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Abstract

This paper explores in-network aggregation as a
power-efficient mechanism for collecting data in
wireless sensor networks. In particular, we focus on
sensor network scenarios where a large number of
nodes produce data periodically. Such communica-
tion model is typical of monitoring applications, an
important application domain sensor networks tar-
get. The main idea behind in-network aggregation is
that, rather than sending individual data items from
sensors to sinks, multiple data items are aggregated
as they are forwarded by the sensor network.

Through simulations, we evaluate the performance
of different in-network aggregation algorithms, in-
cluding our owncascading timers, in terms of the
trade-offs between energy efficiency, data accuracy
and freshness. Our results show that timing, i.e.,
how long a node waits to receive data from its chil-
dren (downstream nodes in respect to the informa-
tion sink) before forwarding data onto the next hop
(toward the sink) plays a crucial role in the per-
formance of aggregation algorithms for applications
that generate data periodically. By carefully select-
ing when to aggregate and forward data,cascading
timers achieves considerable energy savings while
maintaining data freshness and accuracy. We also
study in-network aggregation’s cost-efficiency using
simple mathematical models.

�

The author is now at the Palo Alto Research Center (PARC)
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Since wireless sensor networks are prone to trans-
mission errors and losses can have considerable im-
pact when data aggregation is used, we also pro-
pose and evaluate a number of techniques for han-
dling packet loss. Simulations show that, when used
in conjunction with aggregation protocols, the pro-
posed techniques can effectively mitigate the effects
of random transmission losses in a power-efficient
way.

1 Introduction

Sensor networks are typically data driven, i.e., the
whole network cooperates in communicating data
from sensors (information sources) to information
sinks. One of the main challenges raised by sensor
networks is the fact that they are usually power con-
strained since sensing nodes typically exhibit limited
capabilities in terms of processing, communication,
and especially, power. Sensor networks’ power lim-
itation is aggravated by the fact that, often, once de-
ployed, they are left unattended for most of their life-
time. Thus, energy conservation is of prime consid-
eration in sensor network protocols in order to max-
imize the network’s operational lifetime.

In-network aggregation is a well known technique
to achieve energy efficiency when propagating data
from information sources (e.g., sensors) to sink(s).
The main idea behind in-network aggregation is that,
rather than sending individual data items from sen-
sors to sinks, multiple data items are aggregated as
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they are forwarded by the sensor network. Data ag-
gregation is application dependent, i.e., depending
on the target application, the appropriate data ag-
gregation operator, oraggregator, will be employed.
For example, suppose that in a controlled tempera-
ture environment, the average temperature needs to
be monitored. As sensors generate temperature read-
ings periodically, internal nodes in the data collec-
tion tree (rooted at the information sink and span-
ning relevant data sources1) average data received
from downstream nodes and forward the result to-
ward the information sink. The net effect is that, by
transmitting less data units, considerable energy sav-
ings can be achieved. However, how much energy is
saved depends on the type of aggregator employed.
For instance, in the running average scenario just de-
picted, a number of packets containing temperature
readings from individual sensors are averaged and
result in a single packet of the same size as the ones
that carry individual temperature readings. However,
if the only possible aggregator isconcatenation, i.e.,
multiple data items are concatenated and transmitted
as a single packet, then the sole source of energy sav-
ings is more efficient medium access.

From the information sink’s point of view, the ben-
efits of in-network aggregation are that in general
(1) it yields more manageable data streams avoiding
overwhelming sources with massive amounts of in-
formation, and (2) performs some filtering and pre-
processing on the data, making the task of further
processing the data less time- and resource consum-
ing.

Because of its well-known power efficiency prop-
erties, in-network aggregation has been the focus of
several recent research efforts on sensor networks.
As a result, a number of data aggregation algo-
rithms targeting different sensor network scenarios
have been proposed. Directed diffusion [1], TAG [2],
eScan [3], and Sensor Protocols for Information via
Negotiation (SPIN) [4] are some notable examples.
In this paper, we focus on the requirements of an im-

1While in this paper we assume that all nodes produce data,
the proposed techniques and the conclusions we draw might ap-
ply to the case where only a subset of the nodes are (relevant)
information sources.

portant class of sensor network applications, namely
applications that generate data periodically. Moni-
toring (including monitoring of continuous environ-
mental conditions like temperature, humidity, seis-
mic activity, etc.) is a good example of such appli-
cations. One of the constraints imposed by periodic
data generation on aggregation algorithms is timing.
In other words, how long should a node wait to re-
ceive data from its children (downstream nodes in
respect to the information sink) before forwarding
data already received? Note that there is a tradeoff
between data accuracy and freshness, i.e., the longer
a node waits, the more readings it is likely to receive
and therefore, the more accurate the information it
sends out. On the other hand, waiting too long may
result in stale data. Furthermore, if a node waits too
long, it may interfere with the next “data wave”.

Our hypothesis is that timing models play a cru-
cial role in the accuracy and freshness delivered by
data aggregation. In this paper, we study how dif-
ferent timing schemes affect the performance of in-
network aggregation algorithms. Based on their tim-
ing model, we classify existing periodic data aggre-
gation protocols into three categories, namely:peri-
odic simple, periodic per-hop, andperiodic per-hop
adjusted.

Periodic simple aggregation works by having each
node wait a pre-defined period of time (referred to
as timeout), aggregate all data items received, and
send out a single packet containing the result. As dis-
cussed in Section 7 below, the directed diffusion [1]
sensor network communication paradigm belongs to
this category. Aggregation mechanisms in thepe-
riodic per-hop category have nodes send the aggre-
gated packet as soon as they hear from all their chil-
dren. A maximum timeout interval equal to the data
generation period is used in case the reports get lost.
Finally, periodic per-hop adjusted uses the same ba-
sic principle of periodic per-hop but schedules a
node’s timeout based on its position in the distribu-
tion tree (rooted at the information sink and span-
ning all reporting- as well as appropriate interme-
diate nodes). Our owncascading timers aggrega-
tion mechanism falls within this category, and, when
compared to other existingperiodic per-hop adjusted
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algorithms, presents benefits such as not requiring
clock synchronization among nodes and minimizing
timer scheduling overhead.Cascading timers sched-
ules a node’s timeout based on the time it takes for a
packet to travel a single hop, or thesingle hop delay
and the number of hops to reach the sink. We also
study how the value selected for thesingle hop delay
impacts the performance ofcascading timers.

