

threshold.

To compute weighted accuracy, readings received in the same period they were

produced have a weight of 1. Older readings are assigned an exponentially decaying

weight: the older the reading, the less weight we assign to it. The expression for

weighted accuracy is thus given by:

weighted accuracy =
∑

i∈I

riw
i

Where I is the set of ages of the readings, ri is the number of readings of age i

per period and w is the weight. Readings from the current period have an age of 0 and

therefore a weight of 1.

The graphs in Figure 3.4 show the performance of in-network aggregation

according to the weighted accuracy metric. As expected, no aggregation, TAG and

cascading timers exhibit the best weighted accuracy. Cascading timers has an edge,

specially when weights of old readings are low. Periodic simple and periodic per-hop
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Figure 3.4: Weighted accuracy

perform poorly if old data has low weight. Their performance increases considerably

as we assign higher weight to older information. Under corner sink placement, periodic

simple and periodic per-hop start lower since it takes more periods for the data to arrive.

The opposite is true when the sink is in the center.

The delay of a reading provides an alternate way to measure data freshness.

We measure the average delay ( in seconds ) for a given reading as the time interval

between when the reading is originally produced by a node until the sink processes all

readings generated. Since we are generating results based on all readings we have to

wait until all of them are gathered, hence the delay has to factor this in. Table 3.2

59



None Simple Per-Hop TAG Cascade

Corner sink 0.590 2.843 2.080 0.593 0.367

Random sink 0.565 2.047 1.544 0.418 0.286

Center sink 0.545 1.523 1.247 0.298 0.201

Table 3.2: Average reading delay

presents the average delay per reading for our experiments. Cascading timers performs

the best since this is the very metric it tries to optimize.

Cascading timers exhibits good performance on longer data collection periods

as well. For example, in the case of a 10-second collection period using random sink

placement, cascading timers achieves average delays similar to the ones in table 3.2,

0.28s. N0-aggregation’s delays range around the 5.0 second mark, while TAG has an

average of 4.23s delays. These results are due to the fact that no aggregation just sends

at uniformly distributed times and TAG staggers transmissions as spread out as possible

due to its method of dividing the period into slots. In both of these cases the delay will

increase as the period increases.

In summary, as expected, our results show that in-network data aggregation

can achieve considerable energy savings. Periodic per-hop adjusted aggregation (specifi-

cally our cascading timers algorithm) is able to maintain the same freshness and accuracy

as when no aggregation is used. This is an impressive result considering the constraints

imposed by periodically generated data. Furthermore, while TAG exhibits reasonable

performance for shorter collection periods, cascading timers performs consistently well

across a wide range of collection intervals. We study the behavior of the different ag-

gregation timing models in more detail in Section 3.4.4.

3.4.3 Estimating the Single Hop Delay

As discussed in Section 3.1, periodic per-hop adjusted aggregation algorithms

schedule a node’s timeout, i.e., the time a node is due to “clock out” the current data

aggregate, as a function of the node’s position in the distribution tree. More specifically,

in our cascading timers aggregation, timeout is a function of the single hop delay or shd,

an estimate of the time a packet is expected to take to traverse one hop in the data
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collection network, including processing time. Given shd, we can then estimate the time

it takes for a packet to traverse the path from the source to the sink by multiplying shd

by the number of hops traversed.

In this section, we study how shd impacts the performance of cascading timers.

Note that shd depends on current network conditions such as load, channel quality, etc.

If the network is heavily loaded, packets might take longer to traverse one hop. This may

result in nodes timing out and readings getting lost. The performance of periodic simple

and periodic per-hop aggregation schemes will also be impacted when under heavy load.

Recall that, in order to avoid collisions, we stagger node transmission in

relation to one another using a small random interval. Thus, shd has basically a

deterministic- as well as a non-deterministic component. While propagation- and trans-

mission delay make up shd’s deterministic component, the staggering interval and queu-

ing delay are responsible for shd’s non-determinism. shd can then be computed using

the expression in Equation 3.4,

shd = sd + td + pd + qpd (3.4)

where, sd is the staggering delay of the packet, td and pd correspond to the

transmission and propagation delays respectively and qpd accounts for both queuing

and processing delays.

Cascading timers uses max shd as given by Equation 3.5, which is obtained by

using the maximum possible staggering delay and an upper bound (Up) of the rest of

the components. The maximum sd is chosen by us. The propagation and transmission

delays are a function of the network architecture and the maximum size of the packets.

The processing and queuing in this scenario are almost negligible since as soon as packets

arrive they are aggregated and the processing for this is minimal.

max shd = Max(sd) + Up(qpd + td + pd) (3.5)

Figure 3.5 presents cascading timers’ weighted accuracy for different values of

shd ranging from 0.01 to 0.3. The weight used was 0.5. For good performance we chose

the maximum staggering interval to be 0.05. This is a good enough compromise between
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large enough sd to avoid collisions and small enough to allow the last readings to get

to the sink within the collection interval. Our original experiments used an sd of 0.03.

When studying the values of the shd and the sd later we found the value of 0.05 to be

slightly more optimal for our scenario and density.
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Figure 3.5: Weighted accuracy for different shd values

For shd smaller than the maximum random staggering interval (left-hand por-

tion of the graph), we observe that the algorithm’s performance in terms of accuracy

deteriorates considerably. This is to be expected: data is aggregated and sent even

before children nodes try to send since their stagger timer hasn’t expired. When shd is

slightly higher than the staggering interval, performance is maximized. This is because

child nodes will have enough time to send in their data items to the corresponding

parent.

For large values of shd the algorithm’s weighted accuracy starts to drop. This

is expected since the time it takes for readings from farther nodes to reach the sink

using large shd ends up being longer than the collection period, and hence they are

worth less according to weighted accuracy.

Setting the staggering interval is an important tradeoff. While large staggering

intervals are effective in avoiding collisions, they yield higher delays. As previously
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pointed out, the value of sd also depends on network density. In dense networks larger

staggering intervals are needed to avoid collisions. Another important consideration

is the type of medium access control (MAC) protocol employed. Contention-based

MAC protocols, such as CSMA (which is what we use in our simulations), are prone to

collisions and node transmissions need to be staggered in time. However, other types

of MAC, such as scheduled access protocols, are collision free and thus do not require

staggering of node transmissions, probably at the expense of delay.

We also measured the values of the real shd over the course of our simulations

and observed very small variations. This is expected, since traffic flows over the same

data collection tree and the offered load is essentially constant.

3.4.4 Data Collection Interval

This section discusses the impact of the data collection interval’s length on

the performance of periodic aggregation timing models. Intuitively, the smaller the

collection period, the more critical the timing model used by in-network aggregation.

Periodic simple and periodic per-hop have no timer organization, and send

data randomly during the data collection interval. This basically creates a data path

where readings from nodes will take approximately as many collection intervals as hops

to reach the sink. The longer the collection interval, the longer delays these data paths

will incur.

In the case of no-aggregation, data is sampled at random times within the

interval and then sent. Data reaches the sink as quickly as possible since it is forwarded

with no waiting. Following our cascading timers model, data is transmitted near the

end of the collection period depending on the position in the aggregation tree. This is

independent of the period’s length. All the data arrives with a small delay at the sink

right before the period ends.

We define two different performance metrics associated with the delay a reading

takes to reach the sink. The first definition focuses on how long the reading takes to

reach the sink from the time it is sampled. We call this metric the sample-to-sink delay.

The second metric looks at the time it takes from when a reading is sampled until

all readings are received by the sink (sample-to-all). While the former metric targets
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applications that are mostly interested in the latest readings, the latter is useful when

the application performs some computation which requires all readings.

As previously discussed, according to the sample-to-sink metric, periodic simple

and periodic per-hop aggregation will not perform well. Furthermore, in larger networks,

the extra hops packets take to reach the sink will add to the delay. No-aggregation will

incur the smallest delay possible, having packets hop their way to the sink. Assuming

the staggering delay is uniformly distributed from 0 to sd, packets under no-aggregation

will take on average (sd
2 + C) ∗ hops, where hops is the number of hops data has to

traverse and C accounts for transmission, propagation, and queuing delays.

