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Abstract

This paper introduces a novel energy efficient data
aggregation algorithm that targets spatially corre-
lated data in sensor networks.Isolines aggregation
works by detectingisolines which are the lines in a
contour map. Energy efficiency is achieved by hav-
ing only the nodes that detect the isoline report to
the sink. Simulation results show thatisoline aggre-
gation can lead to significant energy savings (some
scenarios reported that no aggregation can send close
to 150% more bytes thanisolines aggregation) with
adequate data accuracy. We also comparediso-
lines againstpolygon aggregation, our implementa-
tion of an approach representing existing spatially-
correlated data aggregation mechanisms. Our results
report thatisolines exhibit higher accuracy with a
slight advantage in energy efficiency.

1 Introduction

In-network aggregation has been employed quite
successfully as an effective energy savings technique
in power-constrained, data-driven sensor networks.
The main idea behind in-network aggregation is to
process data as it flows from sensor nodes to infor-
mation sinks.

A number of existing aggregation algorithms fo-
cus on temporally-correlated data. Our owncascad-
ing timers [1], directed diffusion [2], and some of the
aggregation mechanisms proposed by Tiny Aggrega-
tion (TAG) [3] process sensor data as it is produced
periodically and flows over a data collection tree

rooted at the sink and spanning all relevant sensors.
Cascade timers show that the timing model used by
the aggregation algorithms is critical to achieve en-
ergy efficiency without sacrificing delay.

In this paper, we describe a novel aggregation
technique that targets spatially-correlated data. In
particular, we address applications that are continu-
ously monitoring varying conditions of a given geo-
graphic region (e.g., temperature, rain fall, radiation,
etc.) and, as a result, generate a “contour map” of the
sensed variable.

The proposed algorithm takes advantage of the
spatial correlation of data in these monitoring scenar-
ios. Energy efficiency is achieved by, instead of hav-
ing all nodes send their readings to the sink, having
only a few nodes report to the sink. Ideally, only the
nodes with important information will report. Our
approach defines the important information to be the
isolines of a map.

Isolines are basicallyisopleths (from the Greekiso
- same andpleth - value), a line composed of points
of the same value. When these lines are drawn on
a map we get a contour map, like the one shown in
Figure 1. Areas encompassed by isolines lie within a
certain value range and we call them isoclusters.

For instance, if we were to generate a contour tem-
perature map, an isotherm, the temperature ranges
are defined and then nodes would be grouped into
areas that exhibit temperatures within the defined
ranges. To construct an isotherm we do not need
to collect data from all the nodes in the region be-
ing monitored; it is sufficient to collect the isolines,
draw them on our map and “color in” the correspond-
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Figure 1: An isograph

ing areas. This is how energy efficiency is attained.
Through extensive simulations, we evaluateiso-

cluster aggregation and compare it against no aggre-
gation and our implementation of aggregation using
polygons.Polygon aggregation is the approach used
by both e-Scan [4] andisobars [5], both of which
are discussed in more detail in Section 2 below. Our
results show thatisoclusters can achieve significant
energy savings when compared to no aggregation
while yielding adequate data accuracy. It outper-
formspolygon aggregation in terms of accuracy with
slightly higher energy savings.

The remainder of this paper is structured as fol-
lows. We discuss related work in Section 2 and
describeisocluster aggregation in Section 3. Sec-
tions 4 and 5 present our experimental methodology
and evaluation results, respectively. In Section 6, we
present our concluding remarks as well as directions
for future work.

2 Related Work and Previous Ap-
proaches

There are mainly two other approaches that tar-
get spatially-correlated data aggregation, namelyeS-
can [4] andisobars [5]. eScan focuses on monitoring
the sensor network itself, in particular the remain-
ing energy in the nodes. It queries sensing nodes
which, in turn, report their remaining energy. This
is done via a data collection tree established at query
propagation time. When the data is being reported
back to the sink, nodes aggregate the information as
it flows. Aggregation is done by grouping readings
that meet a certain criteria. For a set of readings to

be added they need to be geographically adjacent and
they need to be in the same value range.

Data is aggregated into polygons of similar value
and represented by the corresponding polygon’s co-
ordinates. This approach has a few drawbacks. For
one, the aggregation is done as the data flows down
the collection tree. This is not always the most ef-
ficient way. If two nodes close by are in the same
value range but are in different branches of the tree,
their values is not aggregated until they reach a com-
mon ancestor, which might not be nearby. Also, for
a node to aggregate the coordinates of a polygon it
needs to know the exact location of the nodes. As-
suming geographic location encoding requires more
bytes than node identifiers, propagating location in-
formation results in significant additional overhead.