In summary, the contributions of this paper in-
clude: (1) development ofcascading timers aggre-
gation for periodic data generation applications in-
cluding a detailed analysis ofcascading timers’ de-
pendence on per-hop delay, (2) trade-off analysis of
in-network data aggregation using simple analytical
models (3) comparative performance study of differ-
ent aggregation algorithms using extensive simula-
tions, and (4) development of different loss recovery
mechanisms and study of how they impact perfor-
mance of data aggregation under lossy environments.

For evaluating the performance of the different in-
network aggregation mechanisms, energy efficiency,
data accuracy and freshness, and communication
overhead are used as performance metrics. We
should also point out that, unlike previous evaluation
studies targeting sensor network protocols, a wide
range of network scenarios including different infor-
mation sink placement strategies are used.

The remainder of the paper is organized as fol-
lows. In-network aggregation withcascading timers
is described in Section 2. Other aggregation types
are mentioned in Section 3. Section 4 investigates
in-network aggregation’s cost-efficiency using sim-
ple mathematical models. Section 5 describes the
simulation experiments we conduct to compare the
performance of different in-network aggregation al-
gorithms, including the experimental setup used, re-
sults obtained, as well as the impact of the per-hop
delay on the performance ofcascading timers. Tech-
niques for handling packet losses and their perfor-
mance are introduced in Section 6. Section 7 dis-
cusses related work. Finally, Section 8 presents our
concluding remarks and directions for future work.

2 Cascading Timers Aggregation

As previously discussed, ourcascading timers[5] ag-
gregation algorithm targets periodic data generation
applications in which nodes produce data at regular
periods. A given node aggregates data received from
its children into a single data item, which is then
forwarded upstream towards the information sink2.
Application scenarios that fit well within this com-
munication model include monitoring of continuous
environmental conditions like temperature, humidity,
seismic activity, etc. While we focus on the single in-
formation sink scenario, the proposed technique can
be applied to multi-sink scenarios.

Some ofcascading timers’ design goals include:

� Simplicity: given that sensor network nodes are
typically anemic devices regarding energy, process-
ing, storage, and communication capabilities, de-
signing simple aggregation algorithms is key.

� Efficiency: generate close to minimal control
overhead. Again, this is a critical requirement in the
resource-constrained environments our algorithms
target.

� No clock synchronization:cascading timers does
not require clock synchronization among nodes. No
matter how efficient clock synchronization mecha-
nisms become, they will require additional message
exchange among nodes and thus incur additional en-
ergy consumption. Efficient synchronization algo-
rithms [6] have emerged recently and might allow
other tradeoffs.

� Routing protocol independence: no specific un-
derlying routing protocol is assumed.

Similar to most periodic aggregation mechanisms,
cascading timers starts by having the sink broadcast
the initial request to all nodes. This initial request
triggers a simple tree establishment protocol which
sets up reverse paths from all nodes back to the sink

2As explained in more detail below, data is aggregated over
a tree rooted at the information sink
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or root of the tree. Upon receiving the request mes-
sage, nodes send a reply back to their parent in the
tree. Each node can then deduce how many chil-
dren it has. Nodes assume a broadcast medium and
forward data using one-hop broadcasts. In order to
avoid collisions, transmissions are scheduled using a
small staggering delay. The setting of the staggering
interval will be discussed in detail in Section 5.3.

Note that tree establishment is essentially the over-
head incurred bycascading timers and most other
in-network aggregation mechanisms. Even if no ag-
gregation is employed, a distribution tree is typi-
cally used to collect data from information sources
to sinks.

In cascading timers, instead of having nodes
schedule randomly their timeout, i.e., the time in-
terval they wait to receive data from their children
before forwarding the next data aggregate, a node’s
timeout is set based on the node’s position in the data
distribution tree. Thus, a node’s timeout will happen
right before its parent’s. This causes the so-called
“cascading” effect: data originating at the leaves is
clocked out first, reaching nodes in the next tree level
in time to be aggregated with data from other leaf
nodes and locally generated data, and so on. The net
effect is that a “data wave” reaches the sink in one
period. This is the main reason behindcascading
timers’ ability to achieve power efficiency and yet
deliver fresh data at sink nodes.

Timeout scheduling is part of the distribution tree
setup protocol and is triggered by the initial request
from the sink. The sink’s request contains a “hop
count” field which gets incremented as the request
travels toward the leaf nodes. Using this hop count
information, nodes can estimate their distance, in
time, to the sink and schedule their timeout to pro-
duce the cascading effect.

Figure 1 shows graphically timeout calculation in
cascading timers, where

�
is the data generation pe-

riod, � is a node’s distance to the sink in number of
hops, and���, the single hop distance, is the delay
to traverse one hop. Once the request packet is re-
ceived, a node schedules its timeout to be after it’s
children and before it’s parents. This is done by cal-
culating a ”mirror” image of the time the packet was

received to the end of the period (�), hence the first
timer is set for��. Subsequent timers will continue
to be scheduled every

�
interval.

Note that a node’s timeout depends on thesingle
hop distance, or ���. We investigate this dependence
in detail in Section 5.3 and show how it affects the
performance of the algorithm. As previously pointed
out, cascading timers’ timing scheme is parallel to
the ones employed by both TAG [2] and Converge-
casting [7]. According to our taxonomy, all three
mechanisms are classified in theperiodic per-hop
adjusted category. In our simulations, we compare
the different aggregation techniques. Ourcascading
timers and TAG representperiodic per-hop adjusted
algorithms.

Our implementation ofTAG tries to follow their
algorithm as closely as possible. The data generation
period is equivalent to TAG’s epoch. We estimate
the maximum number of hops and divide the period
in this many slots. To avoid collisions, nodes trans-
mit at a random uniformly distributed time within the
slot corresponding to their height on the aggregation
tree.