Cascading timers will exhibit a sample-to-sink performance of almost double

that of no-aggregation since the shd used is based on the maximum, and not the average

staggering delay (sd) like no-aggregation. This means that the delay will be (sd + C) ∗

hops. Double the sample-to-sink delay might seem like a big disadvantage; however,

given that the staggering interval is small compared to the data generation period,

the sample-to-sink difference between no aggregation and cascading timers is relatively

small.

The sample-to-all(StA()) delay provides a metric for the overall freshness of the

data the sink receives. In no aggregation data gets to the sink throughout the generation

period. Thus, the average time a reading will have to sit idle at the sink is period length
2 ,

that is, from when it arrives at the sink, until it is tallied at the period’s end. Cascading

timers, on the other hand, sets nodes to transmit at the end of the period, so the time

the readings have to wait at the sink is always close to 0 (see Figure 3.1).

StA(NoAgg) = n((
sd

2
+ C)D +

pl

2
) (3.6)

StA(Cascading) = n((sd + C)D) (3.7)

Equation 3.6 and 3.7 give us the average sample-to-all delay over all nodes (n)

for no-aggregation and cascading timers respectively. D represents the average node

depth and pl denotes the period length. As shown in Equation 3.8, for cascading timers

to have a lower overall sample-to-all delay than no-aggregation the period length (pl)
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has to be larger than the maximum staggering delay (sd) times the average node depth

(D).

StA(NoAgg) > StA(Cascading) (3.8)

n((
sd

2
+ C)D +

pl

2
) > n((sd + C)D)

(
sd

2
)D +

pl

2
> (sd)D

pl > (sd)D

In the worst case scenario, i.e. a line topology, the average node depth will be

n
2 . For any large sample period, pl will be larger that sd∗n

2 . Using our simulation param-

eters, 100 nodes and a 0.03 sd, StA(Cascading) would be smaller than StA(NoAgg)

for any period length greater than 1.5 seconds. Again we note that this is the worst

case scenario. Using no aggregation under that scenario will probably incur collision

problems due to the amount of traffic at the nodes close to the sink.

For the other topology extreme, i.e. a single hop tree with an average depth

of 1, it is easy to see that cascading timers will have lower delays for all values of the

period length (greater than the maximum staggering delay). The main drawback would

be that, if there are many nodes, the traffic at the end of the period may cause too

many collisions. This could be potentially solved by increasing the staggering delay.

If the staggering delay is increased to match the period length then StA(NoAgg) =

StA(Cascading).

3.5 Packet Losses

As previously discussed, timing models are critical for the performance of in-

network aggregation. Indeed, efficient aggregation may result in packets carrying several

readings. Packet losses can, thus, considerably degrade the accuracy and timeliness of

data aggregation. In this section, we study the effect of packet losses when collecting

and aggregating periodic data. We also propose three different mechanisms to handle

loss and evaluate their performance.

Since we target applications that generate data periodically, we avoid recovery
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mechanisms that introduce delay. If data recovery and retransmission take too long,

nodes would already be producing the readings for the following round, error recovery

would interfere with the propagation of new data. Take for example a traditional error

recovery scheme where negative acknowledgments (NACKs) are used. Under the pro-

posed aggregation protocols, every node knows how many children it has. Therefore,

if the node times out waiting to hear from some of its children, it could then send a

NACK to request them to retransmit their data for the current round. However, this

would interfere with the next round of data. Since target application scenarios don’t

require perfect data delivery, we are willing to sacrifice accuracy in favor of freshness.

We use a proactive approach to error recovery along the lines of error correcting

schemes such as Forward Error Correction (FEC) [32]. Since the typical data items

produced in the target application scenarios are generally small (a few bytes), we decided

to use a very simple form of error correction mechanism, namely send a packet multiple

times. In future work, we plan to investigate other, more sophisticated error correcting

codes that can pay off in the case of more complex data.

3.5.1 Handling Losses

Our loss model is simple: drops are independent and the loss probability p is

fixed for all links and is kept constant throughout the simulation. A packet is successfully

transmitted with probability (1 − p). While this is a simple scheme, it can be used to

get a general picture. We will look at spatial and temporal correlated losses in future

work.

As mentioned earlier, we deal with losses by pro-actively sending data multiple

times. This strategy of course creates a tradeoff between consuming energy to send

redundant packets and increasing the probability of delivery. Redundant transmission

mechanism might not be suitable for all scenarios; in particular, when data is generated

sporadically (rather than periodically) normal error recovery using acknowledgements

and retransmissions will likely be more cost-effective.

We use three different redundant transmission schemes, namely double-send,

max-send, and adaptive-send. While double-send, as its name implies, sends every packet

twice, max-send sends every packet as many times as readings are aggregated in the

66



packet. This requires the protocol to include an “aggregation counter” in the data

packet. The reasoning behind this strategy is that packets carrying more readings

are more valuable and we therefore want to increase their chances of getting through.

Adaptive-send is a more complex algorithm, whose goal is to achieve certain delivery

guarantees (expressed by number of acceptable losses) for a given loss rate. Equation 3.9

describes the relationship between the number of acceptable losses l and the drop prob-

ability p, where a and t are the number of aggregated readings in a packet and the

number of transmissions, respectively. The number of transmissions to achieve l under

loss probability p is then given by Equation 3.10.

l = a · pt (3.9)

t = logp

(

l

a

)

(3.10)

Note that, since we aim for hop-by-hop guarantees, these equations apply to

a single link. In other words, if l = 0.05, adaptive send will perform the necessary

number of retransmissions to guarantee a 95% delivery guarantee over a particular link

given that link’s loss rate. The overall network’s delivery guarantee may be slightly

different (higher or lower) depending on the interdependencies between the aggregates

in the packets as they flow towards the sink. As our simulation results show, the overall

reliability achieved by adaptive-send (shown in Figure 3.6 as data accuracy) is typically

very close to 1 − l.

In a real network, the loss probability can be either known a priori (from

previous experience operating the network) or estimated over time. Underestimating

the loss rate yields delivery rates lower than required; conversely, loss rate overestimation

results in more redundant packets.

3.5.2 Results

We repeated the simulation experiments described in Section 3.4 to study the

performance of the three proposed loss handling strategies when employed by cascading

timers aggregation. Loss probabilities range from 0.05 to 0.5 in steps of 0.05. We kept
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Figure 3.6: Data accuracy under loss

all other parameters the same. In the case of adaptive-send, the acceptable loss rate was

set to 0.05 (which implies relatively high delivery guarantees). We present the results

for different sink placement scenarios in Figures 3.6 and 3.7. For comparison purposes,

we plot results for cascading timers aggregation and no aggregation when they employ

no error recovery.

The results obtained for the different algorithms bring out some interesting

points. Figure 3.6 shows data accuracy (percentage of readings received by the sink)
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Figure 3.7: Packets sent under loss

achieved by the different mechanisms under different loss conditions. These results

confirm our expectations: adaptive-send is the best performer with close to perfect

accuracy even under high loss. Max-send delivers more than 50% of the readings,

while double-send starts with a very good delivery but quickly degrades under high loss

conditions.

At low loss rates we notice that double-send performs slightly better than

max-send and adaptive-send. This is attributed to the fact that it sends every packet

twice, including packets with one reading, irrespective of loss rate. Adaptive-send and

max-send send packets with one reading only once. When packets with one reading
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get dropped, they are not recovered. Packets that would have included the dropped

reading will now be transmitted fewer times, decreasing their chance to get to their

next hop, which decreases the next packet and so on. After a certain drop probability ,

adaptive-send starts sending packets with single readings twice. This seems to indicate

that taking good care of packets, even when they only have one reading collected is

important.

It is interesting to note that under the loss model and scenarios used, drops

have similar impact on data collection with and without aggregation. We observe that

the curves for None and cascading timers (without error recovery) look very similar.

Data accuracy decays very quickly in both cases. We plan to study this phenomenon

further using different topologies and network diameters.

To evaluate the overhead incurred by these error recovery schemes, we plot

total number of packets sent in Figure 3.7. Double-send sends approximately 200 packets

per round for all loss rates as it always sends a packet twice. Cascading timers (without

error recovery) also sends a constant number of packets (around 100 in this case) since

it does not adjust its behavior for different loss conditions. At the higher error levels

we notice that 100 packets are not sent per round. This is due to the fact that because

of packet drops, at tree construction time some nodes don’t become part of the tree.

