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Abstract Since wireless sensor networks are prone to trans-
mission errors and losses can have considerable im-

This paper explores in-network aggregation aspact when data aggregation is used, we also pro-

power-efficient mechanism for collecting data ipose and evaluate a number of techniques for han-

wireless sensor networks. In particular, we focus aifing packet loss. Simulations show that, when used

sensor network scenarios where a large humberimfconjunction with aggregation protocols, the pro-

nodes produce data periodically. Such communigassed techniques can effectively mitigate the effects

tion model is typical of monitoring applications, amf random transmission losses in a power-efficient

important application domain sensor networks tasay.

get. The main idea behind in-network aggregation is

that, rather than sending individual data items from )

sensors to sinks, multiple data items are aggregagsd Introduction

as they are forwarded by the sensor network. ) ) )
§ensor networks are typically data driven, i.e., the

Through simulations, we evaluate the performan % | work ©s | icating dat
of different in-network aggregation algorithms, jny/ "0l network cooperales in communicating data

cluding our own ding timers, in terms of the from sensors ifformation sources) to information

trade-offs between energy efficiency, data accurat ks. On(_—:' of the main challenges raised by sensor
tworks is the fact that they are usually power con-

and freshness. Our results show that timing, i'gt’ ined si . q icall hibit limited
how long a node waits to receive data from its chifrained since Sensing nodes typically exhibit limite

dren (downstream nodes in respect to the im‘orm(i:al'sfpabllltles In terms of processing, communication,

tion sink) before forwarding data onto the next hg nc_i esp ecially, power. Sensor networks’ power lim-
(toward the sink) plays a crucial role in the pe l1_at|on is aggravated by the fact that, often, once de-

formance of aggregation algorithms for applicatiorpsloyed’ they are left unattended for most of their life-

that generate data periodically. By carefully selecg—m f.'o:hus’ ?,ngrggef\,?,gsf rvzttlosolls Or]: grl(;ne tcons;d—
ing when to aggregate and forward datascading ration in sensor K prolocols In orderto max-

timers achieves considerable energy savings whi[8'2€ the network’s operational lifetime.

maintaining data freshness and accuracy. We alsén-ngtwork aggrega_tlpn is awell known tec_hnlque
to achieve energy efficiency when propagating data

study in-network aggregation’s cost-efficiency usin]c inf i 0 sink
simple mathematical models, om information sources (e.g., sensors) to sin (s).
The main idea behind in-network aggregation is that,

“The author is now at the Palo Alto Research Center (PAREther than sending individual data items from sen-

and can also be reached at isolis@parc.com sors to sinks, multiple data items are aggregated as




they are forwarded by the sensor network. Data ggprtant class of sensor network applications, namely
gregation is application dependent, i.e., dependiagplications that generate data periodically. Moni-
on the target application, the appropriate data agring (including monitoring of continuous environ-
gregation operator, aggregator, will be employed. mental conditions like temperature, humidity, seis-
For example, suppose that in a controlled temperaic activity, etc.) is a good example of such appli-
ture environment, the average temperature needsations. One of the constraints imposed by periodic
be monitored. As sensors generate temperature regata generation on aggregation algorithms is timing.
ings periodically, internal nodes in the data colle¢tr other words, how long should a node wait to re-
tion tree (rooted at the information sink and spaceive data from its children (downstream nodes in
ning relevant data sourcé} average data receivedespect to the information sink) before forwarding
from downstream nodes and forward the result tdata already received? Note that there is a tradeoff
ward the information sink. The net effect is that, blgetween data accuracy and freshness, i.e., the longer
transmitting less data units, considerable energy savaode waits, the more readings it is likely to receive
ings can be achieved. However, how much energyaisd therefore, the more accurate the information it
saved depends on the type of aggregator employseinds out. On the other hand, waiting too long may
For instance, in the running average scenario just desult in stale data. Furthermore, if a node waits too
picted, a number of packets containing temperatdomg, it may interfere with the next “data wave”.

readings from individual sensors are averaged an(bur hypothesis is that timing models play a cru-

result in a single packet of the same size as the 0Reg 1a'in the accuracy and freshness delivered by
that carry individual temperature readings. Howev%{ata aggregation. In this paper, we study how dif-

i the_ only po§S|bIe aggregator esncatenation, 1.e., _ferent timing schemes affect the performance of in-
multiple data items are concatenated and transm'%&work aggregation algorithms. Based on their tim-

asa _smgle pac;fke_t, tTen tg_e sole source of energy %ﬂ‘é’model, we classify existing periodic data aggre-
INGS 1S more efficient medium access. gation protocols into three categories, namegisri-

From the information sink’s point of view, the benggic smple, periodic per-hop, andperiodic per-hop
efits of in-network aggregation are that in generglj geq.

(1) it yields more manageable data streams avoidingper_ o ) )
overwhelming sources with massive amounts of in- efiodic smpleaggregation works by having each

formation, and (2) performs some filtering and prél_od_e wait a pre-defined period_of time (rgferred to
processing on the data, making the task of furth@ imeout), aggregate all data items received, and

processing the data less time- and resource cons@ff?d outa single packet containing the result. As dis-
ing. cussed in Section 7 below, the directed diffusion [1]

. - sensor network communication paradigm belongs to
Because of its well-known power efficiency prop;

erties, in-network aggregation has been the focustr&%s_category. Aggregation mechanisms in

riodic per-hop category have nodes send the aggre-
several recent research efforts on sensor networks Y
. afed packet as soon as they hear from all their chil-
As a result, a number of data aggregation algg- ) ) )
: . . -dren. A maximum timeout interval equal to the data
rithms targeting different sensor network scenarios

have been proposed. Directed diffusion [1], TAG [th_eneratlon_ pe_rlod is used in case the reports get lost.
A inally, periodic per-hop adjusted uses the same ba-

eScan [3], and Sensor Protocols for Information V|Sa|1C rinciole of periodic per-hoo but schedules a

Negotiation (SPIN) [4] are some notable examples. P P P P P

In this paper. we focus on the requirements of an | node’s timeout based on its position in the distribu-
Paper, d r{i]on tree (rooted at the information sink and span-
ning all reporting- as well as appropriate interme-