3 Other Periodic Aggregation
Mechanisms

Below we describe in detail the other classes of
aggregation algorithms we use in our comparative
study. As baseline, we employ no in-network aggre-
gation when sending data from information sources
to the sink. As previously pointed out, even in the
no-aggregation case, we employ a distribution tree
rooted at the information sink and spanning all (rel-
evant) data sources. As packets flow from the leaves
to the root, nodes simply forward them along the tree.

3.1 Periodic Simple

Nodes in periodic simple aggregation wait a pre-
defined amount of time, aggregate all the data re-
ceived in that period, and send out a single packet.
The aggregation period is equal to the data genera-
tion period, which, for most our simulation experi-
ments, is set to 1 second.
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Figure 1:Cascading timers timeout calculation

This class of aggregation protocols represents the
basic mechanism used by Directed Diffusion [1] con-
sidering that all nodes have relevant data to send.
Based on feedback (or reinforcements) from the sink,
every node uses a specific gradient which determines
the rate at which data is sent to the sink. Note that
nodes are not necessarily synchronized when “clock-
ing out” data.

3.2 Periodic Per-Hop

According toper-hop simple aggregation, once all
data items are received from a node’s children in the
distribution tree, an aggregated packet is produced
and sent onto the next hop. Each node uses a time-
out for sending out packets in case their children’s
response is lost. The timeout is equal to the data gen-
eration period since once that time is up, we will be
expecting and producing new readings.

4 Tradeoff Analysis

In this section, we study the performance trade-
offs raised by in-network aggregation. Using simple
mathematical models, we conduct a cost-efficiency
analysis of data aggregation.

4.1 Energy Efficiency

Recall that data aggregation’s main goal is to achieve
energy efficiency. It does so by reducing the number
of packets transmitted. Ideally, when aggregation is
employed, only a single packet is sent by each node
per data collection period, or round. Thus the num-
ber of packets sent per round, or���� � �������, is
given by Equation 1.

���� � ������� 	 �
(1)
 ����� � ������� 	 ��
� � � (2)

	
� �� ���
��� � � � 
 � (3)

Without aggregation, each node will send a packet
that will be forwarded to the sink. Each hop traversed
by a packet counts as one packet being sent, hence,
the cost of getting a reading from a node equals its
height on the data distribution tree. The number of
packets sent, or


 ����� � ������� is thus given by
Equation 2, where� � is the depth of node� and



is the set of participating nodes. Alternatively, we
can compute the number of packets transmitted per
round as a function of the number of nodes at every
tree level. This is described by Equation 3, where�
is the number of tree levels and


� is the number of
nodes at depth�.
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Clearly, in an average scenario, no-aggregation
will send more packets per round. No-aggregation’s
best case scenario is when the data distribution tree
has maximum depth (� �� �� �) equal to 1. The num-
ber of packets sent per round without aggregation is
equal to

�
(Equation 2). This confirms that in “shal-

low” distribution trees, the benefits of aggregation
are not as significant. But it never performs worse
than no-aggregation.

On the other hand, in deep trees, aggregation has
significant impact in reducing the number of pack-
ets transmitted. The worst case scenario for no-
aggregation is a “line” topology, a tree where every
node has only one child. In the case of a line topol-
ogy with depth

�
, the summation in Equation 3 re-

sults in
�� ���� ��� packets per round.

Essentially, these are the lower and upper bounds
for the number of packets sent when no-aggregation
is used. As demonstrated in Section 5.2, all the ag-
gregation algorithms studied are able to achieve ideal
energy efficiency by sending only one packet per
node per round. The difference in performance be-
tween them lies in the data accuracy and freshness
they achieve.

We assume that an aggregated packet will have the
same size as a non-aggregated one. This is the case
of operations like computing averages, selecting the
maximum or minimum value, etc. This implies that,
as packets flow toward the sink, they will not grow in
size. Hence, our energy efficiency metric computes
number of packets-, rather than number of bytes sent.

On the other extreme, if aggregation by concate-
nation is employed, i.e., data items are concatenated
as they traverse the sensor network, there will still be
savings on the number of packets transmitted, but the
number of bytes sent will not be reduced. Neverthe-
less, aggregation will still be advantageous in terms
of medium acquisition and scheduling.Cascading
timers will also yield improved data freshness due to
its low delay.

4.2 Complexity

Note that tree establishment is essentially the over-
head incurred bycascading timers and most other
in-network aggregation mechanisms. Even if no ag-

gregation is employed, a distribution tree is typically
used to propagate data from information sources to
sinks.

In terms of communication complexity, tree es-
tablishment costs

�
packets as each node dissemi-

nates the original query that triggers formation of the
tree. If the protocol also generates a reply from ev-
ery child, there will be additional

� � 	
packets since

every node, except the root, will be a child. Tree es-
tablishment’s total cost is then�� � 	

packets.

Nodes reply back to their parents when they re-
ceive the original query so that each node knows
how many children it has. This information is used
to optimize the algorithms considered by allowing
a node to know when it has received the readings
from all its children. If this optimization is not per-
formed, tree establishment cost is reduced to

�
pack-

ets, which is equal to the cost of tree formation for
no-aggregation. Note that nodes can still find out
how many children they have as the algorithm runs.
In both cases, the algorithm is able to handle new
nodes joining the tree as well as existing nodes leav-
ing/failing.

In order to adapt to topology changes, tree re-
establishment is performed, which will cost

�
(or

�� � 	
if nodes reply back to their parents) pack-

ets. Of course, localized tree re-establishments can
be performed so as to reduce overhead.

All algorithms we present here (including no ag-
gregation) incur these tree formation costs. Hence,
under the conditions used in the experiments re-
ported in Section 5, the extra cost of using in-
network aggregation over no-aggregation could be� � 	

additional control packets if we want nodes
to know how many children they have right from the
start of the algorithm.

In terms of storage complexity, depending on the
aggregation operator used, readings from a node’s
children may need to be stored locally. In our ex-
ample application, aggregated data can be stored as
a single data item which will be sent by the node on
timer expiration or when all its children’s readings
are received. This requires at most one data item size
storage unit. In the case of aggregation by concate-
nation, a node needs as many data item size storage
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units as the number of children it has. For instance,
a scenario with a single 64-bit data value plus 64-bit
for control information, assuming an average number
of children of 32, would require a total of 512-byte
storage. The computational complexity is also trivial
for most cases where simple aggregators (e.g., calcu-
lating the minimum, maximum, average, sum, etc.)
are employed.