It is somehow expected that none and max-send would exhibit similar behavior

since max-send should transmit approximately the same number of packets as none.

However, this is not the case: for none, the loss of packet means that nodes in the

path to the sink will now transmit one less packet. In max-send, if all the transmissions

of a packet are lost, subsequent packets will be transmitted fewer times since they

will have less readings. The decline of max-send is slower than none because all of

the transmissions of a packet have to be lost for subsequent nodes to transmit less.

Adaptive-send increases the number of packets sent as loss probability increases since

the number of transmissions is a function of the number of aggregated values and the

drop rate.

In some scenarios, rather than maximizing data accuracy, it may be more

attractive to strike a balance between number of packets sent (or energy consumed)
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Figure 3.8: Packets sent per reading collected: randomly-placed sink

and accuracy. Figure 3.8 plots the number of packets sent per reading collected. The

optimal case of course is one packet sent per reading. Cascading timers lets us achieve

that goal when there are no losses. Adaptive-send, which is implemented atop cascading

timers, yields good performance under all conditions due to its adaptive nature.

A corner sink means routes are longer, none and max-send due to this, specially

at low drop rates. It is also the case that for the longer paths the single reading packets

of none have a greater probability of getting dropped, hence the poor performance in

packets per reading.
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3.6 Related Work

Protocols for sensor networks have sparked considerable interest in the network

research community. In this context, data aggregation rose as a technique for improving

sensor network protocols’ energy efficiency. We briefly describe some previous and on-

going research efforts in order to put our work in perspective.

Directed diffusion [5] has been proposed as a data gathering protocol for sensor

networks. It targets the monitoring of events which are typically sensed only by a few

nodes. An example scenario is tracking animal herds in a given geographic region. Dif-

fusion’s communication paradigm is based on information sinks broadcasting requests,

or interests, for relevant data. Nodes producing relevant information respond and data

paths are formed. Data is aggregated when a node is part of various data paths.

Diffusion’s aggregation is based on a report gradient, which defines how many

reports to send per time unit. Therefore, according to our classification, diffusion falls in

the periodic simple category. Every node can potentially perform aggregation; however,

nodes in the shortest path from information sources to the sinks do most of it. Diffusion

adapts well to node failures by keeping state of the interest throughout the network.

When a path fails the neighboring nodes remember alternate paths. Some of their more

recent work addresses the impact of node density in this type of data collection scenario

[4].

eScan [24] is an energy monitoring scheme that collects energy readings from

every participating node. Their scenario is somewhat similar to the ones we target, i.e.,

every node maintains an energy value that is reported to a collection sink at the edge

of the network. However, rather than generate periodic reports, new data is reported

only when the energy of a node changes beyond a certain threshold. Aggregation is

performed as data flows to the sink by merging reports of similar energy values into

energy range polygons.

The initial eScan work does not handle latency in propagating data; they also

assume a perfect MAC layer and instead of using time they use data generation events

to drive their simulations. Rather than being an alternative to eScan, our aggregation

techniques can be incorporated by eScan to, for example, improve data freshness.

SPIN [45], Sensor Protocols for Information via Negotiation, is a protocol for
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data collection and dissemination. In SPIN, all nodes have pieces of named information

that they want to send to the rest of the nodes. Data transfers are first negotiated

based on the names of items. Only requested items are exchanged. This avoids the cost

of sending the data needlessly but incurs the overhead of engaging in the negotiation

phase. Note that SPIN’s communication model is based on a gossip-style approach.

The resulting protocol is very similar to NNTP [26] for propagation of news over the

Internet. Essentially, it uses point-to-point communication among pairs of nodes to

eventually convey data to all interested participants. SPIN does not really use an explicit

aggregation mechanism; aggregation is performed implicitly during initial negotiation

between two nodes using the meta-data to decide whether actual data will be exchanged.

TAG [39], or Tiny AGreggation, is a sensor network querying system. It em-

ploys a SQL-like syntax and uses aggregation as the query is processed within the

network. When a query involves an epoch, requiring readings to be collected period-

ically, TAG uses the periodic adjusted aggregation approach. It subdivides the epoch

into slots. The length of a slot is given by the epoch length divided by n, the maximum

number of hops separating data generation nodes from the sink. Following periodic

adjusted aggregation operation, slots are assigned to nodes in decreasing order, n, n−1,

n − 2, ... , as the query propagates through the network. Nodes transmit in their slot,

hence, the out-most nodes will transmit first and nodes closest to the sink, last. As

in any time-slotted mechanism, clock synchronization among nodes is required so that

nodes transmit in their designated slots. TAG also takes advantage of time slotting to

switch idle nodes’ radios off.

Convergecasting [42] performs aggregation as it collects data periodically from

all nodes to a single sink. Like TAG, its data aggregation mechanism also falls in the

periodic adjusted category. It assigns aggregation slots as the query percolates the sensor

network, trying to assign nodes to different slots in order to avoid collisions. Once the

algorithm finishes assigning slots, that is, when the query setup reaches the edge of the

network, the order of the slots is inverted to reflect a data collection tree. A similar

concept is used by the work reported in [9].
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3.7 Conclusions and Future Work

This chapter explored in-network aggregation as a power-efficient mechanism

for collecting data in wireless sensor networks. Our focus was on applications where a

large number of nodes produce data periodically which is consumed by fewer sink nodes.

Such communication model is typical of monitoring scenarios, one key application of

sensor networks.

Using simple analytical models, we present a trade-off analysis of in-network

data aggregation. Through simulations, we evaluate the performance of different in-

network aggregation algorithms, including our own cascading timers, and characterize

the tradeoffs between energy efficiency, data accuracy and freshness. Our results show

that timing, i.e., how long a node waits to receive data from its children (downstream

nodes in respect to the information sink) before forwarding data onto the next hop

(toward the sink) plays a crucial role in the performance of aggregation algorithms in

the context of periodic data generation. By carefully selecting when to aggregate and

forward data, we achieved considerable energy savings (as much as 5 times less traffic)

while maintaining data freshness and accuracy.

Finally, in order to perform well under packet loss conditions, we developed

three different proactive error recovery techniques which are suitable to periodic data

generation (as they incur no additional delay). They are essentially based on pro-

actively transmitting packets multiple times. Simulations showed that the proposed

techniques were able to maintain high accuracy even under high loss conditions. Among

the proposed mechanisms, adaptive-send, which adjusts the number of times a packet is

sent based on the number of readings aggregated in the packet and an estimate of the

loss probability, yielded the best performance.

As future work, we plan to use more sophisticated loss models to evaluate our

recovery mechanisms under different loss conditions. We will also develop techniques

to handle node failures. We also plan to investigate aggregation algorithms that target

different scenarios. For example, instead of periodic data generation, explore scenarios

in which data is reported only when it changes significantly. Another direction is to

explore cluster-based aggregation, where clusters are formed based on a set of constraints

and then data is aggregated within clusters.
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Chapter 4

Isoclusters - Grouping by value

In this chapter, we describe a novel aggregation technique that targets spatially-

correlated data. In particular, we address applications that are continuously monitoring

varying conditions of a given geographic region (e.g., temperature, rain fall, radiation,

etc.) and, as a result, generate a “contour map” of the sensed variable.

The proposed algorithm takes advantage of the spatial correlation of data in

these monitoring scenarios, i.e. the fact that nearby nodes often sense similar readings.

Energy efficiency is achieved by, instead of having all nodes send their readings to the

sink, having only a few nodes report. Ideally, only nodes with important information

will report. Our approach defines the important information to be the isolines of a map.

Isolines are basically isopleths (from the Greek iso - same and pleth - value),

a line composed of points of the same value. When these lines are drawn on a map we

get a contour map, like the one shown in Figure 4.1. Areas encompassed by isolines lie

within a certain value range and we call them isoclusters.

