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Abstract rooted at the sink and spanning all relevant sensors.
Cascade timers show that the timing model used by
This paper introduces a novel energy efficient datge aggregation algorithms is critical to achieve en-
aggregation algorithm that targets spatially corrgrgy efficiency without sacrificing delay.
lated data in sensor networkssolines aggregation | this paper, we describe a novel aggregation
works by detectingsolines which are the lines in atechnique that targets spatially-correlated data. In
contour map. Energy efficiency is achieved by hagarticular, we address applications that are continu-
ing only the nodes that detect the isoline report sly monitoring varying conditions of a given geo-
the sink. Simulation results show thabline aggre- graphic region (e.g., temperature, rain fall, radiation,
gation can lead to significant energy savings (Sorgg:) and, as a result, generate a “contour map” of the
scenarios reported that no aggregation can send clgsgsed variable.
to 150% more bytes thasolines aggregation) with  The proposed algorithm takes advantage of the
adequate data accuracy. \We also compased gpatial correlation of data in these monitoring scenar-
lines againstpolygon aggregation, our implementajos, Energy efficiency is achieved by, instead of hav-
tion of an approach representing existing spatiallfig all nodes send their readings to the sink, having
correlated data aggregation mechanisms. Our resyfig; 5 few nodes report to the sink. Ideally, only the
report thatisolines exhibit higher accuracy with apgdes with important information will report. Our

slight advantage in energy efficiency. approach defines the important information to be the
isolines of a map.
1 Introduction Isolines are basicallysopleths (from the Greekso

- same angleth - value), a line composed of points

In-network aggregation has been employed quitéthe same value. When these lines are drawn on
successfully as an effective energy savings techniquenap we get a contour map, like the one shown in
in power-constrained, data-driven sensor networksgure 1. Areas encompassed by isolines lie within a
The main idea behind in-network aggregation is tertain value range and we call them isoclusters.
process data as it flows from sensor nodes to infor-For instance, if we were to generate a contour tem-
mation sinks. perature map, an isotherm, the temperature ranges

A number of existing aggregation algorithms foare defined and then nodes would be grouped into
cus on temporally-correlated data. Our oeascad- areas that exhibit temperatures within the defined
ing timers[1], directed diffusion [2], and some of the ranges. To construct an isotherm we do not need
aggregation mechanisms proposed by Tiny Aggreda-collect data from all the nodes in the region be-
tion (TAG) [3] process sensor data as it is producéay monitored; it is sufficient to collect the isolines,
periodically and flows over a data collection tredraw them on our map and “color in” the correspond-



be added they need to be geographically adjacent and
@ they need to be in the same value range.

Data is aggregated into polygons of similar value
and represented by the corresponding polygon’s co-
0 ordinates. This approach has a few drawbacks. For

O one, the aggregation is done as the data flows down
the collection tree. This is not always the most ef-
ficient way. If two nodes close by are in the same

Figure 1: An isograph value range but are in different branches of the tree,
their values is not aggregated until they reach a com-

_ . - _ ___mon ancestor, which might not be nearby. Also, for
ing areas. This is how energy efficiency is attained

. . . ) a node to aggregate the coordinates of a polygon it
Through extensive simulations, we evalu#e- o0 1o know the exact location of the nodes. As-

cluster aggregation and compare it against no ag9ig;ming geographic location encoding requires more

gation and our implementa_tion_ of aggregation us!%/\es than node identifiers, propagating location in-
polygons. Polygon aggregation is the approach usegation results in significant additional overhead.

by both e-Scan [4] angsobars [5], both of which In contrast,isoclusters employ localized aggre-

are discussed in more detail in Section 2 below. Our . T . :
results show thaitsoclusters can achieve significantgatIon by detectingsolines and neighboring cluster

. members. Hence, aggregating down the path is not

energy savings when compared to no aggregation S Y
0T necessary. Location information is only needed at
while yielding adequate data accuracy. It outpelﬁ .
the sink and can be collected once.