1 . . .
While in this paper we assume that a_II nodes producg da&’ilate nodes). Our ownascading timers aggrega-
the proposed technigues and the conclusions we draw might ap

ply to the case where only a subset of the nodes are (relevdt)) mechanism falls within this category, and, when
information sources. compared to other existinggriodic per-hop adjusted




algorithms, presents benefits such as not requiridg Cascading Timers Aggregation

clock synchronization among nodes and minimizing

timer scheduling overhea@ascading timers sched- As previously discussed, oaascading timers[5] ag-
ules a node’s timeout based on the time it takes fogeggation algorithm targets periodic data generation
packet to travel a single hop, or th@gle hop delay applications in which nodes produce data at regular
and the number of hops to reach the sink. We algeriods. A given node aggregates data received from
study how the value selected for tieagle hop delay its children into a single data item, which is then
impacts the performance oéscading timers. forwarded upstream towards the information dink
Application scenarios that fit well within this com-
I,{_nunication model include monitoring of continuous
environmental conditions like temperature, humidity,
I§_eismic activity, etc. While we focus on the single in-
formation sink scenario, the proposed technique can

In summary, the contributions of this paper i
clude: (1) development afascading timers aggre-
gation for periodic data generation applications i
cluding a detailed analysis @hscading timers de- X e )
pendence on per-hop delay, (2) trade-off analysistEﬁ applied to muI_tl—S|r_1k sc,enarl_os. i
in-network data aggregation using simple analytical SOMe oftascading timers design goals include:
models (3) comparative performance study of differ-
ent aggregation algorithms using extensive simula- Simplicity: given that sensor network nodes are
tions, and (4) development of different loss recovetypically anemic devices regarding energy, process-
mechanisms and study of how they impact perfang, storage, and communication capabilities, de-
mance of data aggregation under lossy environmergigning simple aggregation algorithms is key.

For evaluating the performance of the different in-  Efficiency: generate close to minimal control
network aggregation mechanisms, energy efficiengyerhead. Again, this is a critical requirement in the
data accuracy and freshness, and communicatieBource-constrained environments our algorithms
overhead are used as performance metrics. Wleget.
should also point out that, unlike previous evaluation
studies targeting sensor network protocols, a Wige

. . ) : No clock synchronizationcascading timersdoes
range of network scenarios including different infor- . -
; . . not require clock synchronization among nodes. No
mation sink placement strategies are used.

matter how efficient clock synchronization mecha-

nisms become, they will require additional message
The remainder of the paper is organized as f@lxchange among nodes and thus incur additional en-

lows. In-network aggregation wittescading timers  ergy consumption. Efficient synchronization algo-

is described in Section 2. Other aggregation typgghms [6] have emerged recently and might allow
are mentioned in Section 3. Section 4 investigatgger tradeoffs.

in-network aggregation’s cost-efficiency using sim-

ple mathematical models. Section 5 describes the Routing protocol independence: no cific un

simulation experiments we conduct to compare the . uting protocot independence: specitic un-
erlying routing protocol is assumed.

performance of different in-network aggregation al- Similar t t periodi i hani
gorithms, including the experimental setup used, re- imilar to most periodic aggregation mechanisms,
ading timers starts by having the sink broadcast

sults obtained, as well as the impact of the per-h8|?130_ il I nod This initial
delay on the performance ofiscading timers. Tech- the initial request to all nodes. is initial request

niques for handling packet losses and their perf(gp_ggers a simple tree establishment protocol which
mance are introduced in Section 6. Section 7 d&@ts up reverse paths from all nodes back to the sink

cusses _related work. Fina}”% _SE‘Ction 8 presents OUrzag explained in more detail below, data is aggregated over
concluding remarks and directions for future work.a tree rooted at the information sink
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or root of the tree. Upon receiving the request magceived to the end of the period)( hence the first
sage, nodes send a reply back to their parent in timer is set for2e. Subsequent timers will continue
tree. Each node can then deduce how many chd-be scheduled evetyinterval.

dren it has. Nodes assume a broadcast medium anNote that a node’s timeout depends on #sh@le
forward data using one-hop broadcasts. In orderhop distance, or shd. We investigate this dependence
avoid collisions, transmissions are scheduled usingnadetail in Section 5.3 and show how it affects the
small staggering delay. The setting of the staggeripgrformance of the algorithm. As previously pointed
interval will be discussed in detail in Section 5.3. out, cascading timers' timing scheme is parallel to

Note that tree establishment is essentially the ovéte ones employed by both TAG [2] and Converge-
head incurred bycascading timers and most other casting [7]. According to our taxonomy, all three
in-network aggregation mechanisms. Even if no agtechanisms are classified in tiperiodic per-hop
gregation is employed, a distribution tree is typadjusted category. In our simulations, we compare

cally used to collect data from information sourcdge different aggregation techniques. @ascading
to sinks. timers and TAG represermperiodic per-hop adjusted

In cascading timers, instead of having nodesalgor'th_ms' ] ) )
schedule randomly their timeout, i.e., the time in- Our implementation offAG tries to follow their

terval they wait to receive data from their childref?}lgor'thm as closely as possible. The data generation

before forwarding the next data aggregate, a nodB%riOd is equivalent to TAG's epoch. We estimate

timeout is set based on the node’s position in the d&42§ Maximum number of hops and divide the period

distribution tree. Thus, a node’s timeout will happe'H this many slots. To avoid collisions, nodes trans-

right before its parent's. This causes the so-calIQ?Jt at a random uniformly distributed time within the
scascading’ effect: data originating at the leaves %ot corresponding to their height on the aggregation

clocked out first, reaching nodes in the next tree leV&fe-
in time to be aggregated with data from other leaf
nodes and locally generated data, and so on. Theget Qther Periodic Aggregation
effect is that a “data wave” reaches the sink in one .

period. This is the main reason behindscading Mechanisms

timers ability to achieve power efficiency and ye L .
) Y Ve p y y tBelow we describe in detail the other classes of
deliver fresh data at sink nodes. . . . .
_ oo o aggregation algorithms we use in our comparative

Timeout scheduling is part of the distribution tre@tudy. As baseline, we employ no in-network aggre-
setup protocol and is triggered by the initial requegtion when sending data from information sources
from Eh‘? sink. The sink's request contains & *hag the sink. As previously pointed out, even in the
count” field which gets incremented as the requesy_aggregation case, we employ a distribution tree
travels toward the leaf nodes. Using this hop cousteq at the information sink and spanning all (rel-
information, nodes can estimate their distance, dant) data sources. As packets flow from the leaves

time, to the sink and schedule their timeout t0 Prgs the root, nodes simply forward them along the tree.
duce the cascading effect.