Energy efficiency is achieved by, instead of having all nodes send their readings

to the sink, having only a few nodes per isocluster report to the sink. For instance, if we

were to generate a contour temperature map, an isotherm, the temperature ranges would

be defined and then nodes would be grouped into areas that exhibit temperatures within

the defined ranges. To construct an isotherm we do not need to collect data from all

the nodes in the region being monitored; it is sufficient to find the isolines, draw them

on our map and “color in” the corresponding areas. This is how energy efficiency is

attained.
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Figure 4.1: An isograph

Through simulations, we evaluate isoline aggregation and compare it against

no aggregation and our implementation of aggregation using polygons. Polygon aggre-

gation is the general approach used in previous approaches, for example e-Scan [24] and

isobars [23], both of which are discussed in more detail in Section 4.1 below. Our results

show that isoline aggregation can achieve significant energy savings when compared to

no aggregation and polygon aggregation, while yielding high data accuracy.

The remainder of this chapter is structured as follows. We discuss related

work in Section 4.1 and describe isoline aggregation in Section 4.2. Sections 4.3 and

4.4 present our experimental methodology and evaluation results, respectively. In Sec-

tion 4.5, we present our concluding remarks as well as directions for future work.

4.1 Related Work

There are mainly two other approaches that target spatially-correlated data

aggregation for mapping, namely eScan [24] and isobars [23]. eScan focuses on monitor-

ing the sensor network itself, in particular the remaining energy in the nodes. It queries

sensing nodes which, in turn, report their remaining energy. This is done via a data

collection tree established at query propagation time. When the data is being reported
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back to the sink, nodes aggregate the information as it flows. Aggregation is done by

grouping readings that meet a certain criteria. In particular, for a set of readings to be

aggregated, they need to be geographically adjacent and they need to be in the same

value range.

Data is aggregated into polygons of similar value and represented by the cor-

responding polygon’s coordinates. This approach has a few drawbacks. For one, the

aggregation is done as the data flows down the collection tree, which is not always the

most efficient way. For instance, if two nodes close-by are in the same value range but

are in different branches of the tree, their values are not aggregated until they reach

a common ancestor, who may be further up the tree. Also, for a node to aggregate

the coordinates of a polygon it needs to know the exact location of the nodes. Assum-

ing geographic location encoding requires more bytes than node identifiers, propagating

location information results in significant additional overhead.

In contrast, isoline aggregation employs localized aggregation by detecting iso-

lines with neighboring nodes. Hence, aggregating is done “on the spot” rather than

down the collection tree. Location information is only needed at the sink and can be

collected once.

The isobar mapping approach is part of the the advanced aggregation tech-

niques proposed in TAG [23]. Here nodes are part of a grid. A node’s location is based

on its position on the grid. Data is collected by aggregating nodes with similar readings

into polygons. On a heavily populated grid, aggregation yields good results. If the

grid is sparse, or if packets are dropped, or if energy efficiency is favored over accuracy,

bounding boxes are used for defining the polygons. A bounding box is created around

an area to be aggregated. Cuts are then made to the bounding box to approximate

the shape of the polygon. The more cuts, the more data that needs to be reported and

the better the accuracy. Less cuts means decreased accuracy, but less data to be sent,

improving energy efficiency.

Isobar mapping suffers from similar problems as eScan since it also performs

aggregation as the data flows towards the sink. Node location is represented by the cor-

responding grid coordinates minimizing the need to transmit real location information.

More recently, the energy-accuracy tradeoff study by Boulis et al. [2] proposes
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a data collection mechanism where nodes decide whether to share their own readings

based on estimates they get from other nodes. While this works well for operations

like reporting the maximum or minimum value, it does not apply to more complex

applications like mapping.

Approaching the subject from a mathematical angle, Doherty et al. [27] studied

how different mechanisms to collect scattered data perform in dense sensor networks.

The focus of their work is on node selection rather than protocol development.

Both eScan and isobars use polygons to aggregate data of similar value pro-

duced by neighboring nodes. We will compare the performance of isoline aggregation

against (1) no aggregation and (2) polygon aggregation, our implementation of the

aggregation mechanism underlying both eScan and isobars. Even though continuous

monitoring is not specifically addressed by eScan or isobars, in our implementation of

polygon aggregation we employ temporal aggregation so we can conduct a fair perfor-

mance comparison against isolines.

4.2 Isolines

The goal of isoline aggregation is to provide energy-efficient data collection

by reducing redundant transmissions. One challenge is to achieve this goal using only

local information. Another challenge is to maintain high data accuracy. To address

these challenges, isoline aggregation uses the concept of isolines, lines of the same value.

Energy efficiency is achieved by having each node only report to the sink if it detects

an isoline between itself and its neighbors; otherwise, no report is generated.

4.2.1 Neighbor-to-Neighbor Protocol

Isolines are detected based on neighborhood information gathered through a

neighbor-to-neighbor protocol, or NNP. Essentially, NNP broadcasts the local sensed

value. Nodes decide when they need to communicate their sensed information to their

neighbors. This happens when (1) a node is started and (2) when data changes cause

an isoline to appear or disappear. First-time reports allow the network to detect initial

values and the presence of new nodes.
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An NNP packet is a very simple broadcast packet containing a packet type, a

query id, node id and value. The packet type is a common field between all packets and

is just used to determine the packet is of type NNP. The query id is used to differentiate

between multiple queries (i.e. one for temperature, another for soil acidity, another from

a different sink, etc). Node id is just the id of the node sending the NNP. Value just

contains the value sensed by that node. The NNP exchanges are basically overhead,

but are easily outweighed by the savings achieved.

4.2.2 Isoline Detection and Reporting

Isoline detection is a very simple yet elegant method of collecting information

efficiently for contour map generation. It works as follows. First, a node compares its

reading with the reading of neighboring nodes (received through NNP reports). If the

readings lie in different sides of an isoline, then a report needs to be generated. For

example, if the isolines measure multiples of 10, then a node sensing 35 and a neighbor

whose sensed value is 42 are able to detect that there is (at least) one isoline of value

40 passing between them.

Once the existence of an isoline has been determined, it needs to be reported

to the data collection sink. Reporting an isoline consists of sending to the sink the

node’s sensed value and the value of the neighboring node across the isoline. Sending

just the isoline value saves some bytes at the expense of accuracy.

The detection of the isoline is symmetric, i.e., both the node and its neighbor

will detect it. The node who actually reports the isoline is the one closest to the sink

(according to hop count). If both nodes are at the same distance, the node with the

lowest reading will send the message.

Nodes will only report to the sink when there are new isolines nearby. This

could lead to problems since we assume that, on the absence of reports, nothing has

changed. For this situation we also implement probabilistic reporting. Nodes broadcast

their information periodically even when they do not need to do so. This also helps

improving the accuracy of the maps generated and can be fine-tuned appropriately.

An isoline report message contains a packet type, the node id of the sending

node and it’s value as well as the node id and value of the neighbor. If a node detects
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isolines with multiple neighbors it would be possible to include an array of neighbor-

value pairs; our current implementation does not do that.

B (52)

A (56)

C (51)

D (54)

E (48)

F (49)

Node (temp value)

50 isoline

Figure 4.2: A temperature isoline

Nodes that are inside the same isoline are said to belong to the same isocluster.

Figure 4.2 depicts a temperature isoline where temperatures within 10-degree ranges

belong to the same isocluster. Nodes A and C are part of the same isocluster and will

know, upon exchanging sensed values, that an isoline does not exist between them. On

the other hand, nodes B whose value is 52 and E who is measuring a temperature of 48

will detect the 50-degree isoline when they compare values.

There is a clear trade-off between the range of the isolines, which determines

the accuracy of the aggregation algorithm, and energy efficiency. The smaller range

an isoline covers, the more accurate the overall map is. However, denser contour maps

(in terms of number of isolines per area), generate more data and thus are less energy

efficient.

4.2.3 Continuous Monitoring

In applications that are continuously monitoring a specific condition, the sensor

network needs to continuously sample and report the current state to the sink. To

accomplish this task in an energy-efficient manner, isoline aggregation takes advantage

of temporal data correlation and reports only when changes are significant (ie. isolines
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while(1){

get_reading_from_sensor()

if(reading_has_changed_range)

broadcast_reading_to_neighbors()

while_monitor_events

switch(event){

case receive_reading_from_neighbor:

if(reading_ranges_differ())

//determine who sends the readings

//to the sink, me or the neighbor

if(i_am_closer_to_sink ||

(we_are_at_same_distance && my_reading_is_lower))

add_readings_to_report()

//else neighbor will send readings

//else we are in the same range so we don’t report

break;

case period_over:

exit_event_monitoring()

}

if(report_contains_readings){

send_report_to_sink()

reset_report()

}

}

Figure 4.3: Pseudo-code for continuous monitoring main loop

move, appear or disappear).