forms polygon aggregation in terms of accuracy with ) ) )
Theisobar mapping approach is part of the the ad-

slightly higher energy savings. | ) )
The remainder of this paper is structured as fof2nced aggregation techniques proposed in TAG [S].
[{dere nodes are part of a grid. A node’s location is

lows. We discuss related work in Section 2 a . - ) )
describeisocluster aggregation in Section 3. secbased on Its position on the grid. Data is coI_Iec_ted
aggregating into polygons of nodes with similar

tions 4 and 5 present our experimental methodolow :

and evaluation results, respectively. In Section 6, We2dings. On a heavily populated grid, aggregation

present our concluding remarks as well as directio}‘ligldS good results.. If the grid i? .spar.se, or if pack-
for future work ets are dropped, or if energy efficient is favored over

accuracy,bounding boxes are used for defining the
polygons. A bounding box is created around an area
2 Related Work and Previous Ap- to be aggregated. Cuts are then made to the bound-
proaches ing box to approximate the shape of the polygon.
The more cuts, the more data that needs to be re-

There are mainly two other approaches that tforted and the better the accuracy. Less cuts mean
get spatially-correlated data aggregation, nanesly _decrea_sed accuracy_, put less data needs to be sent,
can[4] andisobars [5]. eScan focuses on monitoring IMProving energy efficiency.

the sensor network itself, in particular the remain- Isobar mapping suffers from similar problems as
ing energy in the nodes. It queries sensing nodg8can since it also performs aggregation as the data
which, in turn, report their remaining energy. Thi§ows towards the sink. Node location is represented
is done via a data collection tree established at quéy the corresponding grid coordinates minimizing
propagation time. When the data is being reportéte need to transmit real location information

back to the sink, nodes aggregate the information afBoth eScan andisobars are based on using poly-

it flows. Aggregation is done by grouping readinggons to aggregate data of similar value produced by
that meet a certain criteria. For a set of readingsneighboring nodes. We will compare the perfor-
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mance ofisoclusters against (1) no aggregation and The detection of the isoline is symmetric, i.e., both
(2) polygon aggregation, our implementation of théhe node and its neighbor detect it. The node who
aggregation mechanism underlying ba&®can and reports the isoline is the one closest to the sink (ac-
isobars. cording to hop count). If both nodes are at the same
distance, the node with the lowest reading will send
) the message.

3 Isolines Nodes will only report to the sink when there are
o ] ) _ isolines around. This might lead to problems since
The goal of isoline aggregation is to optimize, e wi|| assume that on the absence of report no iso-
data collection by re_ducmg r_edundant transmissiofi$e exists. To handle failures, we also implement
based only on local information. It uses the concepfypapilistic reporting so nodes broadcast their in-
of isolines (orisopleths), i.e., lines of the same valuetormation periodically even when they do not need

which are used to represent information in contow 45 so. This also helps on the accuracy of the map
maps. The basic idea is that nodes will only repo”b%nerated and can be tuned if necessary.
the sink if the detect an isoline; otherwise, no report

is generated. Isolines are detected based on neigh-
borhood information gathered through a neighbor-to- @) @)
neighbor protocol.

The neighbor-to-neighbor protocol, or NNP, ex-
changes sensed value between nodes. It uses a ba- o OF e
sic push approach. Nodes decide when they need to o
communicate their sensed information to their neigh- o™ o
bors. This happens when the node is started and °
when data changes cause an isoline to appear or dis- "2
appear. First-time reports (i.e., when nodes start), al-
low the network to detect new nodes quickly. Peri-
odic transmission serves to refresh state maintainecho des that are within the same isoline are said
by neighboring nodes. Reports are also generaE

upon significant changes in sensed data. a temperature isoline where temperatures within 10-

Isoline detectlc_m 'S a very S|mp|§ yet eI(;‘\garclmtegree ranges belong to the same isocluster. Nades
method of collecting information efficiently to draw

. X . %ndC are part of the same isocluster and will know,
contour maps: a hode compares its reading with t . -
) ) . . upon exchanging sensed values, that an isoline does
reading of all neighboring nodes. If the readings |

. . .o ot go between them. On the other hand, nd8es
in different sides of an isoline, then a report needs tcg1 . . .