In contrast, isoclusters employ localized aggre-
gation by detectingisolines and neighboring cluster
members. Hence, aggregating down the path is not
necessary. Location information is only needed at
the sink and can be collected once.

Theisobar mapping approach is part of the the ad-
vanced aggregation techniques proposed in TAG [5].
Here nodes are part of a grid. A node’s location is
based on its position on the grid. Data is collected
by aggregating into polygons of nodes with similar
readings. On a heavily populated grid, aggregation
yields good results. If the grid is sparse, or if pack-
ets are dropped, or if energy efficient is favored over
accuracy,bounding boxes are used for defining the
polygons. A bounding box is created around an area
to be aggregated. Cuts are then made to the bound-
ing box to approximate the shape of the polygon.
The more cuts, the more data that needs to be re-
ported and the better the accuracy. Less cuts mean
decreased accuracy, but less data needs to be sent,
improving energy efficiency.

Isobar mapping suffers from similar problems as
eScan since it also performs aggregation as the data
flows towards the sink. Node location is represented
by the corresponding grid coordinates minimizing
the need to transmit real location information

Both eScan and isobars are based on using poly-
gons to aggregate data of similar value produced by
neighboring nodes. We will compare the perfor-
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mance ofisoclusters against (1) no aggregation and
(2) polygon aggregation, our implementation of the
aggregation mechanism underlying botheScan and
isobars.

3 Isolines

The goal of isoline aggregation is to optimize
data collection by reducing redundant transmissions
based only on local information. It uses the concept
of isolines (or isopleths), i.e., lines of the same value,
which are used to represent information in contour
maps. The basic idea is that nodes will only report to
the sink if the detect an isoline; otherwise, no report
is generated. Isolines are detected based on neigh-
borhood information gathered through a neighbor-to-
neighbor protocol.

The neighbor-to-neighbor protocol, or NNP, ex-
changes sensed value between nodes. It uses a ba-
sic push approach. Nodes decide when they need to
communicate their sensed information to their neigh-
bors. This happens when the node is started and
when data changes cause an isoline to appear or dis-
appear. First-time reports (i.e., when nodes start), al-
low the network to detect new nodes quickly. Peri-
odic transmission serves to refresh state maintained
by neighboring nodes. Reports are also generated
upon significant changes in sensed data.

Isoline detection is a very simple yet elegant
method of collecting information efficiently to draw
contour maps: a node compares its reading with the
reading of all neighboring nodes. If the readings lie
in different sides of an isoline, then a report needs to
be generated. For example, if the isolines measure
multiples of 10, then a node with a sensed value of
35 with a neighbor whose value is 42 is able to detect
that there is (at least) one isoline of value 40 passing
between itself and said neighbor.

Once the existence of an isoline has been deter-
mined, it needs to be reported to the data collection
sink. Reporting an isoline consists of sending the
node’s sensed value and the value of the neighbor-
ing node across the isoline to the sink. This could be
optimized by reporting only the value of the isoline,
saving a few extra bytes, but loosing some accuracy.

The detection of the isoline is symmetric, i.e., both
the node and its neighbor detect it. The node who
reports the isoline is the one closest to the sink (ac-
cording to hop count). If both nodes are at the same
distance, the node with the lowest reading will send
the message.

Nodes will only report to the sink when there are
isolines around. This might lead to problems since
we will assume that on the absence of report no iso-
line exists. To handle failures, we also implement
probabilistic reporting so nodes broadcast their in-
formation periodically even when they do not need
to do so. This also helps on the accuracy of the map
generated and can be tuned if necessary.
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Figure 2: A temperature isoline

Nodes that are within the same isoline are said
to belong to the sameisocluster. Figure 2 depicts
a temperature isoline where temperatures within 10-
degree ranges belong to the same isocluster. NodesA
andC are part of the same isocluster and will know,
upon exchanging sensed values, that an isoline does
not go between them. On the other hand, nodesB
whose value is 52 andE who is measuring a tem-
perature of 48 will detect the 50-degree isoline when
they compare values.

4 Evaluation

In our experiments, we use two different sensor net-
work deployments, namely: (1) a 400X400m field
monitored by a 16X16 sensor grid evenly spaced at
25m intervals, and (2) a 800X800 field using 32X32
grid. A snapshot of the data being sensed is gener-
ated and temperature is used as an example of the
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Figure 3: Real map

information being reported by the sensor network.
We should point out that, although, in these exper-

iments, nodes are placed according to a grid pattern,
isoline aggregation is not specific to grid placement.
For random node placement, more careful determi-
nation of what nodes report is needed to avoid un-
necessary redundancy. Future work will address this
issue specifically.