This capability uses the normal isoline detection mechanism. More specifically,

a node starts by sampling its sensor and using the NNP to communicate its reading to

its neighbors. Based on the information it gets from its neighbors, a node will report

to the sink if an isoline is detected. Nodes will then sample the sensor periodically, but

will broadcast their reading only when they change from one range to another. For

example, if sensors are monitoring ranges of 10s (0-9, 10-19, 20-29, ...) and a node’s

reading goes from 17 to 23, the node sends out a NNP broadcast. This basically means

that an isoline moved, appeared or disappeared, and the node needs to check if it needs

to report.
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Pseudo-code for the continuous monitoring algorithm’s main loop can be seen

in Figure 4.3. NNP is implemented by broadcast reading to neighbors(). This NNP

message contains a node’s reading, the node id and sometimes its distance (hop count)

to the sink. For clarity, the pseudo-code leaves out some error detection features.

Isoline aggregation uses cascading timers [36] to schedule node transmissions

as a function of the node’s position in the data collection tree. The outcome is that

a cascading effect is achieved from the leaf nodes to the data sink; in other words,

the farthest away node schedules its transmission first; the next hop (toward the sink),

schedules its transmission next allowing enough time to receive data from its children,

etc. Not only does this reduce delay, but it fits very well with schemes (e.g. at the MAC

layer) that save energy by turning off the radio when the node is idle.

4.2.4 Dense Deployments

Reported link (cut by isoline)
Isoline

Figure 4.4: Dense isoline reports

Care must be taken when sensor nodes are deployed in a dense manner. Isolines

need to account for such situations so that they avoid excessive redundant reporting.

Figure 4.4 shows an example of a dense scenario. Nodes detect isolines by comparing

their neighbors’ reported values to their own. This is equivalent to checking whether an

isoline “cuts through” a link between neighbors. Figure 4.4 also depicts all links that

are cut by the isoline. In dense deployments, the number of links cut is usually large,
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which leads to high overhead.

Reported link (cut by isoline)
Isoline

Data Forwarding Tree

Figure 4.5: Optimized dense isoline reports

In order to minimize overhead incurred in dense deployments, isoline aggrega-

tion can be optimized by reporting only a subset of the links that are cut. Figure 4.5

shows this optimization. The dotted lines represent the links to be reported, the dashed

lines represent the links that belong to the data collection tree. Basically a link being

cut by an isoline will only be reported if that link is part of the data collection tree.

In other words, nodes will only report isolines that they detect between themselves and

their children or parent according to the collection tree.

We have evaluated this optimization in section 4.4.3, where we report perfor-

mance results comparing no aggregation, and isolines with and without this density

optimization.

4.3 Experimental Methodology

We use simulations to evaluate the performance of isoline aggregation and

compare it against no aggregation and polygon aggregation. The remainder of this

section presents our experimental methodology in detail.
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4.3.1 Other Aggregation Algorithms

Polygon aggregation is used to represent the existing algorithms of eScan and

isobars. Our implementation of is as follows: when a node receives data from its chil-

dren, it aggregates it into polygons and sends only the polygons’ vertices. All nodes

in the polygon are assigned the average value of the polygon’s range; for example, in

the case of a [40-50) temperature range, nodes take the value of 45. Similarly to isobar

aggregation [23], we use the sensors’ grid coordinates as their locations. Reports from

nodes may contain multiple polygons if multiple value ranges have been aggregated.

Polygon aggregation uses the PolyBoolean library [28] for handling polygons and aggre-

gating them. For both polygon- and isoline aggregation, data is grouped in ranges of

10, that is, from [0-10),[10-20), etc.

Similarly to isolines, we use cascading timers [36] as the timing model since it

allows nodes to wait for their children to report without increasing the data collection

delay. This is important because we are doing continuous monitoring and need to deliver

information in a timely fashion.

The original eScan and isobars algorithms did not provide continuous monitor-

ing. For fairness reasons, we incorporate temporal aggregation when extending polygon

aggregation to perform continuous monitoring. For instance, if the temperature of a

node has not changed ranges from the last time this node reported, a report will not

be generated. This implies that leaf nodes will not report if there has been no range

change since the last report. Inner tree nodes will have to report if leaf nodes report

since they are part of the aggregation tree. Polygon aggregation needs them to include

their information to perform aggregation.

No aggregation is our baseline algorithm. Nodes simply send their readings

down the aggregation tree to the sink. This is very simple and effective. Basically

the sink will get a reading from every node and will be able to generate the most

accurate map using all possible sensed values. However, there are various problems

with this approach. Having all nodes report means that considerable traffic will be

flowing through the network.

No Aggregation Optimized builds on No aggregation by using temporal data

correlation to reduce the number of reports generated. In this optimized version, nodes
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report their readings directly to the sink only when their temperature has changed from

one range to another.

4.3.2 Simulation Setup

As the experimental platform, we employ the ns-2 [44] network simulator. For

medium access control, nodes use CSMA at 115Kbps. Their transmission range is set

to 40m. FLIP [35] was used as the network protocol. Node identifiers and location

information are 2 bytes long. Temperature information is also 2 bytes.

We chose temperature as the condition being monitored. The algorithms and

protocols can measure any other sensed variable. The temperature reality is simulated

by a matrix of 80x40 points. This will represent the area we are monitoring. When a

node located at the center of our area samples its sensor it will read the center value

of the matrix. These values are determined by the scenario and time in the simulation.

In the case of the static scenarios the matrix will have one single value through out the

simulation. In the case of the dynamic scenarios the values of this reality matrix will

change.

4.3.3 Performance Metrics

The performance of the aggregation algorithms is evaluated according to two

metrics: their energy efficiency and their accuracy. Of course, our goal is to minimize

energy consumption without sacrificing data accuracy. We use average number of bytes

transmitted by each aggregation protocol to measure energy consumption. This includes

all data transmitted by all nodes, intermediate nodes included. While this might seem

to not take receive power into consideration we should note that the timing scheme

used, cascading timeouts, is well suited to MAC protocols that switch idle nodes off to

low-power radio mode since communication is not taking place. This is true for both

polygon aggregation and isoline aggregation. No aggregation doesn’t do scheduling of

transmissions and cannot use such a scheme without additional modifications.

Accuracy is measured by how similar the resulting map is to reality. Since

our goal is to draw contour maps, it seems appropriate to calculate similarity as the

percentage of points that are actually in the correct value range when compared to
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reality. That is, for every point, we compare the reality value to the value interpolated

from the data collected in a specific round. We calculate the percentage of points in

the correct value range. In the case of continuous monitoring we average it over all

simulation rounds (seconds). Simulations were run 10 times. This metric is called

contour similarity.

4.4 Results

This section reports simulation results obtained from having the sensor field

report a “snapshot” of the sensed data (Section 4.4.1 as well as experiments where

continuous monitoring (Section 4.4.2) is employed. It also presents results showing the

performance of the optimization techniques discussed in Section 4.2.4 (Section 4.4.3).

4.4.1 Taking Snapshots

40

40

40

40

50

50

Figure 4.6: Real map

In these experiments, we use two different sensor network deployments, namely:
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(1) a 400X400m field monitored by a 16X16 sensor grid evenly spaced at 25m intervals,

and (2) a 800X800 field using 32X32 grid.

The sink node, which is placed at the center of the map, starts by broadcasting

a query for the map at time 1s. From time 3s to 4s, nodes report their temperature

readings. The simulation is stopped at time 5s. The data points used to compute the

tabulated results are obtained by averaging over 10 runs.

Even though Figure 4.6 shows the real map, we will use Figure 4.7 as our

idealized map to get performance bounds. The map in Figure 4.7 is generated when no

aggregation is used, i.e., all the nodes are reporting their readings. This means that the

sink has all the information the network can provide; the only way to be more accurate

is by deploying more nodes increasing sensor density.