5 Simulations

For our comparative study of the different in-network
aggregation algorithms, we ran extensive simulations
using thens-2 network simulator [8].

5.1 Experimental Setup

In the experiments we conducted, 100 nodes were
randomly placed in a�������� �

area. Nodes’ trans-
mission range and data rate are set to 100 meters and
115 Kbps, respectively. 802.11b’s broadcast mode is
used as the MAC-layer protocol and FLIP [9] as the
network protocol so we can take advantage of its op-
timized headers. Based on values used by commer-
cially available radios, we set transmission and re-
ception power levels to 24.75 and 13.5 milliwatts, re-
spectively. Idle power consumption was set to 0.675
milliwatts to reflect an optimized MAC layer, i.e.,
MAC protocols that switch to low-power radio mode
whenever possible.

In order to avoid collisions, nodes stagger their
transmissions using a small random interval. This
is important when performing data collection over a
tree, especially when nodes try to send at scheduled
intervals based on their depth in the tree. The maxi-
mum staggering value used was� ��� seconds. Nodes
pick a uniformly distributed random timer between
� and this value before sending. In Section??, we
discuss the setting of the staggering interval in more
detail.

Nodes are stationary and no transmission errors
were simulated for the first set of results. However,
packets can still be lost due to collisions. Mecha-
nisms to handle packet loss and their performance
are reported in Section 6 below. Simulations were

run for 20 seconds with data being generated every
second (round). Although establishing the distribu-
tion tree can be initiated by the data request from the
sink, in our simulations the tree was formed at time 1
second and data collection was triggered by the sink
at time 3 seconds. We present steady state results,
that is, measurements taken during the second half
of the simulation (during the last 10 seconds).

Data points were obtained by averaging over
twenty different runs using different seeds to per-
form random node placement. As will be evident in
our results, information sink placement can greatly
affect the performance of tree-based aggregation al-
gorithms. For this reason, we ran experiments us-
ing three different sink placement strategies: corner,
center, and random placement. Placing the sink in
corners means that the resulting collection trees will
be deeper. Center placement minimizes tree height.

Performance metrics we use includeenergy con-
sumed, data accuracy, data freshness, andover-
head. While energy consumed measures the algo-
rithm’s energy efficiency, data accuracy and fresh-
ness account for its effectiveness in terms of convey-
ing as much information as possible to the sink in a
timely manner.

In these experiments, we do not model the actual
values being sensed by the nodes, how fast they are
changing or in what manner. Therefore, accuracy is
measured as the ratio of total number of readings re-
ceived at the sink to the total number of readings gen-
erated. We assume lossless aggregation, that is, no
data is discarded. Examples include computing the
minimum, maximum, as well as counting. In these
scenarios, total accuracy is achieved when the sink
can “calculate” an answer that involves one reading
from every node per round.

Freshness is computed as the difference between
the round a data item is generated and the round it is
received at the sink. Overhead measures the commu-
nication complexity of the in-network aggregation
algorithms.

5.2 Results
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Figure 2: Data accuracy and freshness

Figure 2 shows the freshness and accuracy of the
aggregation algorithms.Periodic simple is labeled
as “Simple”, periodic per-hop as “Per-hop”,TAG
refers to our implementation of TAG’s aggregation
mechanism, and “Cascade” represents ourcascading
timers. The sink placements evaluated were corner,
random and center. The total number of readings col-
lected (bar height) depicts accuracy and the bar divi-
sions (shades), freshness. For comparison purposes,
as baseline we use the no-aggregation strategy (la-
beled as “None”).

In terms of data accuracy, we observe that there is
not a big difference in performance when comparing
the different aggregation mechanisms. No aggrega-
tion andTAG exhibit a high percentage of fresh data.
Cascading timers practically eliminates old data.Pe-
riodic simple exhibits the largest range of data ages;
this is because nodes simply send data periodically,
thus it can take up to� periods for the readings to
arrive in the worst case, where� is the diameter of
the network.

Our implementation ofTAG is a simple one. We
do not calculate the maximum number of hops at run-
time and so in some paths the real hop count is higher
than our estimation of the network diameter. This
leads to TAG having some 1 round old readings. For
more accurate calculation we would have required
extra message exchanges which we chose not to im-
plement for this experiment.

Even though most data aggregation studies often

do not account for sink placement, we observe from
Figure 2 that sink placement has an impact on data
freshness. Even for the no-aggregation case, where
packets are forwarded immediately after they are re-
ceived, placing the sink in the center yields fresher
data.
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Figure 3: Number of data packets transmitted per
round

From Table 1, which shows the energy consumed
by the different algorithms, we observe that, for our
experimental setup, energy consumption can be re-
duced to a third when data aggregation is used. Note
that all aggregation schemes exhibit similar energy
efficiency. These values will be affected by the
choices of radio and MAC layers.

As an another way to compare the performance of
the aggregation algorithms with respect to freshness,
we introduce a metric that accounts for a data item’s
age. We call this metricweighted accuracy. The mo-
tivation behind measuring weighed accuracy lies in
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None Simple Per-Hop TAG Cascade

Corner sink 0.1418 0.0485 0.0483 0.0467 0.0421
Random sink 0.1302 0.0486 0.0484 0.0464 0.0419
Center sink 0.1134 0.0487 0.0487 0.0454 0.0404

Table 1: Energy consumed by the different in-
network aggregation algorithms

the fact that while some applications are interested in
historical data, others may only want the most up-to-
date information. This is the case of real-time moni-
toring, where information sinks are only interested in
the latest data sensed. For the latter type of applica-
tions, aggregation algorithms should not delay data
delivery beyond a certain threshold.

To compute weighted accuracy, readings received
in the same period they were produced have a weight
of

	
. Older readings are assigned an exponentially

decaying weight: the older the reading, the less
weight we assign to it. The expression for weighted
accuracy is thus given by:

� ��� ���� �������� 	 ��
�
� �� �

Where � is the set of ages of the readings,
� � is

the number of readings of age� per period and� is
the weight. Readings from the current period have
an age of 0 and therefore a weight of 1.