Figu_re 1_shows graphi_cally timeout calcul_ation i@.l Periodic Simple
cascading timers, wheret is the data generation pe-
riod, h is a node’s distance to the sink in number dModes inperiodic simple aggregation wait a pre-
hops, andshd, the single hop distance, is the delay defined amount of time, aggregate all the data re-
to traverse one hop. Once the request packet is ¢ceived in that period, and send out a single packet.
ceived, a node schedules its timeout to be after iTfie aggregation period is equal to the data genera-
children and before it's parents. This is done by cdlen period, which, for most our simulation experi-
culating a "mirror” image of the time the packet waments, is set to 1 second.
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Figure 1:Cascading timerstimeout calculation

This class of aggregation protocols represents thel Energy Efficiency

basic mechanism used by Directed Diffusion [1] con: . . . .
E—%ecall that data aggregation’s main goal is to achieve

sidering that all nodes have relevant data to send: fici itd by reducing th b
Based on feedback (or reinforcements) from the sinzi?ergye ciency. 1t does so by reducing the number

every node uses a specific gradient which determin d ?Ckefjs traln sm|t_ted|. Ideall(ly:[ yvhen ?ggregartllon c'js
the rate at which data is sent to the sink. Note that P .0Yed, Only asingle packet 1s sent by each node
r data collection period, or round. Thus the num-

nodes are not necessarily synchronized when “cloﬁg .
y sy er of packets sent per round, 4yg Pkt/ Round, is

ing out” data. given by Equation 1.

3.2 Periodic Per-Hop AggPkt/Round n @)
NoAggPkt/Round = Z d; 2

According toper-hop simple aggregation, once all iEN

data items are received from a node’s children in the Maz(d)

distribution tree, an aggregated packet is produced = Z d*Ng (3)

and sent onto the next hop. Each node uses a time- a=1

out for sending out packets in case their children’s\yithout aggregation, each node will send a packet
response is lost. The timeout is equal to the data 9@Rs; will be forwarded to the sink. Each hop traversed
eration_ period since once that time_ is up, we will bgy a packet counts as one packet being sent, hence,
expecting and producing new readings. the cost of getting a reading from a node equals its
height on the data distribution tree. The number of
packets sent, dNoAggPkt/Round is thus given by
Equation 2, wherel; is the depth of node and N

is the set of participating nodes. Alternatively, we
can compute the number of packets transmitted per
In this section, we study the performance tradesund as a function of the number of nodes at every
offs raised by in-network aggregation. Using simpleee level. This is described by Equation 3, whére
mathematical models, we conduct a cost-efficienis/the number of tree levels ard; is the number of
analysis of data aggregation. nodes at depth.

4 Tradeoff Analysis



Clearly, in an average scenario, no-aggregatigregation is employed, a distribution tree is typically
will send more packets per round. No-aggregationised to propagate data from information sources to
best case scenario is when the data distribution tsteks.

has maximum dept{az(d)) equal to 1. The num-  |n terms of communication complexity, tree es-

ber of packets sent per round without aggregationtiplishment costs. packets as each node dissemi-

equal ton (Equation 2). This confirms that in “shalnates the original query that triggers formation of the

low” distribution trees, the benefits of aggregatiofiee. If the protocol also generates a reply from ev-

are not as significant. But it never performs worsgy child, there will be additionat — 1 packets since

than no-aggregation. every node, except the root, will be a child. Tree es-
On the other hand, in deep trees, aggregation kaslishment's total cost is thelm — 1 packets.

significant impact in reducing the number of pack- \gdes reply back to their parents when they re-
ets trans.mltt_ed. The worst case scenario for nNgsi e the original query so that each node knows
aggregation is a “line” topology, a tree where evegy,, many children it has. This information is used
node has only one child. In the case of a line topqls ptimize the algorithms considered by allowing
ogy with dep}hn, the summation in Equation 3 réy poge to know when it has received the readings
sults in ™M@*L) packets per round. from all its children. If this optimization is not per-
Essentially, these are the lower and upper boungsmed, tree establishment cost is reduced pack-

for the number of packets sent when no-aggregatigig which is equal to the cost of tree formation for
is used. As demonstrated in Section 5.2, all the a%-aggregation. Note that nodes can still find out
gregation algorithms studied are able to achieve idgg),, many children they have as the algorithm runs.
energy efficiency by sending only one packet pg{ poth cases, the algorithm is able to handle new

node per round. The difference in performance bggdes joining the tree as well as existing nodes leav-
tween them lies in the data accuracy and freshn@gg/failing.

they achieve.
i In order to adapt to topology changes, tree re-
We assume that an aggregated packet will have i, ishment is performed, which will cost (or

same size as a non-aggregated one. This is the 1S€ 1 if nodes reply back to their parents) pack-

of operations like computing averages, selecting ta& ¢ .o rse. localized tree re-establishments can
maximum or minimum value, etc. This implies thabe performed so as to reduce overhead

as packets flow toward the sink, they will not grow in All alaorith th includi
size. Hence, our energy efficiency metric computes algorithms we present here (including no ag-

number of packets-, rather than number of bytes Se%.agatlon) incur these tree formation costs. Hence,

On the other extreme, if aggregation by concatdnder the conditions used in the experiments re-

nation is employed, i.e., data items are concatenapeocfteOI in Sectlon_ 5, the extra cost C.)f using in-

as they traverse the sensor network, there will still ElgtWOI’k aggregatlon over no-aggregatlon could be
savings on the number of packets transmitted, butﬁz‘ne; 1 additional cont_rol packets if We_want nodes

number of bytes sent will not be reduced. Neverthg)- now how many children they have right from the
less, aggregation will still be advantageous in terrﬁ%art of the algorithm.