40

40
40

40

40

50

Figure 4.7: A map using all sensor readings

Our main goal is to achieve accuracy similar to the map obtained when no ag-

gregation is employed, while making the collection process energy-efficient. Figures 4.8

and 4.9 present the maps generated using isoline aggregation, while Figures 4.10 and

4.11 were obtained using polygon aggregation. Figures 4.9 and 4.11 present the same
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maps as Figures 4.8 and 4.10, respectively, superimposed atop points representing the

readings actually received at the sink.
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40
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40

50

Figure 4.8: Map generated with isoline aggregation

Graphing the results obtained from the simulations helps us visualize how the

aggregation algorithms perform in terms of accuracy. We should point out that the

graphing tools we use, which interpolate the data points to generate the map, have not

been optimized for plotting data points provided by aggregation mechanisms that exploit

spatial data correlation. For example, in the case of isolines, if there are no readings

received from an area, then it is an indication that an isoline does not exist. In the case

of polygon aggregation, reported areas should be graphed as polygons. Moreover, some

of the anomalies in the graphs are caused by lost packets. Even though the simulator

is not inserting random drops, packet losses can still occur, for example, in the case of

collisions.

In order to quantify how similar the maps generated by the different aggre-

gation approaches are, we compute the average distance between corresponding points

obtained from no aggregation, isoline, and polygon aggregation. We used the ngmath
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Figure 4.9: Map generated with isoline aggregation plus reporting sensors

Reality (degrees) No agg. (%)

No Agg. 1.21 (sd=0.01) 0

Isolines 1.59 (sd=0.12) 31.4%

Polygons 2.98 (sd=0.18) 146.3%

Table 4.1: Contour similarity for the 16X16 sensor field

part of the NCAR Graphics Library[31] to interpolate the 80X40 reality data points.

Tables 4.1 and 4.2 summarize these results.

The first column shows the average difference and corresponding standard

deviation between each aggregation algorithm and reality. For no aggregation, the map

obtained when all nodes report differs on average by 1.21 (with a standard deviation of

0.01) in the 16X16 sensor deployment. Similarly, the average difference between isolines

versus reality and polygons versus reality is 1.59 and 2.98 (in degrees as we are mapping

temperature), respectively.

Recall that the upper bound in accuracy is obtained when all nodes report

their readings and no aggregation is performed. Column 2 thus shows how the accuracy
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Figure 4.10: Map generated with polygon aggregation

Reality (degrees) No agg. (%)

No Agg. 1.24 (sd=0.08) 0

Isolines 1.83 (sd=0.24) 47.6%

Polygons 3.48 (sd=0.36) 180.6%

Table 4.2: Contour similarity for the 32X32 sensor field

of isolines and polygons compare to to that of using no aggregation. In the 16X16 map,

isoline aggregation yields a difference of only 31%, while the map generated by polygon

aggregation differs by 146%, about 5 times more than isolines. For the 32X32 map,

with four times the sensors, we observe 48% and 181% difference, respectively.

On a first analysis, these differences may seem too high. However, when trans-

lating them into actual sensed data, they fall into perspective. For example, a point

that has the value of 43 degrees might get mapped to 44.6 with isolines and 46 with

polygon aggregation. Note that both of these algorithms are not trying to map real-

ity on a point-to-point basis. Instead, they try to aggregate data by doing this ’lossy

compression’ into groups of values. To quantify this, we use the group similarity metric

90



40

40

40

40

50

Figure 4.11: Map generated with polygon aggregation plus reporting sensors

Reality 16X16 32X32

No Agg. 95.0% (sd=0.1) 93.3% (sd=1.1)

Isolines 93.3% (sd=0.6) 91.8% (sd=1.7)

Polygons 92.5% (sd=3.9) 85.8% (sd=4.9)

Table 4.3: Group similarity

which calculates how many of the points are mapped into the correct value group. It

basically measures if the contours look the same. Table 4.3 presents these results for

both 16X16 and 32X32 sensor fields.

We observe that both algorithms perform reasonably well according to this

metric, with isolines exhibiting better performance than polygons, especially in the

32X32 sensor field scenario. For example, Figures 4.6 (reality) and 4.7 (no aggregation)

are 95% similar. These results also show that larger fields (with the same sensor density)

are harder to map. This is particularly true for polygon aggregation, whose performance

degrades as the network size grows.

Recall that the main goal of data aggregation is to achieve energy efficiency
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Reality Small Large

No agg 13826 (sd=340) 80635 (sd=1221)

Isolines 7897 (sd=384) 32549 (sd=1095)

Polygons 8311 (sd=263) 34200 (sd=918)

Table 4.4: Bytes sent as energy efficiency

by transmitting less information. Table 4.4 shows the number of bytes sent by all

three approaches. We observe that no aggregation transmits 75%- and 148% more

data than isolines in the 16X16 and 32X32 sensor field scenarios, respectively. With

no aggregation, every node needs to transmit its information to the sink which may

results in redundant data traveling multiple hops, wasting precious resources along the

way. Both isoline and polygon aggregation try to reduce the number of transmissions,

minimizing data redundancy by aggregating spatially correlated information.

We should also point out that isoline aggregation uses temporal aggregation as

well. That is, over time, nodes broadcast information (NNP) only when local readings

change (i.e., they only need local knowledge). Section 4.4.2 evaluates the aggregation

protocols under a continuous monitoring scenario where temporal aggregation is used.

Another observation is that no aggregation does not scale. As the number of

nodes increases, forwarding packets from every node to the sink becomes prohibitively

expensive, especially in power-constrained environments. This is especially true when

larger areas report very similar values. Excessive redundant reports also result in in-

creased collisions and thus data loss.

To increase accuracy isolines can cover smaller ranges (e.g. have isolines every

5 degrees). We ran some preliminary experiments varying the spacing between isolines.

Using isolines every 5 degrees we send almost the same amount of data as no aggregation

(13KB) and get a difference of about 1.38 degrees, that is about 13.2% more than no

aggregation. This is a large decrease over the 31.4% we had before when using a 10

degree spacing between isolines. If we increase the spacing to 20 degrees our average

difference increases to 97.5% (still lower than polygon aggregation) and we reduce the

data sent to about 5.6KB (down from 7.9KB), less than half that of no aggregation.

The main disadvantage of using polygon-based aggregation lies in the fact that

a node cannot make a localized decision of whether or not its information is redundant.
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Aggregation is limited to nodes on the same branch of a tree and only happens when a

shared ancestor exists. If this ancestor node is far away, redundant information will be

propagated closer to the sink.

4.4.2 Continuous Mapping
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Figure 4.12: Hotspot and front scenarios

We use a sensor network consisting of 16x16 nodes arranged in a evenly spaced

grid monitoring temperature in a 400m2area. Nodes sample the environment in rounds

every 1 second.

In our continuous monitoring experiments, we simulate two types of phenom-

ena: hotspots and moving fronts. In the first case, we generate a hotspot in our map

with a temperature increase of 25 degrees. Temperature increase decays at power of

4 from the center of the hotspot. The region will then slowly go back to the original
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temperature, as the hotspot vanishes. In our second scenario, we have a front moving

from the left to right. Temperature increases from the forties to the seventies in about

150 meters. The front moves to the right in 13 seconds.

The experiment collects local temperature information for a period of 15 sec-

onds. Figure 4.12 shows the real maps for the two scenarios at different points in time.

The starting value of all points is centered at 45 degrees with a small random-

ization factor of +/- 2 degrees. The sensor network will be basically subsampling the

80X40 matrix with a maximum of 16X16 samples if all nodes are reporting.

The sink node, which is placed at the center of the map, starts by broadcast-

ing a query requesting the map at time 1s. From time 3s to 14s, nodes report their

temperature readings. The simulation is stopped at time 15s. The data points used to

compute results in Tables 4.5 and 4.6 are obtained by averaging over 10 runs.

Similarly to the results in Section 4.4.1, we also employ the ngmath part of

the NCAR Graphics Library [31] to interpolate missing points (as received by the sink)

of the 80x40 reality map. As previously pointed out, the assumptions made by the

interpolation algorithm may not be adequate to the data collection scenarios under

consideration. For example, if we are capturing a gradient, like the one in the moving

front scenario, some of the collection algorithms will only send the points corresponding

to the nodes that changed value. If we only provide these points to the interpolation

algorithm, it will assume that the gradient continues on both sides of the front. This

will create very disparate graphs. The solution to this problem is to use the last data

reported by a node as input to the interpolation. This problem was very pronounced in

the “optimized” version of no aggregation as explained in the sequel.