. . whose value is 52 an# who is measuring a tem-
be generated. For example, if the isolines meas

re ) L2
: ) rature of 48 will detect the 50-degree isoline when
multiples of 10, then a node with a sensed value%? g

. . . . fAey compare values.
35 with a neighbor whose value is 42 is able to detect y P

that there is (at least) one isoline of value 40 passing
between itself and said neighbor. 4 Evaluation

Once the existence of an isoline has been deter-
mined, it needs to be reported to the data collectitmour experiments, we use two different sensor net-
sink. Reporting an isoline consists of sending thweork deployments, namely: (1) a 400X400m field
node’s sensed value and the value of the neighborenitored by a 16X16 sensor grid evenly spaced at
ing node across the isoline to the sink. This could B&m intervals, and (2) a 800X800 field using 32X32
optimized by reporting only the value of the isolinggrid. A shapshot of the data being sensed is gener-
saving a few extra bytes, but loosing some accuraaged and temperature is used as an example of the

Figure 2: A temperature isoline

Sdbelong to the samisocluster. Figure 2 depicts
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YA | | ns2 [7] network simulator. For medium access con-
3 trol, nodes use CSMA at 115Kbps. FLIP [8] was

used as our network protocol. The experiment tries
to reproduce the map in Figure 3, which represents
reality. This map is generated using 40X40 values.
Node identifiers and location are 2 bytes long. Tem-
perature information is also 2 bytes.

The sink node, which is placed at the center of

) | the map, starts by broadcasting a query for the map
at time 1s. From time 3s to 4s, nodes report their

0 Qg
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temperature readings. The simulation is stopped at
time 5s. The transmission range of nodes was set to
40m. The data points used to compute the tabulated
Figure 3: Real map results in Section 5 are obtained by averaging over
10 runs.

information being reported by the sensor network.
We should point out that, although, in these expedy Results
iments, nodes are placed according to a grid pattern,
isoline aggregation is not specific to grid placemenEven though figure 3 defines reality, we will use
For random node placement, more careful deterrfiigure 4 as our idealized map to get performance
nation of what nodes report is needed to avoid ubeunds. The map in Figure 4 is generated when no
necessary redundancy. Future work will address thiggregation is used, i.e., all the nodes are reporting
issue specifically. their readings. This means that we have all the in-
Our implementation opolygon aggregation is asformation we can possibly have; the only way to be
follows. When a node receives data from its childranore accurate is by deploying more nodes increasing
(according to the data distribution tree rooted at tisensor density.
sink), it aggregates it into polygons and sends only

the vertices. | | /
All nodes in the polygon are assigned the average @ s

value of the polygon’s range; for example, in the case &

of a [40-50) temperature range, nodes take the value | Q

of 45. Similarly toisobar aggregation [5], we use

50

the sensors’ grid coordinates as their locations. Re-

ports from nodes may contain multiple polygons if

multiple value ranges have been aggregatBdly- .

gon aggregation uses the PolyBoolean library [6]. In |

the no aggregation case, nodes just send their local

information to the sink. ®
For efficiency purposes, we use cascading

timers [1] as the timing model as it allows nodes to

wait for their children to report without increasing Figure 4: A map using all sensor readings

the delay of the data collection. For bgbolygon

andisoline aggregation, data is grouped in ranges of Our main goal is to achieve similar accuracy to the

10, that is, from [0-10),[10-20), etc. map obtained by not aggregating data, while mak-
As the experimental platform, we employ theéng the collection process energy-efficient. Figures 5
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and 6 present the maps generated ussoljne ag-
gregation, while Figures 7 and 8 were obtained us-
ing polygon aggregation. Figures 6 and 8 present the \
same maps as Figures 5and 7, respectively, superim- |
posed atop points representing the readings actually
received at the sink.

40/

j/ Figure 7: Map generated witbolygon aggregation

Figure 5: Map generated wiiloline aggregation

Figure 8: Map generated witholygon aggregation
plus reporting sensors

lines, if there are no readings received from an area,
then it is an indication that an isoline does not exist.
In the case ofpolygon aggregation, reported areas
should be graphed as polygons. Moreover, some of
Figure 6: Map generated wittsoline aggregation the anomalies in the graphs are caused by lost pack-
plus reporting sensors ets. However, since we do not insert artificial drops,
the effects are not very evident. Packet losses can
Graphing the results obtained from the simulatiorssill occur caused, for example, by collisions.
helps us visualize how the aggregation algorithmsin order to quantify how similar the maps gener-
perform. We should point out that the graphing toolted by the different aggregation approaches are, we
we use, which interpolate the data points to generatampute the average distance between correspond-
the map, have not been optimized using the assurmg points obtained from no aggregatiaosgline, and
tions that be can made in the specific case of aggpelygon aggregation. We used thegmat h part
gation algorithms. For example, in the casdsoF of the NCAR Graphics Library[9] to interpolate the
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40X40 reality data points. Tables 1 and 2 summaritee correct value group. It basically measures if the
these results. contours look the same. Table 3 presents these re-
sults for both 16X16 and 32X32 sensor fields.