The graphs in Figure 4 show the performance of
in-network aggregation according to the weighted
accuracy metric. As expected, no aggregation,TAG
andcascading timers exhibit the best weighted accu-
racy. Cascading timers has an edge, specially when
weights of old readings are low.Periodic simple and
periodic per-hop perform poorly if old data has low
weight. Their performance increases considerably as
we assign higher weight to older information. Under
corner sink placement,periodic simple andperiodic
per-hop start lower since it takes more periods for the
data to arrive. The opposite is true when the sink is
in the center.

The delay of a reading provides an alternate way
to measure data freshness. We measure the average

delay ( in seconds ) for a given reading as the time
interval between when the reading is originally pro-
duced by a node until the sink processes all readings
generated. Since we are generating results based on
all readings we have to wait until all of them are gath-
ered, hence the delay has to factor this in. Table 2
presents the average delay per reading for our experi-
ments.Cascading timers performs the best since this
is the very metric it tries to optimize.

None Simple Per-Hop TAG Cascade

Corner sink 0.590 2.843 2.080 0.593 0.367
Random sink 0.565 2.047 1.544 0.418 0.286
Center sink 0.545 1.523 1.247 0.298 0.201

Table 2: Average reading delay

Cascading timers exhibits good performance on
longer data collection periods as well. For example,
in the case of a 10-second collection period using
random sink placement,cascading timers achieves
average delays similar to the ones in table 2,� ����.
No-aggregation’s delays range around the� �� sec-
ond mark, whileTAG has an average of� ���� de-
lays. These results are due to the fact that no aggre-
gation just sends at uniformly distributed times and
TAG staggers transmissions as spread out as possible
due to its method of dividing the period into slots.
In both of these cases the delay will increase as the
period increases.

In summary, as expected, our results show that in-
network data aggregation can achieve considerable
energy savings.Periodic per-hop adjusted aggrega-
tion (specifically ourcascading timers algorithm) is
able to maintain the samefreshness andaccuracy as
when no aggregation is used. This is an impressive
result considering the constraints imposed by peri-
odically generated data. Furthermore, whileTAG ex-
hibits reasonable performance for shorter collection
periods,cascading timers performs consistently well
across a wide range of collection intervals. We study
the behavior of the different aggregation timing mod-
els in more detail in Section 5.4.
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Figure 4: Weighted accuracy

5.3 Estimating the Single Hop Delay

As discussed in Section 2,periodic per-hop adjusted
aggregation algorithms schedule a node’s timeout,
i.e., the time a node is due to “clock out” the current
data aggregate, as a function of the node’s position
in the distribution tree. More specifically, in ourcas-
cading timers aggregation, timeout is a function of
thesingle hop delay or ���, an estimate of the time a
packet is expected to take to traverse one hop in the
data collection network, including processing time.
Given���, we can then estimate the time it takes for
a packet to traverse the path from the source to the
sink by multiplying ��� by the number of hops tra-
versed.

In this section, we study how��� impacts the per-
formance ofcascading timers. Note that��� de-
pends on current network conditions such as load,
channel quality, etc. If the network is heavily loaded,
packets might take longer to traverse one hop. This
may result in nodes timing out and readings getting
lost. The performance ofperiodic simple andperi-
odic per-hop aggregation schemes will also be im-
pacted when under heavy load.

Recall that, in order to avoid collisions, we stag-

ger node transmission in relation to one another us-
ing a small random interval. Thus,��� has basically
a deterministic- as well as a non-deterministic com-
ponent. While propagation- and transmission delay
make up���’s deterministic component, the stag-
gering interval and queuing delay are responsible for
���’s non-determinism.��� can then be computed
using the expression in Equation 4,

��� 	 �� � �� � � � � �� � (4)

where,�� is the staggering delay of the packet,
��

and� � correspond to the transmission and propaga-
tion delays respectively and�� � accounts for both
queuing and processing delays.

Cascading timers uses � �� ��� as given by
Equation 5, which is obtained by using the maximum
possible staggering delay and an upper bound (�� )
of the rest of the components. The maximum�� is
chosen by us. The propagation and transmission de-
lays are a function of the network architecture and
the maximum size of the packets. The processing
and queuing in this scenario are almost negligible
since as soon as packets arrive they are aggregated
and the processing for this is minimal.
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� �� ��� 	 � �� ��� � � �� ��� � � �� � � � �(5)

Figure 5 presentscascading timers’ weighted ac-
curacy for different values of��� ranging from� �� 	
to � ��. The weight used was� ��. For good perfor-
mance we chose the maximum staggering interval to
be� ���. This is a good enough compromise between
large enough�� to avoid collisions and small enough
to allow the last readings to get to the sink within the
collection interval. Our original experiments used an
�� of � ���. When studying the values of the��� and
the �� later we found the value of� ��� to be slightly
more optimal for our scenario and density.
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Figure 5: Weighted accuracy for different��� values

For ��� smaller than the maximum random stag-
gering interval (left-hand portion of the graph), we
observe that the algorithm’s performance in terms
of accuracy deteriorates considerably. This is ex-
pected: data is aggregated and sent even before chil-
dren nodes try to send since their stagger timer hasn’t
expired. When��� is slightly higher than the stag-
gering interval, performance is maximized. This is
because child nodes will have enough time to send
in their data items to the corresponding parent.

For large values of��� the algorithm’s weighted
accuracy starts to drop. This is expected since the
time it takes for readings from farther nodes to reach
the sink using large��� ends up being longer than
the collection period, and hence they are worth less
according to weighted accuracy.

Setting the staggering interval is an important
tradeoff. While large staggering intervals are ef-
fective in avoiding collisions, they yield higher de-
lays. As previously pointed out, the value of��
also depends on network density. In dense networks
larger staggering intervals are needed to avoid colli-
sions. Another important consideration is the type of
medium access control (MAC) protocol employed.
Contention-based MAC protocols, such as CSMA
(which is what we use in our simulations), are prone
to collisions and node transmissions need to be stag-
gered in time. However, other types of MAC, such
as scheduled access protocols, are collision free and
thus do not require staggering of node transmissions,
probably at the expense of delay.