of medium acquisition and schedulingCascading In terms of storage complexity, depending on the

timerswill also yield improved data freshness due @d9regation operator used, readings from a node’s
its low delay. children may need to be stored locally. In our ex-

ample application, aggregated data can be stored as
a single data item which will be sent by the node on
timer expiration or when all its children’s readings
Note that tree establishment is essentially the ovare received. This requires at most one data item size
head incurred bycascading timers and most other storage unit. In the case of aggregation by concate-
in-network aggregation mechanisms. Even if no agation, a node needs as many data item size storage

4.2 Complexity
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units as the number of children it has. For instanagin for 20 seconds with data being generated every
a scenario with a single 64-bit data value plus 64-lsiecond (round). Although establishing the distribu-
for control information, assuming an average numbigon tree can be initiated by the data request from the
of children of 32, would require a total of 512-byteink, in our simulations the tree was formed at time 1
storage. The computational complexity is also trivigkecond and data collection was triggered by the sink
for most cases where simple aggregators (e.g., calatitime 3 seconds. We present steady state results,
lating the minimum, maximum, average, sum, etdhat is, measurements taken during the second half
are employed. of the simulation (during the last 10 seconds).

Data points were obtained by averaging over
. . twenty different runs using different seeds to per-
5 Simulations form random node placement. As will be evident in

our results, information sink placement can greatly

Forour cpmparatlye study of the dlffere_nt 'n_'netW(_)rgﬁect the performance of tree-based aggregation al-
aggregation algorithms, we ran extensive smulaﬂoaarithm& For this reason, we ran experiments us-

using thens- 2 network simulator [8]. ing three different sink placement strategies: corner,
center, and random placement. Placing the sink in
5.1 Experimental Setup corners means that the resulting collection trees will
) be deeper. Center placement minimizes tree height.
In the expenmen_ts we condL;cted, 100 nqd €s Wer%erformance metrics we use includeergy con-
randomly placed in &00«500m~ area. Nodes trans—Sume d data accuracy data freshness and over-

mission range and data rate are set to 100 meters and ;-\ i10 energy consumed measures the algo-

115 Kbps, respectively. 802.11b’s broadcast mOderi't%m's energy efficiency, data accuracy and fresh-

used as the MAC-layer protocol and FLIP [9] as the. o ot for its effectiveness in terms of convey-
network protocol so we can take advantage of its O, o 1\ ich information as possible to the sink in a
timized headers. Based on values used by Comn}ﬁﬁely manner

cially available radios, we set transmission and re- .
4 - In these experiments, we do not model the actual
ception power levels to 24.75 and 13.5 milliwatts, re- .
lues being sensed by the nodes, how fast they are

spectively. Idle power consumption was set to 0.6¥$1 . i .
changing or in what manner. Therefore, accuracy is

milliwatts to reflect an optimized MAC layer, i.e., . .
) . measured as the ratio of total number of readings re-
MAC protocols that switch to low-power radio mode . .
. ceived at the sink to the total number of readings gen-

whenever possible.

. . erated. We assume lossless aggregation, that is, no
In order to avoid collisions, nodes stagger the(ljr o . )

. . . ata is discarded. Examples include computing the
transmissions using a small random interval. This. . ) .
o . . minimum, maximum, as well as counting. In these
is important when performing data collection over a

) chnarios, total accuracy is achieved when the sink
tree, especially when nodes try to send at scheduled i . .
can “calculate” an answer that involves one reading

intervals based on their depth in the tree. The ma 1o 1 everv node per round
mum staggering value used w83 seconds. Nodes y P '

pick a uniformly distributed random timer betweeg1 Freshr;essd ":’ c_?mpgted as ﬂ:eddlﬁzr?;]ce bet(\jN?n
0 and this value before sending. In Secti®? we € round a data ltem IS generated and the round 1t 1s

discuss the setting of the staggering interval in morr(féce'_VeOI atthe S'nk' Overhe_ad measures the commu-
detal. nication complexity of the in-network aggregation

. . algorithms.
Nodes are stationary and no transmission errorg

were simulated for the first set of results. However,
packets can still be lost due to collisions. Mecha > Results
nisms to handle packet loss and their performance
are reported in Section 6 below. Simulations were
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Figure 2: Data accuracy and freshness

Figure 2 shows the freshness and accuracy of tt@not account for sink placement, we observe from
aggregation algorithmsPeriodic simple is labeled Figure 2 that sink placement has an impact on data
as “Simple”, periodic per-hop as “Per-hop”, TAG freshness. Even for the no-aggregation case, where
refers to our implementation of TAG's aggregatiopackets are forwarded immediately after they are re-
mechanism, and “Cascade” representsgagctading ceived, placing the sink in the center yields fresher
timers. The sink placements evaluated were cornéita.
random and center. The total number of readings col-
lected (bar height) depicts accuracy and the bar divi- -
sions (shades), freshness. For comparison purposes;,
as baseline we use the no-aggregation strategy (la=
beled as “None”).

In terms of data accuracy, we observe that there is-
not a big difference in performance when comparing -
the different aggregation mechanisms. No aggrega-
tion andTAG exhibit a high percentage of fresh datgigure 3: Number of data packets transmitted per
Cascading timers practically eliminates old dat&®e- oynd
riodic simple exhibits the largest range of data ages;
this is because nodes simply send data periodically,
thus it can take up t@ periods for the readings to
arrive in the worst case, wher@ is the diameter of
the network.

From Table 1, which shows the energy consumed
by the different algorithms, we observe that, for our
) ) ) ) experimental setup, energy consumption can be re-
Our implementation offAG is a simple one. We ,ceq to a third when data aggregation is used. Note
do not calculate the maximum number of hops at rufa¢ 5 aggregation schemes exhibit similar energy

time and so in some paths the real hop count is higré?ﬁciency. These values will be affected by the
than our estimation of the network diameter. Th@hoices of radio and MAC layers.