Our implementation ofpolygon aggregation is as
follows. When a node receives data from its children
(according to the data distribution tree rooted at the
sink), it aggregates it into polygons and sends only
the vertices.

All nodes in the polygon are assigned the average
value of the polygon’s range; for example, in the case
of a [40-50) temperature range, nodes take the value
of 45. Similarly to isobar aggregation [5], we use
the sensors’ grid coordinates as their locations. Re-
ports from nodes may contain multiple polygons if
multiple value ranges have been aggregated.Poly-
gon aggregation uses the PolyBoolean library [6]. In
the no aggregation case, nodes just send their local
information to the sink.

For efficiency purposes, we use cascading
timers [1] as the timing model as it allows nodes to
wait for their children to report without increasing
the delay of the data collection. For bothpolygon
andisoline aggregation, data is grouped in ranges of
10, that is, from [0-10),[10-20), etc.

As the experimental platform, we employ the

ns2 [7] network simulator. For medium access con-
trol, nodes use CSMA at 115Kbps. FLIP [8] was
used as our network protocol. The experiment tries
to reproduce the map in Figure 3, which represents
reality. This map is generated using 40X40 values.
Node identifiers and location are 2 bytes long. Tem-
perature information is also 2 bytes.

The sink node, which is placed at the center of
the map, starts by broadcasting a query for the map
at time 1s. From time 3s to 4s, nodes report their
temperature readings. The simulation is stopped at
time 5s. The transmission range of nodes was set to
40m. The data points used to compute the tabulated
results in Section 5 are obtained by averaging over
10 runs.

5 Results

Even though figure 3 defines reality, we will use
Figure 4 as our idealized map to get performance
bounds. The map in Figure 4 is generated when no
aggregation is used, i.e., all the nodes are reporting
their readings. This means that we have all the in-
formation we can possibly have; the only way to be
more accurate is by deploying more nodes increasing
sensor density.

40
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Figure 4: A map using all sensor readings

Our main goal is to achieve similar accuracy to the
map obtained by not aggregating data, while mak-
ing the collection process energy-efficient. Figures 5
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and 6 present the maps generated usingisoline ag-
gregation, while Figures 7 and 8 were obtained us-
ing polygon aggregation. Figures 6 and 8 present the
same maps as Figures 5 and 7, respectively, superim-
posed atop points representing the readings actually
received at the sink.

40

40

40

40

40

50

Figure 5: Map generated withisoline aggregation
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Figure 6: Map generated withisoline aggregation
plus reporting sensors

Graphing the results obtained from the simulations
helps us visualize how the aggregation algorithms
perform. We should point out that the graphing tools
we use, which interpolate the data points to generate
the map, have not been optimized using the assump-
tions that be can made in the specific case of aggre-
gation algorithms. For example, in the case ofiso-
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Figure 7: Map generated withpolygon aggregation
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Figure 8: Map generated withpolygon aggregation
plus reporting sensors

lines, if there are no readings received from an area,
then it is an indication that an isoline does not exist.
In the case ofpolygon aggregation, reported areas
should be graphed as polygons. Moreover, some of
the anomalies in the graphs are caused by lost pack-
ets. However, since we do not insert artificial drops,
the effects are not very evident. Packet losses can
still occur caused, for example, by collisions.

In order to quantify how similar the maps gener-
ated by the different aggregation approaches are, we
compute the average distance between correspond-
ing points obtained from no aggregation,isoline, and
polygon aggregation. We used thengmath part
of the NCAR Graphics Library[9] to interpolate the
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40X40 reality data points. Tables 1 and 2 summarize
these results.

Reality (degrees) No agg. (%)
No Agg. 1.21 (sd=0.01) 0
Isolines 1.59 (sd=0.12) 31.4%
Polygons 2.98 (sd=0.18) 146.3%

Table 1: Map similarity for the 16X16 sensor field

Reality (degrees) No agg. (%)
No Agg. 1.24 (sd=0.08) 0
Isolines 1.83 (sd=0.24) 47.6%
Polygons 3.48 (sd=0.36) 180.6%

Table 2: Map similarity for the 32X32 sensor field

The first column shows the average difference and
corresponding standard deviation between each ag-
gregation algorithm and the reality. For no aggrega-
tion, the map obtained when all nodes report differs
on average by 1.21 degrees (with a standard devia-
tion of 0.01) in the 16X16 sensor deployment. Simi-
larly, the average difference betweenisolines and re-
ality and polygons and reality is 1.59 and 2.98, re-
spectively.