Reality (degrees)| No agg. (%)
NoAgg. | 1.21(sd=0.01) 0 Reality 16X16 32X32
Isolines 1.59 (sd=0.12) 31.4% No Agg. | 95.0% (sd=0.1)| 93.3% (sd=1.1)
Polygons | 2.98(sd=0.18) | 146.3% Isolines | 93.3% (sd=0.6)| 91.8% (sd=1.7)
Polygons | 92.5% (sd=3.9)| 85.8% (sd=4.9)

Table 1: Map similarity for the 16X16 sensor field
Table 3: Group similarity

Reality (degrees)| No agg. (%) .
NoAgg. | 1.24 (sd=0.08) 0 We observe that both algorithms perform reason-
Isolines | 1.83(sd=0.24) 47.6% ably according to this metric, withsolines exhibit-
Polygons | 3.48 (sd=0.36) 180.6%

ing better performance thgwolygons, especially in
Table 2: Map similarity for the 32X32 sensor fieldthe 32X32 sensor field scenario. Tg@up similar-

ity metric tries to express the similarity between the
gntour maps. For example, Figures 3 (reality) and 4

corresponding standard deviation between each 4} 299regation) are 95% similar. These results also

gregation algorithm and the reality. For no aggrega-ow that larger fields (with the_same sensor density)
tion, the map obtained when all nodes report diffefé€ Narder to map. This is particularly true fafy-

on average by 1.21 degrees (with a standard de\§g0 @99regation, whose performance degrades as the
tion of 0.01) in the 16X16 sensor deployment. Simfl€Work size grows.

larly, the average difference betwesnlines and re-

The first column shows the average difference aff

. o Reality Small Large
ality and polygons and reality is 1.59 and 2.98, re- Noagg | 13826 (50=340)| 80635 (sd=1221)
Polygons | 8311 (sd=263) | 34200 (sd=918)

Since the best any algorithm can perform is when
all nodes report their readings and no aggregation is
performed. This won't obtain a “perfect score” be-
cause we can't sample at infinite density. Hence weRecall that the main goal of data aggregation is to
use no aggregation as the performance upper boactlieve energy efficiency by transmitting less infor-
and compare to it in column 2. In the 16X16 mamation. Table 4 shows the number of bytes sent by
isoline aggregation yields a difference of only 31%ll three approaches. We observe that no aggrega-
while the map generated Ipplygon aggregation dif- tion transmits 75%- and 148% more data tham
fers by 146%, about 5 times more thialines. For linesin the 16X16 and 32X32 sensor field scenarios,
the 32X32 map, with four times the sensors, we olespectively. With no aggregation, every node needs
serve 48% and 181% difference, respectively. to transmit its information to the sink which may re-

On a first analysis, these differences may seem dts in redundant data traveling multiple hops, wast-
high. However, when translating them into actuéig precious resources along the way. Badbline
sensed data, they fall into perspective. For exaand polygon aggregation try to reduce the number
ple, a point that has the value of 43 degrees migtfitransmissions, minimizing data redundancy by ag-
get mapped to 44.6 witrsolines and 46 withpoly- gregating spatially correlated information.
gon aggregation. Note that both of these algorithmsWe should also point out théskoline aggrega-
are not trying to map reality on a point-to-point baion was also designed with temporal aggregation in
sis. Instead, they try to aggregate data by doing thisnd. That is, over time, nodes broadcast informa-
'lossy compression’ into groups of values. To quation only when local readings change (i.e., they only
tify this, we define theyroup similarity metric which need local knowledge). Since we simulated a single
calculates how many of the points are mapped indata collection snapshot, our results do not showcase

Table 4: Bytes sent as energy efficiency.
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