leads to TAG having some 1 round old readings. Forag an another way to compare the performance of

more accurate calculation we would have require{:}qle aggregation algorithms with respect to freshness,

extra message exchanges which we chose not t0 {{is introduce a metric that accounts for a data item’s

plement for this experiment. age. We call this metriaeighted accuracy. The mo-
Even though most data aggregation studies oftivation behind measuring weighed accuracy lies in
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| [ None | Simple [ Per-Hop| TAG [ Cascade]delay ( in seconds ) for a given reading as the time
o oo S o [CoET | S0 |imterval between when the reading i originally pro-
Centersink || 0.1134 | 0.0487 | 0.0487 | 0.0454 | 0.0404 | duced by a node until the sink processes all readings
_ _generated. Since we are generating results based on
Table 1: Energy consumed by the different in readings we have to wait until all of them are gath-
network aggregation algorithms ered, hence the delay has to factor this in. Table 2
presents the average delay per reading for our experi-
ments.Cascading timers performs the best since this
the fact that while some applications are interestedigthe very metric it tries to optimize.
historical data, others may only want the most up-to-
date information. This is the case of real-time moni-
toring, where information sinks are only interested |n [ None [ Simple | Per-Hop | TAG | Cascade|
the latest data sensed. For the latter type of applicdornersink || 0.590 | 2.843 | 2.080 | 0.593 | 0.367
tions, aggregation algorithms should not delay dct.%iﬂ?eorrzisfk g:gig fgg i:gj‘; g:gég 8:;3?
delivery beyond a certain threshold.
To compute weighted accuracy, readings received Table 2: Average reading delay
in the same period they were produced have a weight
of 1. Older readings are assigned an exponentially
decaying weight: the older the reading, the less

weight we assign to it. The expression for weighted Cascading timers exhibits good performance on

accuracy is thus given by: longer data collection periods as well. For example,
. in the case of a 10-second collection period using
weighted_accuracy = Z riw’ random sink placementascading timers achieves
il average delays similar to the ones in tabl®.28s.

Where is the set of ages of the readings,is No-aggregation’s delays range around the sec-
the number of readings of ageper period andv is ond mark, whileTAG has an average af.23s de-
the weight. Readings from the current period hal@ys. These results are due to the fact that no aggre-
an age of 0 and therefore a weight of 1. gation just sends at uniformly distributed times and
TAG staggers transmissions as spread out as possible
due to its method of dividing the period into slots.

o In both of these cases the delay will increase as the
The graphs in Figure 4 show the performance Bériod increases.

in-network aggregation according to the weighted
accuracy metric. As expected, no aggregatioh; In summary, as expected, our results show that in-
andcascading timers exhibit the best weighted accunetwork data aggregation can achieve considerable
racy. Cascading timers has an edge, specially whernergy savingsPeriodic per-hop adjusted aggrega-
weights of old readings are loweriodic smpleand tion (specifically ourcascading timers algorithm) is
periodic per-hop perform poorly if old data has lowable to maintain the sanfeeshness andaccuracy as
weight. Their performance increases considerablywvasen no aggregation is used. This is an impressive
we assign higher weight to older information. Undeesult considering the constraints imposed by peri-
corner sink placemenperiodic simple andperiodic odically generated data. Furthermore, wHIRG ex-
per-hop start lower since it takes more periods for thieibits reasonable performance for shorter collection
data to arrive. The opposite is true when the sinkpgriods,cascading timers performs consistently well
in the center. across a wide range of collection intervals. We study
The delay of a reading provides an alternate wéye behavior of the different aggregation timing mod-
to measure data freshness. We measure the avesdg@ more detail in Section 5.4.
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Figure 4: Weighted accuracy

5.3 Estimating the Single Hop Delay ger node transmission in relation to one another us-

_ ) _ o _ ing a small random interval. Thushd has basically
As discussed in Section @eriodic per-hop adjusied 5 geterministic- as well as a non-deterministic com-

aggregation algorithms sche(ilule a no:je‘s timeoghbnent. While propagation- and transmission delay
i.e., the time a node is due to clock out th’e curreihake upshd’s deterministic component, the stag-
data aggregate, as a function of the node’s positiggying interval and queuing delay are responsible for

in the distribution tree. More specifically, in ot@s- .3, s non-determinism.shd can then be computed
cading timers aggregation, timeout is a function of,sjng the expression in Equation 4
thesingle hop delay or shd, an estimate of the time a

packet is expected to take to traverse one hop in the
data collection network, including processing time. shd = sd+td+pd+qpd 4
Givenshd, we can then estimate the time it takes for where sd is the staggering delay of the packst,

a packet to traverse the path from the source to Té]@jpd Correspond to the transmission and propaga-
sink by multiplying shd by the number of hops tra-tion delays respectively angpd accounts for both
versed. queuing and processing delays.

In this section, we study howhd impacts the per-  Cascading timers uses maz_shd as given by
formance ofcascading timers. Note thatshd de- Equation 5, which is obtained by using the maximum
pends on current network conditions such as logshssible staggering delay and an upper bouiig) (
channel quality, etc. If the network is heavily loadedf the rest of the components. The maximuthis
packets might take longer to traverse one hop. Tlhisosen by us. The propagation and transmission de-
may result in nodes timing out and readings gettingys are a function of the network architecture and
lost. The performance gderiodic smple andperi- the maximum size of the packets. The processing
odic per-hop aggregation schemes will also be imand queuing in this scenario are almost negligible
pacted when under heavy load. since as soon as packets arrive they are aggregated

Recall that, in order to avoid collisions, we stagand the processing for this is minimal.
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Setting the staggering interval is an important
tradeoff. While large staggering intervals are ef-
maz_shd = Max(sd)+ Up(gpd + td + pd5) fective in avoiding collisions, they yield higher de-
lays. As previously pointed out, the value af
Figure 5 presentesascading timers weighted ac- also depends on network density. In dense networks
curacy for different values ofhd ranging from0.01 larger staggering intervals are needed to avoid colli-
to 0.3. The weight used wa8.5. For good perfor- sions. Another important consideration is the type of
mance we chose the maximum staggering intervalrtedium access control (MAC) protocol employed.
be0.05. This is a good enough compromise betwe&vontention-based MAC protocols, such as CSMA
large enouglzd to avoid collisions and small enough{which is what we use in our simulations), are prone
to allow the last readings to get to the sink within th® collisions and node transmissions need to be stag-
collection interval. Our original experiments used agered in time. However, other types of MAC, such
sd of 0.03. When studying the values of tBéd and as scheduled access protocols, are collision free and
the sd later we found the value @f.05 to be slightly thus do not require staggering of node transmissions,
more optimal for our scenario and density. probably at the expense of delay.
We also measured the values of the rgaf over
the course of our simulations and observed very
small variations. This is expected, since traffic flows
over the same data collection tree and the offered
/ ~ load is essentially constant.