We also measured the values of the real��� over
the course of our simulations and observed very
small variations. This is expected, since traffic flows
over the same data collection tree and the offered
load is essentially constant.

5.4 Data Collection Interval

This section discusses the impact of the data collec-
tion interval’s length on the performance of periodic
aggregation timing models. Intuitively, the smaller
the collection period, the more critical the timing
model used by in-network aggregation.

Periodic simple and periodic per-hop have no
timer organization, and send data randomly during
the data collection interval. This basically creates a
data path where readings from nodes will take ap-
proximately as many collection intervals as hops to
reach the sink. The longer the collection interval, the
longer delays these data paths will incur.

In the case ofno-aggregation, data is sampled at
random times within the interval and then sent. Data
reaches the sink as quickly as possible since it is for-
warded with no waiting. Following ourcascading
timers model, data is transmitted near the end of the
collection period depending on the position in the ag-
gregation tree. This is independent of the period’s
length. All the data arrives with a small delay at the
sink right before the period ends.

We define two different performance metrics as-
sociated with the delay a reading takes to reach the
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sink. The first definition focuses on how long the
reading takes to reach the sink from the time it is
sampled. We call this metric thesample-to-sink de-
lay. The second metric looks at the time it takes from
when a reading is sampled untilall readings are re-
ceived by the sink (sample-to-all). While the former
metric targets applications that are mostly interested
in the latest readings, the latter is useful when the ap-
plication performs some computation which requires
all readings.

As previously discussed, according to thesample-
to-sink metric,periodic simple andperiodic per-hop
aggregation will not perform well. Furthermore, in
larger networks, the extra hops packets take to reach
the sink will add to the delay.No-aggregation will
incur the smallest delay possible, having packets hop
their way to the sink. Assuming the staggering delay
is uniformly distributed from� to ��, packets under
no-aggregation will take on average� ��� �

� � � ��� �,
where��� � is the number of hops data has to traverse
and

�
accounts for transmission, propagation, and

queuing delays.
Cascading timers will exhibit a sample-to-sink

performance of almost double that ofno-aggregation
since the ��� used is based on the maximum,
and not the average staggering delay (��) like no-
aggregation. This means that the delay will be
��� �

� � � ��� �. Double thesample-to-sink delay
might seem like a big disadvantage; however, given
that the staggering interval is small compared to the
data generation period, thesample-to-sink difference
betweenno aggregation andcascading timers is rel-
atively small.

Thesample-to-all(� �� ��) delay provides a metric
for the overall freshness of the data the sink receives.
In no aggregation data gets to the sink throughout the
generation period. Thus, the average time a reading
will have to sit idle at the sink is� ��

��� �
�
�� 	
� , that

is, from when it arrives at the sink, until it is tallied
at the period’s end.Cascading timers, on the other
hand, sets nodes to transmit at the end of the period,
so the time the readings have to wait at the sink is
always close to 0 (see Figure 1).

� �� �
 ���� � 	 � �� ��� �
� �� � � �

� � (6)

� �� �� �������� � 	 � ���� �
� �� � (7)

Equation 6 and 7 give us the averagesample-to-
all delay over all nodes (

�
) for no-aggregation and

cascading timers respectively.� represents the av-
erage node depth and� � denotes the period length.
As shown in Equation 8, forcascading timers to
have a lower overallsample-to-all delay thanno-
aggregation the period length (� �) has to be larger
than the maximum staggering delay (��) times the
average node depth (� ).

� �� �
 ���� � � � �� �� �������� � (8)
� �� ��� �

� �� � � �
� � � � ���� �

� �� �
� ��� �� � � �

� � ��� ��
� � � ��� ��

In the worst case scenario, i.e. a line topol-
ogy, the average node depth will be

�� . For any
large sample period,� � will be larger that �

���� .
Using our simulation parameters, 100 nodes and a
0.03 ��, � �� �� �������� � would be smaller than
� �� �
 ���� � for any period length greater than 1.5
seconds. Again we note that this is the worst case
scenario. Usingno aggregation under that scenario
will probably incur collision problems due to the
amount of traffic at the nodes close to the sink.

For the other topology extreme, i.e. a single hop
tree with an average depth of 1, it is easy to see
that cascading timers will have lower delays for all
values of the period length (greater than the maxi-
mum staggering delay). The main drawback would
be that, if there are many nodes, the traffic at the end
of the period may cause too many collisions. This
could be potentially solved by increasing the stag-
gering delay. If the staggering delay is increased
to match the period length then� �� �
 ���� � 	
� �� �� �������� �.

6 Packet Losses

As previously discussed, timing models are critical
for the performance of in-network aggregation. In-
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deed, efficient aggregation may result in packets car-
rying several readings. Packet losses can, thus, con-
siderably degrade the accuracy and timeliness of data
aggregation. In this section, we study the effect of
packet losses when collecting and aggregating peri-
odic data. We also propose three different mecha-
nisms to handle loss and evaluate their performance.

Since we target applications that generate data pe-
riodically, we avoid recovery mechanisms that intro-
duce delay. If data recovery and retransmission take
too long, nodes would already be producing the read-
ings for the following round, error recovery would
interfere with the propagation of new data. Take for
example a traditional error recovery scheme where
negative acknowledgments (NACKs) are used. Un-
der the proposed aggregation protocols, every node
knows how many children it has. Therefore, if the
node times out waiting to hear from some of its chil-
dren, it could then send a NACK to request them
to retransmit their data for the current round. How-
ever, this would interfere with the next round of data.
Since target application scenarios don’t require per-
fect data delivery, we are willing to sacrifice accuracy
in favor of freshness.

We use a proactive approach to error recovery
along the lines of error correcting schemes such as
Forward Error Correction (FEC) [10]. Since the typ-
ical data items produced in the target application sce-
narios are generally small (a few bytes), we decided
to use a very simple form of error correction mech-
anism, namely send a packet multiple times. In fu-
ture work, we plan to investigate other, more sophis-
ticated error correcting codes that can pay off in the
case of more complex data.