Since the best any algorithm can perform is when
all nodes report their readings and no aggregation is
performed. This won’t obtain a “perfect score” be-
cause we can’t sample at infinite density. Hence we
use no aggregation as the performance upper bound
and compare to it in column 2. In the 16X16 map,
isoline aggregation yields a difference of only 31%,
while the map generated bypolygon aggregation dif-
fers by 146%, about 5 times more thanisolines. For
the 32X32 map, with four times the sensors, we ob-
serve 48% and 181% difference, respectively.

On a first analysis, these differences may seem too
high. However, when translating them into actual
sensed data, they fall into perspective. For exam-
ple, a point that has the value of 43 degrees might
get mapped to 44.6 withisolines and 46 withpoly-
gon aggregation. Note that both of these algorithms
are not trying to map reality on a point-to-point ba-
sis. Instead, they try to aggregate data by doing this
’lossy compression’ into groups of values. To quan-
tify this, we define thegroup similarity metric which
calculates how many of the points are mapped into

the correct value group. It basically measures if the
contours look the same. Table 3 presents these re-
sults for both 16X16 and 32X32 sensor fields.

Reality 16X16 32X32
No Agg. 95.0% (sd=0.1) 93.3% (sd=1.1)
Isolines 93.3% (sd=0.6) 91.8% (sd=1.7)
Polygons 92.5% (sd=3.9) 85.8% (sd=4.9)

Table 3: Group similarity

We observe that both algorithms perform reason-
ably according to this metric, withisolines exhibit-
ing better performance thanpolygons, especially in
the 32X32 sensor field scenario. Thegroup similar-
ity metric tries to express the similarity between the
contour maps. For example, Figures 3 (reality) and 4
(no aggregation) are 95% similar. These results also
show that larger fields (with the same sensor density)
are harder to map. This is particularly true forpoly-
gon aggregation, whose performance degrades as the
network size grows.

Reality Small Large
No agg 13826 (sd=340) 80635 (sd=1221)
Isolines 7897 (sd=384) 32549 (sd=1095)
Polygons 8311 (sd=263) 34200 (sd=918)

Table 4: Bytes sent as energy efficiency.

Recall that the main goal of data aggregation is to
achieve energy efficiency by transmitting less infor-
mation. Table 4 shows the number of bytes sent by
all three approaches. We observe that no aggrega-
tion transmits 75%- and 148% more data thaniso-
lines in the 16X16 and 32X32 sensor field scenarios,
respectively. With no aggregation, every node needs
to transmit its information to the sink which may re-
sults in redundant data traveling multiple hops, wast-
ing precious resources along the way. Bothisoline
and polygon aggregation try to reduce the number
of transmissions, minimizing data redundancy by ag-
gregating spatially correlated information.

We should also point out thatisoline aggrega-
tion was also designed with temporal aggregation in
mind. That is, over time, nodes broadcast informa-
tion only when local readings change (i.e., they only
need local knowledge). Since we simulated a single
data collection snapshot, our results do not showcase
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this feature ofisoline aggregation.
Another observation is that no aggregation does

not scale. As the number of nodes increases, for-
warding packets from every node to the sink be-
comes prohibitively expensive, especially in power-
constrained environments. This is especially true
when larger areas report very similar values. To cap-
ture unevenly distributed values more accurately, the
range of the isoclusters could be tuned accordingly,
for example, report isolines every 5 degrees.

The disadvantage of usingpolygon-based aggre-
gation lies in the fact that a node cannot make a local-
ized decision of whether or not its information is re-
dundant. Aggregation is limited to nodes on the same
branch of a tree and only happens when a shared an-
cestor exists. If this ancestor node is far away, redun-
dant information will propagated closer to the sink.

6 Conclusions and Future Work

In this paper, we introduced a novel data aggregation
algorithm that targets spatially correlated data.Iso-
line aggregation uses local information from neigh-
bors to group nodes that report similar readings. En-
ergy efficiency is achieved by having only a subset
of the nodes, i.e., the ones next to the isolines, report
to the sink.

Simulation results show thatisoline aggregation
can lead to significant energy savings (some sce-
narios reported that no aggregation can send close
to 150% more bytes thanisoline aggregation) with
adequate data accuracy. We also comparediso-
lines againstpolygon aggregation, our implementa-
tion of an approach representing existing spatially-
correlated data aggregation mechanisms (e.g.,eScan
andisobars). Our results report thatisolines exhibit
higher accuracy with a slight advantage in energy ef-
ficiency.

As future work, we plan to further study how
network density affects our readings. This is di-
rectly related to grid placement and the selection of
which nodes need to report. We are also investigating
mechanisms for continuously monitoring the sensor
network and performing temporal aggregation with-
out sacrificing accuracy.
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