y

Weighted Acuracy

5.4 Data Collection Interval

‘ ‘ This section discusses the impact of the data collec-
mcama ) tion interval’s length on the performance of periodic
aggregation timing models. Intuitively, the smaller
Figure 5: Weighted accuracy for differesfid values the collection period, the more critical the timing
model used by in-network aggregation.
Periodic simple and periodic per-hop have no
timer organization, and send data randomly during
For shd smaller than the maximum random staghe data collection interval. This basically creates a
gering interval (left-hand portion of the graph), weata path where readings from nodes will take ap-
observe that the algorithm’s performance in ternmpgoximately as many collection intervals as hops to
of accuracy deteriorates considerably. This is exeach the sink. The longer the collection interval, the
pected: data is aggregated and sent even before dbitger delays these data paths will incur.
dren nodes try to send since their stagger timer hasn’in the case oho-aggregation, data is sampled at
expired. Whenshd is slightly higher than the stagrandom times within the interval and then sent. Data
gering interval, performance is maximized. This igaches the sink as quickly as possible since it is for-
because child nodes will have enough time to sewdrded with no waiting. Following oucascading
in their data items to the corresponding parent.  timers model, data is transmitted near the end of the
For large values ofhd the algorithm’s weighted collection period depending on the position in the ag-
accuracy starts to drop. This is expected since ttpeegation tree. This is independent of the period’s
time it takes for readings from farther nodes to reatdngth. All the data arrives with a small delay at the
the sink using largehd ends up being longer tharsink right before the period ends.
the collection period, and hence they are worth lessWe define two different performance metrics as-
according to weighted accuracy. sociated with the delay a reading takes to reach the
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sink. The first definition focuses on how long the  StA(Cascading) = n((sd+ C)D) (7)
reading takes to reach the sink from the time it is
sampled. We call this metric trample-to-sink de- ~ Equation 6 and 7 give us the averagenple-to-
lay. The second metric looks at the time it takes frofhl delay over all nodesn for no-aggregation and
when a reading is sampled undill readings are re- cascading timers respectively. D represents the av-
ceived by the sinksample-to-all). While the former €rage node depth and denotes the period length.
metric targets applications that are mostly interest&§ shown in Equation 8, focascading timers to
in the latest readings, the latter is useful when the dfve @ lower overalsample-to-all delay thanno-
plication performs some computation which requiré§gregation the period lengthy{) has to be larger
all readings. than the maximum staggering delayd) times the
As previously discussed, according to taenple- average node deptti).
to-sink metric, periodic ssimple andperiodic per-hop
aggregation will not perform well. Furthermore, in

larger networks, the extra hops packets take to reach StA(NoAgg) > StA(Cascading) (8)
the sink will add to the delayNo-aggregation will n((s_d +C)D + f’Ll) > n((sd +C)D)
incur the smallest delay possible, having packets hop d 2 ;
their way to the sink. Assuming the staggering delay (%)D + % > (sd)D
is uniformly distributed fron0 to sd, packets under
pl > (sd)D

no-aggregation will take on averagésZ +C) * hops,
wherehops is the number of hops data has to traverse|, ihe worst case scenario. i.e. a line topol-

and C accounts for transmission, propagation, a%y the average node depth will B For any

q“e“'”gd‘?'e'ay_s- il exhibi | ink large sample periodpl will be larger thaté’d%.
Cascading timers will exhibit a samp euto—s_m Using our simulation parameters, 100 nodes and a
performance of almost double thatrad-aggregation 0.03 sd, StA(Cascading) would be smaller than

sin(;:e thehShd used is base_d Oz Ithe I'T(aXimumStA(NoAgg) for any period length greater than 1.5
and not the average staggering delay)(like no- seconds. Again we note that this is the worst case

aggregation.  This mi?nshthat tTe de_IaE(/ dWiIH beSCenario. Usingho aggregation under that scenario
(sd + C) = hops. Double thesample-to-sink delay - hrobably incur collision problems due to the

might seem Iike_a b_ig disadyantage; however, giVeo\rrhount of traffic at the nodes close to the sink.

that the staggerlng _mterval is small_com_pared to theFor the other topology extreme, i.e. a single hop
data generation perlod, tlsamplent(_)—sm_k dlffe_rence tree with an average depth of 1, it is easy to see
betweemo aggregation andcascading imersis rel- -y -+ cageading timers will have lower delays for all

ativcra]Iy sma:l. all(SEAN) del id . values of the period length (greater than the maxi-
The sample-to-all(StA()) delay provides a Metric yum staggering delay). The main drawback would

for the overall freshness of the data the sink receiv%%. that, if there are many nodes, the traffic at the end
In no aggregation data gets to the sink throughout tth the |E)eriod may cause too m:';my collisions. This

generation period. Thus, the average time a read'&%ld be potentially solved by increasing the stag-

Wi” have to Sit_ idle_at the sink i,éemdilé_m{]ﬂ_t' tha_t ering delay. If the staggering delay is increased
is, from when it arrives at _the _smk, until it is talheo?o match the period length theSitA(NoAgg) —

at the period’s endCascading timers, on the other tA(Cascading).