6.1 Handling Losses

Our loss model is simple: drops are independent and
the loss probability� is fixed for all links and is kept
constant throughout the simulation. A packet is suc-
cessfully transmitted with probability�	 � � �. While
this is a simple scheme, it can be used to get a gen-
eral picture. We will look at spatial and temporal
correlated losses in future work.

As mentioned earlier, we deal with losses by pro-
actively sending data multiple times. This strategy of

course creates a tradeoff between consuming energy
to send redundant packets and increasing the prob-
ability of delivery. Redundant transmission mecha-
nism might not be suitable for all scenarios; in partic-
ular, when data is generated sporadically (rather than
periodically) normal error recovery using acknowl-
edgements and retransmissions will likely be more
cost-effective.

We use three different redundant transmission
schemes, namelydouble-send, max-send, and
adaptive-send. While double-send, as its name im-
plies, sends every packet twice,max-send sends ev-
ery packet as many times as readings are aggregated
in the packet. This requires the protocol to include an
“aggregation counter” in the data packet. The rea-
soning behind this strategy is that packets carrying
more readings are more valuable and we therefore
want to increase their chances of getting through.
Adaptive-send is a more complex algorithm, whose
goal is to achieve certain delivery guarantees (ex-
pressed by number of acceptable losses) for a given
loss rate. Equation 9 describes the relationship be-
tween the number of acceptable losses� and the drop
probability� , where� and

�
are the number of aggre-

gated readings in a packet and the number of trans-
missions, respectively. The number of transmissions
to achieve� under loss probability� is then given by
Equation 10.

� 	 � � � 	 (9)
� 	 ���

�

� �
� � (10)

Note that, since we aim for hop-by-hop guaran-
tees, these equations apply to a single link. In other
words, if � 	 � ���, adaptive send will perform the
necessary number of retransmissions to guarantee a
95% delivery guarantee over a particular link given
that link’s loss rate. The overall network’s delivery
guarantee may be slightly different (higher or lower)
depending on the interdependencies between the ag-
gregates in the packets as they flow towards the sink.
As our simulation results show, the overall reliabil-
ity achieved byadaptive-send (shown in Figure 6 as
data accuracy) is typically very close to

	 � �.
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In a real network, the loss probability can be either
known a priori (from previous experience operating
the network) or estimated over time. Underestimat-
ing the loss rate yields delivery rates lower than re-
quired; conversely, loss rate overestimation results in
more redundant packets.

6.2 Results

We repeated the simulation experiments described
in Section 5 to study the performance of the three
proposed loss handling strategies when employed
by cascading timers aggregation. Loss probabili-
ties range from 0.05 to 0.5 in steps of 0.05. We
kept all other parameters the same. In the case of
adaptive-send, the acceptable loss rate was set to
0.05 (which implies relatively high delivery guaran-
tees). We present the results for different sink place-
ment scenarios in Figures 6 and 7. For comparison
purposes, we plot results forcascading timers aggre-
gation and no aggregation when they employ no error
recovery.

The results obtained for the different algorithms
bring out some interesting points. Figure 6 shows
data accuracy (percentage of readings received by
the sink) achieved by the different mechanisms un-
der different loss conditions. These results confirm
our expectations:adaptive-send is the best performer
with close to perfect accuracy even under high loss.
Max-send delivers more than 50% of the readings,
while double-send starts with a very good delivery
but quickly degrades under high loss conditions.

At low loss rates we notice thatdouble-send per-
forms slightly better thanmax-send and adaptive-
send. This is attributed to the fact that it sends ev-
ery packet twice, including packets with one read-
ing, irrespective of loss rate.Adaptive-send and
max-send send packets with one reading only once.
When packets with one reading get dropped, they
are not recovered. Packets that would have included
the dropped reading will now be transmitted fewer

times, decreasing their chance to get to their next
hop, which decreases the next packet and so on. Af-
ter a certain drop probability ,adaptive-send starts
sending packets with single readings twice. This
seems to indicate that taking good care of packets,
even when they only have one reading collected is
important.

It is interesting to note that under the loss model
and scenarios used, drops have similar impact on
data collection with and without aggregation. We ob-
serve that the curves forNone andcascading timers
(without error recovery) look very similar. Data
accuracy decays very quickly in both cases. We
plan to study this phenomenon further using differ-
ent topologies and network diameters.

To evaluate the overhead incurred by these error
recovery schemes, we plot total number of packets
sent in Figure 7.Double-send sends approximately
200 packets per round for all loss rates as it always
sends a packet twice.Cascading timers (without er-
ror recovery) also sends a constant number of packets
(around 100 in this case) since it does not adjust its
behavior for different loss conditions. At the higher
error levels we notice that 100 packets are not sent
per round. This is due to the fact that because of
packet drops, at tree construction time some nodes
don’t become part of the tree.

It is somehow expected thatnone and max-
send would exhibit similar behavior sincemax-send
should transmit approximately the same number of
packets asnone. However, this is not the case: for
none, the loss of packet means that nodes in the path
to the sink will now transmit one less packet. Inmax-
send, if all the transmissions of a packet are lost, sub-
sequent packets will be transmitted fewer times since
they will have less readings. The decline ofmax-send
is slower thannone because all of the transmissions
of a packet have to be lost for subsequent nodes to
transmit less.Adaptive-send increases the number of
packets sent as loss probability increases since the
number of transmissions is a function of the number
of aggregated values and the drop rate.

In some scenarios, rather than maximizing data
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Figure 6: Data accuracy under loss

accuracy, it may be more attractive to strike a bal-
ance between number of packets sent (or energy con-
sumed) and accuracy. Figure 8 plots the number of
packets sent per reading collected. The optimal case
of course is one packet sent per reading.Cascad-
ing timers lets us achieve that goal when there are no
losses. Adaptive-send, which is implemented atop
cascading timers, yields good performance under all
conditions due to its adaptive nature.

A corner sink means routes are longer,none and
max-send due to this, specially at low drop rates. It
is also the case that for the longer paths the single
reading packets ofnone have a greater probability
of getting dropped, hence the poor performance in
packets per reading.