In the case of isoline aggregation we have, by definition, nodes reporting only

when they detect an isoline. Hence, we can infer that if no node reported, the values of

that area have not changed over to the “next” isoline. So, if the highest report is 46,

for example, we know that if the interpolation algorithm generates a value greater than

50, that value should not be considered.

Tables 4.5 and 4.6 present results for the hotspot and moving front scenarios,

respectively. The first column shows contour similarity and corresponding standard
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Figure 4.13: Hotspot scenario, T=4

deviation (in parenthesis). The second column shows the average number of kilobytes

sent per round. This measures potential energy savings.

For the hotspot scenario we observe that all algorithms exhibit very good

accuracy. This is to be expected as there are not many nodes changing values. The

greatest differences can be seen in the amount of data sent. The unoptimized version of

no aggregation sent a total of 180KB. That is more than 11 times the amount of data

sent by isoline aggregation.

No aggregation optimized sends a total of 21KB. That is 38% more than isoline

aggregation. Yet, isolines yields similar accuracy. This difference is mostly due to the
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Similarity KBytes sent

No Agg. 98.7 (sd 0.09) 180.0 (sd 5.4)

No Agg opt. 98.9 (sd 0.09) 21.1 (sd 0.4)

Polygons 98.1 (sd 0.49) 62.9 (sd 4.6)

Isolines 97.0 (sd 0.36) 15.3 (sd 1.2)

Table 4.5: Hotspot scenario: contour similarity and number of bytes sent

Similarity KBytes sent

No Agg. 93.2 (sd 1.72) 177.1 (sd 5.9)

No Agg opt. 89.3 (sd 0.70) 62.1 (sd 2.3)

Polygons 82.4 (sd 2.93) 77.0 (sd 3.6)

Isolines 96.7 (sd 0.50) 55.8 (sd 3.1)

Table 4.6: Front scenario: contour similarity and number of bytes sent

fact that the initial collection without using aggregation is very expensive. When data

changes in groups, isoline aggregation exhibits lower overhead since nodes with neighbors

in the same range will not need to report. Therefore, if larger areas change values (e.g.,

if the hot spot affects larger regions), we expect that the energy savings achieved by

isoline aggregation will be even more pronounced.

In the case of polygon aggregation more data is sent because aggregation hap-

pens only down the collection tree, and this implies that nodes which would otherwise

not have reported will report. It also means that aggregation does not take place as

soon as possible.

Figure 4.13 shows the maps generated from the data collected at time T = 4

for the hotspot scenario. This can be compared to the real map in Figure 4.12. Note

that the maps in Figure 4.13 are a snapshot at time T = 4 of a single run; therefore,

nuances and quirks are to be expected. We can see that the maps from Isoline and

None (i.e., no aggregation without optimization) are the ones that most resemble the

reality map.

Results for the moving front scenario are presented in Table 4.6. In this sce-

nario, all nodes will eventually change value. The amount of data that needs to be

96



50

50

60

60

70

70

50

50

60

60

70

70

None None optimized

50

50

60

60

70

70

50

50

60

60

70

70

Polygon Isoline

Figure 4.14: Front scenario, T=7.

reported is thus larger.

In terms of accuracy, isoline aggregation comes on top, with 96.7% similarity.

Sending less data causes less contention at the MAC layer and therefore is able to achieve

better accuracy. Note that this is true even if an underlying reliable MAC protocol were

used. In fact, depending on the the reliability mechanism used by the MAC layer, higher

contention and higher delays can be incurred.

The other optimized methods, i.e., “optimized” no aggregation and polygons,

both have accuracy in the 80%s while still transmitting more data than isolines. The

unoptimized no aggregation method exhibits 3.5% less similarity than isolines yet re-
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porting over 3 times more data.

Figure 4.14 shows maps generated by the algorithms for the moving front at

time T = 7. In the case of isolines and “unoptimized” no aggregation, the resulting

graphs are relatively accurate. There are still some minor mistakes which happen from

reports that got lost along the way. In the case of “optimized” no aggregation, the

errors are different: they are “carry overs”. Since nodes only report when data changes,

and the map is constructed using old readings, a node whose update is lost might stay

with an old value and create a semi-permanent error in the graph.

In the case of polygon aggregation, when a packet is lost, we lose an aggregated

report, and hence we see areas where there are problems. Isoline aggregation reports

quite accurately with some minor distortion near the edges due to the lack of nodes to

sample reality and the interpolation algorithm.

It is important to note that the algorithms presented here might not be able to

get 100% similarity under the contour similarity metric. This is because a perfect score

implies that all of the reality points are placed in the correct ranges. This might not

be possible since we are only subsampling the space. At some point it is necessary to

increase sensor density to obtain higher accuracy. We expect that higher sensor density

will help isoline aggregation’s accuracy. As pointed out previously, accuracy increases

at the expense of energy savings. However, isoline aggregation minimizes this trade-off.

4.4.3 Dense random node placement

When isoline aggregation is used, a node will coordinate with nearby neighbors

to determine if an isoline is present between them. If the isoline is found it is reported

to the sink. Under “even” node deployments this by itself is a very efficient way to

reduce the number of reports while maintaining high accuracy. However, in denser

deployments, a node might have too many neighbors, which in turn might mean that

there is an isoline between itself and a large number of nodes. This will create too much

redundant reports and network traffic. To address this we have developed heuristics to

suppress excessive reporting in dense deployments as discussed in Section 4.2.4.
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Figure 4.15: Mapping dense deployments with isolines

We repeat the same experiment performed in Section 4.4.1 and modified some

parameters to test the performance of our optimizations for dense random node place-

ment. For these experiments, we deploy 1024 nodes randomly over a 400x400m field.

We then take a snapshot of the map (Figure 4.6) using no aggregation, isoline-, and

optimized isoline aggregation.

The first map (top left) in Figure 4.15 shows the best possible scenario, i.e.,

the case where all the nodes report and their information is received at the sink. We

call this the Full map which shows the 1024 nodes deployed in a random fashion. The

second (top right) map shows the result from using no-aggregation. The dots show
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Similarity KBytes sent Nodes reporting

Full 96.6% 1024

No Agg. 89.5% (sd 1.63) 53.1K (sd 5.6K) 259

Isolines 83.8% (sd 5.91) 70.8K (sd 6.8K) 133

Opt. Isolines 87.2% (sd 3.69) 19.1K (sd 2.0K) 87

Table 4.7: Dense scenario: contour similarity, bytes sent and average nodes reporting

which readings are received at the sink. It is evident that it is drastically less than the

total number of possible readings, in this case 272 out of 1024.

The following two figures show the maps obtained when we use isolines. The

bottom left map depicts the results from plain isoline aggregation showing that, while

in some high density areas we get a high number of redundant reports, in other areas

no reports are received because of collisions and packet losses. The bottom right map

shows the results of using optimized isolines. Note that in this case the reporting nodes

are more evenly spread along the isolines in the map.

Table 4.7 summarizes results of the dense deployment experiments. The first

thing to note is the fact that the similarity values are not as high as when grid placement

is used. This is due to the fact that, in random placement, coverage is not as even as in

grid placement and thus high density areas will be more prone to collisions and packet

losses.

From the first row in Table 4.7, we observe that a maximum of 96.6% simi-

larity can be achieved which is obtained when readings from all the sensor nodes are

considered. Using no aggregation we can obtain 89.5% similarity, followed by optimized

isolines with 87.2%. Plain isolines perform slightly worse due to increased packet drops.

The isoline algorithm incurs some overhead when compared to no aggregation

because the nodes need to exchange neighbor information. This overhead is more evident

in denser networks, both in packet drops, as seen by the lower similarity, and in bytes

sent, as seen by an increase of almost 33%.