hand, sets nodes to transmit at the end of the period,

so the time the readings have to wait at the sink is

always close to 0 (see Figure 1). 6 Packet Losses
sd l As previously discussed, timing models are critical
StA(Nodgg) = n((7 +C)D+7) (6) for the performance of in-network aggregation. In-
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deed, efficient aggregation may result in packets caourse creates a tradeoff between consuming energy
rying several readings. Packet losses can, thus, ctinsend redundant packets and increasing the prob-
siderably degrade the accuracy and timeliness of dakality of delivery. Redundant transmission mecha-
aggregation. In this section, we study the effect afsm might not be suitable for all scenarios; in partic-
packet losses when collecting and aggregating perar, when data is generated sporadically (rather than
odic data. We also propose three different mechaeriodically) normal error recovery using acknowl-
nisms to handle loss and evaluate their performaneelgements and retransmissions will likely be more
Since we target applications that generate data pest-effective.
riodically, we avoid recovery mechanisms that intro- We use three different redundant transmission
duce delay. If data recovery and retransmission tad&hemes, namelydouble-send, max-send, and
too long, nodes would already be producing the reaatfaptive-send. While double-send, as its name im-
ings for the following round, error recovery wouldglies, sends every packet twiaeax-send sends ev-
interfere with the propagation of new data. Take fery packet as many times as readings are aggregated
example a traditional error recovery scheme wherethe packet. This requires the protocol to include an
negative acknowledgments (NACKs) are used. Ufaggregation counter” in the data packet. The rea-
der the proposed aggregation protocols, every nagming behind this strategy is that packets carrying
knows how many children it has. Therefore, if thmore readings are more valuable and we therefore
node times out waiting to hear from some of its chilvant to increase their chances of getting through.
dren, it could then send a NACK to request thedaptive-send is a more complex algorithm, whose
to retransmit their data for the current round. Hovgoal is to achieve certain delivery guarantees (ex-
ever, this would interfere with the next round of datpressed by number of acceptable losses) for a given
Since target application scenarios don’t require péwss rate. Equation 9 describes the relationship be-
fect data delivery, we are willing to sacrifice accuraayeen the number of acceptable lossaad the drop
in favor of freshness. probabilityp, wherea andt are the number of aggre-
We use a proactive approach to error recovegated readings in a packet and the number of trans-
along the lines of error correcting schemes such msssions, respectively. The number of transmissions
Forward Error Correction (FEC) [10]. Since the typto achieve under loss probability is then given by
ical data items produced in the target application sdeguation 10.
narios are generally small (a few bytes), we decided
to use a very simple form of error correction mech-

anism, namely send a packet multiple times. In fu- I = a-pt 9
ture work, we plan to investigate other, more sophis- PR (10)
ticated error correcting codes that can pay off in the AW

case of more complex data.
Note that, since we aim for hop-by-hop guaran-

tees, these equations apply to a single link. In other
words, ifl = 0.05, adaptive send will perform the
Our loss model is simple: drops are independent amekcessary number of retransmissions to guarantee a
the loss probability is fixed for all links and is kept 95% delivery guarantee over a particular link given
constant throughout the simulation. A packet is suitiat link’s loss rate. The overall network’s delivery
cessfully transmitted with probabilityd — p). While guarantee may be slightly different (higher or lower)
this is a simple scheme, it can be used to get a gelepending on the interdependencies between the ag-
eral picture. We will look at spatial and temporajregates in the packets as they flow towards the sink.
correlated losses in future work. As our simulation results show, the overall reliabil-
As mentioned earlier, we deal with losses by prity achieved byadaptive-send (shown in Figure 6 as
actively sending data multiple times. This strategy dita accuracy) is typically very close1c- .

6.1 Handling Losses
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In a real network, the loss probability can be eithéimes, decreasing their chance to get to their next
known a priori (from previous experience operatinigop, which decreases the next packet and so on. Af-
the network) or estimated over time. Underestimder a certain drop probability adaptive-send starts
ing the loss rate yields delivery rates lower than reending packets with single readings twice. This
quired; conversely, loss rate overestimation resultsseems to indicate that taking good care of packets,

more redundant packets. even when they only have one reading collected is
important.
6.2 Results It is interesting to note that under the loss model

and scenarios used, drops have similar impact on
data collection with and without aggregation. We ob-
serve that the curves f&tone and cascading timers

We repeated the simulation experiments describggthout error recovery) look very similar. Data
in Section 5 to study the performance of the thr%curacy decays very quickly in both cases. We
proposed loss handling strategies when employgdn to study this phenomenon further using differ-
by cascading timers aggregation. Loss probabili-ent topologies and network diameters.
ties range from 0.05 to 0.5 in steps of 0.05. We Top evaluate the overhead incurred by these error
kept all other parameters the same. In the caser@fovery schemes, we plot total number of packets
adaptive-send, the acceptable loss rate was set &nt in Figure 7.Double-send sends approximately
0.05 (which implies relatively high delivery guaran200 packets per round for all loss rates as it always
tees). We present the results for different sink placgnds a packet twic&Cascading timers (without er-
ment scenarios in Figures 6 and 7. For comparisgst recovery) also sends a constant number of packets
purposes, we plot results foascading timers aggre- (around 100 in this case) since it does not adjust its
gation and no aggregation when they employ no erigshavior for different loss conditions. At the higher
recovery. error levels we notice that 100 packets are not sent

per round. This is due to the fact that because of
packet drops, at tree construction time some nodes
don’t become part of the tree.

The results obtained for the different algorithms 1 is somehow expected thatone and max-
bring out some interesting points. Figure 6 showgnd would exhibit similar behavior sinceax-send
data accuracy (percentage of readings received dpyld transmit approximately the same number of
the sink) achieved by the different mechanisms Ugackets asmone. However, this is not the case: for
der different loss conditions. These results confirfyne, the loss of packet means that nodes in the path
our expectationsadaptive-send is the best performer g the sink will now transmit one less packet.niax-
with close to perfect accuracy even under high losgnd, if all the transmissions of a packet are lost, sub-
Max-send delivers more than 50% of the readingsequent packets will be transmitted fewer times since
while double-send starts with a very good deliveryihey will have less readings. The declinenex-send
but quickly degrades under high loss conditions. s slower thamone because all of the transmissions

At low loss rates we notice thalouble-send per- of 3 packet have to be lost for subsequent nodes to
forms slightly better thammax-send and adaptive-  transmit lessAdaptive-send increases the number of
send. This is attributed to the fact that it sends eyackets sent as loss probability increases since the
ery packet twice, including packets with one reagumber of transmissions is a function of the number

ing, irrespective of loss rate.Adaptive-send and of aggregated values and the drop rate.
max-send send packets with one reading only once.