7 Related Work

Protocols for sensor networks have sparked consid-
erable interest in the network research community.
In this context, data aggregation rose as a technique
for improving sensor network protocols’ energy ef-
ficiency. We briefly describe some previous and on-
going research efforts in order to put our work in per-

spective.

Directed diffusion [1] has been proposed as a data
gathering protocol for sensor networks. It targets the
monitoring of events which are typically sensed only
by a few nodes. An example scenario is tracking
animal herds in a given geographic region. Diffu-
sion’s communication paradigm is based on infor-
mation sinks broadcasting requests, orinterests, for
relevant data. Nodes producing relevant information
respond anddata paths are formed. Data is aggre-
gated when a node is part of various data paths.

Diffusion’s aggregation is based on a report gra-
dient, which defines how many reports to send per
time unit. Therefore, according to our classification,
diffusion falls in theperiodic simple category. Every
node can potentially perform aggregation; however,
nodes in the shortest path from information sources
to the sinks do most of it. Diffusion adapts well to
node failures by keeping state of the interest through-
out the network. When a path fails the neighboring
nodes remember alternate paths. Some of their more
recent work addresses the impact of node density in
this type of data collection scenario [11].

eScan [3] is an energy monitoring scheme that col-
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Figure 7: Packets sent under loss

lects energy readings from every participating node.
Their scenario is somewhat similar to the ones we
target, i.e., every node maintains an energy value
that is reported to a collection sink at the edge of
the network. However, rather than generate periodic
reports, new data is reported only when the energy
of a node changes beyond a certain threshold. Ag-
gregation is performed as data flows to the sink by
merging reports of similar energy values intoenergy
range polygons.

The initial eScan work does not handle latency in
propagating data; they also assume a perfect MAC
layer and instead of using time they use data gener-
ation events to drive their simulations. Rather than
being an alternative to eScan, our aggregation tech-
niques can be incorporated by eScan to, for example,
improve data freshness.

SPIN [4], Sensor Protocols for Information via
Negotiation, is a protocol for data collection and dis-
semination. In SPIN, all nodes have pieces of named
information that they want to send to the rest of the
nodes. Data transfers are first negotiated based on
the names of items. Only requested items are ex-
changed. This avoids the cost of sending the data

needlessly but incurs the overhead of engaging in
the negotiation phase. Note that SPIN’s communica-
tion model is based on a gossip-style approach. The
resulting protocol is very similar to NNTP [12] for
propagation of news over the Internet. Essentially,
it uses point-to-point communication among pairs of
nodes to eventually convey data to all interested par-
ticipants. SPIN does not really use an explicit aggre-
gation mechanism; aggregation is performed implic-
itly during initial negotiation between two nodes us-
ing the meta-data to decide whether actual data will
be exchanged.

TAG [2], or Tiny AGreggation, is a sensor net-
work querying system. It employs a SQL-like syn-
tax and uses aggregation as the query is processed
within the network. When a query involves anepoch,
requiring readings to be collected periodically, TAG
uses theperiodic adjusted aggregation approach. It
subdivides the epoch into slots. The length of a
slot is given by the epoch length divided by

�
, the

maximum number of hops separating data generation
nodes from the sink. Followingperiodic adjusted ag-
gregation operation, slots are assigned to nodes in de-
creasing order,

�
,
� � 	

,
� � �, ... , as the query prop-
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Figure 8: Packets sent per reading collected

agates through the network. Nodes transmit in their
slot, hence, the out-most nodes will transmit first and
nodes closest to the sink, last. As in any time-slotted
mechanism, clock synchronization among nodes is
required so that nodes transmit in their designated
slots. TAG also takes advantage of time slotting to
switch idle nodes’ radios off.

Convergecasting [7] performs aggregation as it
collects data periodically from all nodes to a single
sink. Like TAG, its data aggregation mechanism also
falls in theperiodic adjusted category. It assigns ag-
gregation slots as the query percolates the sensor net-
work, trying to assign nodes to different slots in or-
der to avoid collisions. Once the algorithm finishes
assigning slots, that is, when the query setup reaches
the edge of the network, the order of the slots is in-
verted to reflect a data collection tree. A similar con-
cept is used by the work reported in [13].

8 Conclusions and Future Work

This paper explored in-network aggregation as a
power-efficient mechanism for collecting data in
wireless sensor networks. Our focus was on appli-
cations where a large number of nodes produce data

periodically which is consumed by fewer sink nodes.
Such communication model is typical of monitoring
scenarios, one key application of sensor networks.

Using simple analytical models, we present a
trade-off analysis of in-network data aggregation.
Through simulations, we evaluate the performance
of different in-network aggregation algorithms, in-
cluding our owncascading timers, and characterize
the tradeoffs between energy efficiency, data accu-
racy and freshness. Our results show that timing, i.e.,
how long a node waits to receive data from its chil-
dren (downstream nodes in respect to the information
sink) before forwarding data onto the next hop (to-
ward the sink) plays a crucial role in the performance
of aggregation algorithms in the context of periodic
data generation. By carefully selecting when to ag-
gregate and forward data, we achieved considerable
savings (as much as 5 times less traffic) while main-
taining data freshness and accuracy.

Finally, in order to perform well under packet loss
conditions, we developed three different proactive
error recovery techniques which are suitable to pe-
riodic data generation (as they incur no additional
delay). They are essentially based on pro-actively
transmitting packets multiple times. Simulations
showed that the proposed techniques were able to
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maintain high accuracy even under high loss condi-
tions. Among the proposed mechanisms,adaptive-
send, which adjusts the number of times a packet
is sent based on the number of readings aggregated
in the packet and an estimate of the loss probability,
yielded the best performance.

As future work, we plan to use more sophisti-
cated loss models to evaluate our recovery mecha-
nisms under different loss conditions. We will also
develop techniques to handle node failures. We also
plan to investigate aggregation algorithms that tar-
get different scenarios. For example, instead of pe-
riodic data generation, explore scenarios in which
data is reported only when it changes significantly.
Another direction is to explore cluster-based aggre-
gation, where clusters are formed based on a set of
constraints and then data is aggregated within clus-
ters.
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