Optimized isolines addresses both these issues. A node will remember its par-

ents and children from data collection tree establishment, then use only these nodes to

detect isolines. This lowers the number of bytes sent to only 36% of what is required by

no aggregation. At the same time the similarity is increased because of reduced number
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of collisions in the high density areas. It is important to note that optimized isolines

uses 35% less readings that isolines and achieves better similarity.

We should point out that choosing a subset of a node’s neighbors based on the

data collection tree incurs no extra overhead (in terms of extra information that needs

to be exchanged) given that this information is already available to nodes.

4.5 Conclusions and Future Work

In this chapter, we introduced a novel data aggregation algorithm that targets

spatially correlated data. Isoline aggregation uses local information from neighbors to

group nodes that report similar readings. Energy efficiency is achieved by having only

a subset of the nodes, i.e., the ones next to the isolines, report to the sink.

Simulation results show that isoline aggregation can lead to significant energy

savings (some scenarios reported that no aggregation can send close to 150% more

bytes than isoline aggregation) with adequate data accuracy. We also compared isolines

against polygon aggregation, our implementation of an approach representing existing

spatially-correlated data aggregation mechanisms (e.g., eScan and isobars). Our results

report that isolines exhibit higher accuracy with a slight advantage in energy efficiency.

Continuous monitoring is one key application of sensor networks. We evaluated

isoline aggregation as a collection technique targeting continuous mapping in sensor

networks. It is a simple, elegant, and efficient algorithm for generating accurate maps

of continuously changing conditions.

Two different continuous temperature monitoring scenarios were simulated,

namely hotspot and moving front. In the hotspot scenario, a spot of activity appears

and disappears; in the front scenario, temperature increase wave moves through the

area. Both of these scenarios have real life analogies (e.g., fires, animal migration).

In the hotspot scenario, isolines delivered comparable accuracy while sending

38% less data than our nearest competitor, an optimized form of no aggregation, where

nodes report only when the sensed value changes. The non-optimized alternative re-

quired more than 11 times the amount of data transmitted. For the front scenario,

isoline aggregation delivered higher accuracy than all other protocols we studied (in-

cluding polygon aggregation, which represented schemes like eScan and isobars, while
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still yielding the highest energy efficiency.

We have optimized isolines so that it can handle dense random placement

scenarios efficiently. We can achieve a similarity close to using no aggregation while

using only 35% of the bytes sent.

One of our objectives is to test isoline aggregation under real scenarios. We

plan to run multiple simulations with non synthetic data and study how well it performs.

For this we will require a very accurate map of reality. Some of our future work also

involves testing with a simple deployed scenario and comparing the performance to the

data obtained with using no aggregation, that is all the data we can possible capture.

Our work on isolines has had two conference publications [38][37].
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Chapter 5

Conclusions

Sensor networks have brought a new research field to the engineering commu-

nity. The basic protocols that we’ve come to rely on for the stability and prosperity

of the Internet have not been designed to deal with the requirements of these unique

network scenarios. What we once considered very flexible is today very constricting.

One of the biggest hurdles to overcome is in the power dimension, which was never

addressed because of the original environments in which they were design to operate.

Typical sensor network deployments consist of numerous small nodes monitor-

ing an area. These nodes normally feature a low power wireless radio, an embedded

processor, some sensors (temperature, light, acceleration, etc) and a small battery. It

has been normally assumed that placement will be uniformly random over the area to

be monitored, though structured deployment is not that uncommon.

This thesis has dealt with various aspects involved in providing efficient proto-

cols for these fringe networks. The first problem we tackled was that of a base protocol

to build upon. We could have chosen to develop a custom protocol for all the scenarios

encountered, however, this idea was soon ruled out. It would have involved having a

set of protocols, all at layer 3, for all the possible exchanges. The second option was to

create a generic protocol to deal with all the cases. This would have meant that all the

functionality the network was going to provide would have to be build in from the very

beginning. If we wanted the network to be able to do point-to-point communications

we needed to add header fields for those exchanges, fields that would just be overhead

in some data gathering scenarios. Since the network was going to be in this mode most
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of the time, the overhead from these generic fields was unacceptable.

To provide the network with an efficient protocol, yet a fully functional one that

would be able to tackle different scenarios we designed FLIP. FLIP is a flexible protocol

whose headers can be customized to the functionality required. Via multiple simulations

and scenarios we have showed that this functionality comes at a very minimal overhead

and is very beneficial to these fringe network. It allows them to provide full functionality

when required while permitting them to keep a very compact header for the day to day

data gathering process. Based on the same ideology of FLIP we also started the design

and development of GTP, a flexible protocol for the transport layer.

Having a solid ground to work on, we then proceeded to study various data

gathering protocols, and found that most of them suffered from very high delay. The

time it took for the data to get from the edge of the network to the collection point

was very high. This was due mostly to the fact that when the original protocols were

designed (i.e. Directed Diffusion [5]), delay was not a characteristic considered. The

paramount goal was to save energy and other aspects were not closely considered.

We developed “Cascading Timers”, a timing mechanism to make sure data gets

to the sink with minimal delay when doing aggregation. The basic idea is that nodes

will wait just the right amount of time for their children to transmit and then send the

aggregated data to their parent. In our simulation scenarios by using aggregation we can

reduce the data transmitted dramatically, up to 5 times, and by using “cascading timers”

we can reduce the delay an order of magnitude. When doing aggregation however, we

make ourselves vulnerable to very costly packet losses. When a packet gets lost near

the sink it could mean half the information collected from the network has vanished.

To address this we took a look at using multiple transmissions based on the weight of

the packet (number of readings contained).

Aggregation is widely known to be a very effective way to save energy. Nodes

will process data as it’s flowing through the network. When dealing with simple data

this is very simple, for example calculating the maximum temperature in the field. For

this we take the values sent by all the children in the data gathering tree, compare it

to our own reading, and send the maximum, effectively reducing the amount of data

packets that are sent to the sink. Other data gathering scenarios are not as simple, this

104



is the case of mapping.

We investigated ways to optimize data gathering for map generation and how

best to use aggregation. Previous approaches (i.e. isobars [23]) have addressed the

problem by sending polygon data down the collection tree. This has various drawbacks,

like requiring the polygon areas to be in the same data collection subtree in order to

be aggregated, or the fact that location information has to be included in the packets

or distributed to all the nodes. We approached the problem by gathering contour

information using “Isoline aggregation”.

When doing “Isoline Aggregation” nodes detect the presence of isolines (con-

tours) by broadcasting their value to their neighbors. When an isoline is detected it’s

reported to the sink. This means that data is aggregated because we just send the re-

quired points to draw the contour and not every node in the middle of the region. This

is basically done with only local information, reducing the required communications.

We extended our work to do mapping for continuous environments, effectively provid-

ing a live monitoring protocol for sensor networks. Isolines can also deal with high node

densities and random node placement while keeping the accuracy of the collected data

high.

5.1 Future Directions

Over the course of this research there have been multiple paths that we haven’t

had time to explore. Some of the future directions include:

• Develop a closer interaction between FLIP, at the network layer, with the protocols

at the MAC layer. Reducing redundant information where possible could give large

gains on some scenarios. For example, if only local unique addresses are required

then the MAC addressing could be used for network layer as well. Controlling

how these fields could be handled by the higher level applications is something to

be investigated.

• Continue the work on GTP and provide a fully functional transport layer API.

Allow applications to select in a simple standard way what features they need

their flows to have: connection/connection-less, ordered delivery, reliable deliver,
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timely delivery, etc. A new socket family and some setsockopt functions could

provide this sort of feature.

• The timing studied while developing Cascading Timers is very dependant on the

lower layers providing very fast response. A contention MAC was assumed for

the simulations, however, the trend in this area is to use scheduled MACs. This

could have a disruptive effect on higher layer scheduling. Cooperation between

the application, transport and network layer with the MAC is essential.

• On all our simulations we noticed a sharp effect when using different node place-

ment. Looking closer at node placement schemes, specifically for mapping is

something that could prove very fruitful.

• When studying mapping we ran out of time to test our protocols under real

situations. Getting “reality” data to subsample and use for evaluating our protocol

proved to be something challenging. Most data out there is already subsampled or

at a scale that renders it ineffective for our uses. It might turn out that the only

way to gather valuable data is to sample reality ourselves at a very high density,

thus allowing us to run multiple tests on it.
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