When packets with one reading get dropped, they
are not recovered. Packets that would have included
the dropped reading will now be transmitted fewer In some scenarios, rather than maximizing data
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Figure 6: Data accuracy under loss

accuracy, it may be more attractive to strike a balpective.

ance between number of packets sent (or energy connirected diffusion [1] has been proposed as a data
sumed) and accuracy. Figure 8 plots the number fihering protocol for sensor networks. It targets the
packets sent per reading collected. The optimal ca8gnitoring of events which are typically sensed only
of course is one packet sent per readirGascad- py 4 few nodes. An example scenario is tracking
ing timers lets us achieve that goal when there are RQimal herds in a given geographic region. Diffu-
losses. Adaptive-send, which is implemented atopgjon's communication paradigm is based on infor-
cascading timers, yields good performance under aliyation sinks broadcasting requests jmierests, for
conditions due to its adaptive nature. relevant data. Nodes producing relevant information
A corner sink means routes are longeone and yespond andiata paths are formed. Data is aggre-

max-send due to this, specially at low drop rates. l§ated when a node is part of various data paths.

is also the case that for the longer paths the single .. . | L
Diffusion’s aggregation is based on a report gra-

reading packets ofione have a greater IC)mbabimydient which defines how many reports to send per

of getting dropped, hence the poor performance in ) . .
9 9 PP . P P t‘me unit. Therefore, according to our classification,
packets per reading.

diffusion falls in theperiodic simple category. Every
node can potentially perform aggregation; however,
7 Related Work nodes in the shortest path from information sources
to the sinks do most of it. Diffusion adapts well to

Protocols for sensor networks have sparked consitfde failures by keeping state of the interest through-
erable interest in the network research communifit the network. When a path fails the neighboring

In this context, data aggregation rose as a technidif¥es remember alternate paths. Some of their more
for improving sensor network protocols’ energy efecent work addresses the impact of node density in

ficiency. We briefly describe some previous and offliS type of data collection scenario [11].
going research efforts in order to put our work in per- eScan [3] is an energy monitoring scheme that col-
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lects energy readings from every participating nodeeedlessly but incurs the overhead of engaging in
Their scenario is somewhat similar to the ones wee negotiation phase. Note that SPIN’s communica-
target, i.e., every node maintains an energy valtien model is based on a gossip-style approach. The
that is reported to a collection sink at the edge a#sulting protocol is very similar to NNTP [12] for
the network. However, rather than generate periodimpagation of news over the Internet. Essentially,
reports, new data is reported only when the enerngyses point-to-point communication among pairs of
of a node changes beyond a certain threshold. Agpdes to eventually convey data to all interested par-
gregation is performed as data flows to the sink ligipants. SPIN does not really use an explicit aggre-
merging reports of similar energy values im@ergy gation mechanism; aggregation is performed implic-
range polygons. itly during initial negotiation between two nodes us-

The initial eScan work does not handle latency ing the meta-data to decide whether actual data will

propagating data; they also assume a perfect M ® exchanged.
Iayer and instead _of using tl_me thgy use data gener, [2], or Tiny AGreggation, is a sensor net-
ation events to drive their simulations. Rather than . .

. . . ork querying system. It employs a SQL-like syn-
being an alternative to eScan, our aggregation te¥Y1-

) be i ted by €S to. f fax and uses aggregation as the query is processed
niques can be Incorporated by escan 1o, Tor eXamBify iy the network. When a query involves gooch,
improve data freshness.

requiring readings to be collected periodically, TAG
SPIN [4], Sensor Protocols for Information viaises theperiodic adjusted aggregation approach. It
Negotiation, is a protocol for data collection and disubdivides the epoch into slots. The length of a
semination. In SPIN, all nodes have pieces of namgldt is given by the epoch length divided by the
information that they want to send to the rest of thmaximum number of hops separating data generation
nodes. Data transfers are first negotiated basednmdes from the sink. Followingeriodic adjusted ag-
the names of items. Only requested items are @xegation operation, slots are assigned to nodes in de-
changed. This avoids the cost of sending the dat@asing ordem,n—1,n—2, ..., as the query prop-
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agates through the network. Nodes transmit in th@ieriodically which is consumed by fewer sink nodes.
slot, hence, the out-most nodes will transmit first af®@uch communication model is typical of monitoring
nodes closest to the sink, last. As in any time-slottedenarios, one key application of sensor networks.
mechanism, clock synchronization among nodes isUsing simple analytical models, we present a
required so that nodes transmit in their designatgede-off analysis of in-network data aggregation.
slots. TAG also takes advantage of time slotting ®hrough simulations, we evaluate the performance
switch idle nodes’ radios off. of different in-network aggregation algorithms, in-
Convergecasting [7] performs aggregation asdiuding our owncascading timers, and characterize

collects data periodically from all nodes to a singlie tradeoffs between energy efficiency, data accu-
sink. Like TAG, its data aggregation mechanism alsacy and freshness. Our results show that timing, i.e.,
falls in theperiodic adjusted category. It assigns ag-how long a node waits to receive data from its chil-
gregation slots as the query percolates the sensor de¢n (downstream nodes in respect to the information
work, trying to assign nodes to different slots in osink) before forwarding data onto the next hop (to-
der to avoid collisions. Once the algorithm finishesard the sink) plays a crucial role in the performance
assigning slots, that is, when the query setup reaclésggregation algorithms in the context of periodic
the edge of the network, the order of the slots is idata generation. By carefully selecting when to ag-
verted to reflect a data collection tree. A similar comgregate and forward data, we achieved considerable
cept is used by the work reported in [13]. savings (as much as 5 times less traffic) while main-

taining data freshness and accuracy.

Finally, in order to perform well under packet loss

8 Conclusions and Future Work conditions, we developed three different proactive

error recovery techniques which are suitable to pe-
This paper explored in-network aggregation asriadic data generation (as they incur no additional
power-efficient mechanism for collecting data idelay). They are essentially based on pro-actively
wireless sensor networks. Our focus was on appgliansmitting packets multiple times. Simulations
cations where a large number of nodes produce dstewed that the proposed techniques were able to
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maintain high accuracy even under high loss condi5]
tions. Among the proposed mechanisradaptive-
send, which adjusts the number of times a packet
is sent based on the number of readings aggregated
in the packet and an estimate of the loss probablhty
yielded the best performance. 6
As future work, we plan to use more sophisti-
cated loss models to evaluate our recovery mecha-
nisms under different loss conditions. We will also
develop techniques to handle node failures. We also
plan to investigate aggregation algorithms that tar,
get different scenarios. For example, instead of pe-
riodic data generation, explore scenarios in which
data is reported only when it changes significantly.
Another direction is to explore cluster-based aggre-
gation, where clusters are formed based on a set of
constraints and then data is aggregated within clug8]
ters.
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