
Efficient Continuous Mapping in Sensor Networks Using Isolines

Ignacio Solis and Katia Obraczka
{isolis, katia}@cse.ucsc.edu

Computer Engineering Department
University of California, Santa Cruz

April 15, 2005

Abstract

This paper introduces an energy-efficient data collection
technique that takes advantage of spatial/temporal data
correlation to generate maps for continuous monitoring
(e.g., of environmental conditions such as temperature,
humidity, etc.). In its essence, the proposed technique,
isoline aggregation, works by detecting isolines which
are the lines that make up a contour map. Energy effi-
ciency through spatial aggregation is achieved by having
only nodes that detect the isoline report to the sink. Sim-
ulation results show that isoline aggregation can reduce
the amount of bytes transmitted by a factor of 11 com-
pared to when no data aggregation is used and by up to
4 times when compared to an existing spatial-correlation
based aggregation mechanism. At the same time, we are
able to keep high data accuracy.

1 Introduction

In-network aggregation has been employed quite success-
fully as an effective energy savings technique in power-
constrained, data-driven sensor networks. The main idea
behind in-network aggregation is to process data as it
flows from sensor nodes to information sinks.

A number of existing aggregation algorithms focus on
monitoring applications (e.g., environmental monitoring).
Directed diffusion [1], some of the aggregation mecha-
nisms proposed by Tiny Aggregation (TAG) [2], and cas-
cading timers [3] are some notable examples. They pro-
cess data, which is generated by sensors periodically, as
it flows over a data collection structure (e.g., tree) rooted
at the sink and spanning all relevant sensors. Our work
on cascading timers [3] shows that the timing model used
by the aggregation algorithms is critical to achieve energy
efficiency without sacrificing data freshness.

In this paper, we describe a novel aggregation technique

that targets spatially and temporally-correlated data. In
particular, we address applications that are continuously
monitoring varying conditions of a given geographic re-
gion (e.g., temperature, rain fall, radiation, etc.) and, as a
result, generate a “contour map” of the sensed variable.

The proposed algorithm, or isoline aggregation, takes
advantage of the spatial correlation of data in these moni-
toring scenarios and group nodes that report similar read-
ings into isoclusters. Analogously to contour maps, an
isocluster is represented by an area of the same value
(color) delimited by an isopleth. An isopleth, (from the
Greek iso - same, pleth - value), or isoline, is defined as a
line connecting points of the same value.

Energy efficiency is achieved by, instead of having all
nodes send their readings to the sink, have only a few
nodes per isocluster report to the sink. For instance, if we
were to generate a contour temperature map, an isotherm,
once the temperature ranges are defined, nodes would be
grouped into areas that exhibit temperatures within the de-
fined ranges. To construct an isotherm we do not need to
collect data from all the nodes in the region being moni-
tored; it is sufficient to collect the isolines, draw them and
“color in” the corresponding areas. This is how energy
efficiency is attained.

Through simulations, we evaluate isoline aggregation
and compare it against no aggregation and our implemen-
tation of aggregation using polygons. Polygon aggrega-
tion is the general approach used in previous approaches
by e-Scan [4] and isobars [5], both of which are discussed
in more detail in Section 2 below. Our results show that
isoline aggregation can achieve significant energy savings
when compared to no aggregation and polygon aggrega-
tion, while yielding high data accuracy.

The remainder of the paper is organized as follows. Iso-
line aggregation is described in Section 3. Our experi-
mental methodology is presented in Section 4 followed
by a discussion of simulation results in Section 5. Sec-
tion 6 presents our concluding remarks and directions of

1

future work.

2 Related Work

There are mainly two other approaches that target
spatially-correlated data aggregation for mapping, namely
eScan [4] and isobars [5]. eScan focuses on monitoring
the sensor network itself, in particular the remaining en-
ergy in the nodes. It queries sensing nodes which, in turn,
report their remaining energy. This is done via a data col-
lection tree established at query propagation time. When
the data is being reported back to the sink, nodes aggre-
gate the information as it flows. Aggregation is done by
grouping readings that meet a certain criteria. In particu-
lar, for a set of readings to be aggregated, they need to be
geographically adjacent and they need to be in the same
value range.

Data is aggregated into polygons of similar value and
represented by the corresponding polygon’s coordinates.
This approach has a few drawbacks. For one, the aggre-
gation is done as the data flows down the collection tree,
which is not always the most efficient way. For instance,
if two nodes close-by are in the same value range but are
in different branches of the tree, their values are not ag-
gregated until they reach a common ancestor, who may
be further up the tree. Also, for a node to aggregate the
coordinates of a polygon it needs to know the exact loca-
tion of the nodes. Assuming geographic location encod-
ing requires more bytes than node identifiers, propagating
location information results in significant additional over-
head.

In contrast, isoline aggregation employs localized ag-
gregation by detecting isolines and neighboring nodes.
Hence, aggregating down the path is not necessary. Lo-
cation information is only needed at the sink and can be
collected once.

The isobar mapping approach is part of the the ad-
vanced aggregation techniques proposed in TAG [5]. Here
nodes are part of a grid. A node’s location is based on
its position on the grid. Data is collected by aggregating
nodes with similar readings into polygons. On a heavily
populated grid, aggregation yields good results. If the grid
is sparse, or if packets are dropped, or if energy efficient is
favored over accuracy, bounding boxes are used for defin-
ing the polygons. A bounding box is created around an
area to be aggregated. Cuts are then made to the bound-
ing box to approximate the shape of the polygon. The
more cuts, the more data that needs to be reported and the
better the accuracy. Less cuts means decreased accuracy,
but less data to be sent, improving energy efficiency.

Isobar mapping suffers from similar problems as eS-

can since it also performs aggregation as the data flows
towards the sink. Node location is represented by the cor-
responding grid coordinates minimizing the need to trans-
mit real location information.

More recently, the energy-accuracy tradeoff study by
Boulis et al. [6] proposes a data collection mechanism
where nodes decide whether to share their own readings
based on estimates they get from other nodes. While this
works well for operations like reporting the maximum or
minimum value, it does not apply to more complex appli-
cations like mapping.

Approaching the subject from a mathematical angle,
Doherty et al. [7] studied how different mechanisms to
collect scattered data perform in dense sensor networks.
The focus of their work is on node selection rather than a
protocol to achieve it.

Both eScan and isobars use polygons to aggregate data
of similar value produced by neighboring nodes. We will
compare the performance of isoline aggregation against
(1) no aggregation and (2) polygon aggregation, our im-
plementation of the aggregation mechanism underlying
both eScan and isobars. Even though continuous moni-
toring is not specifically addressed by eScan or isobars,
in our implementation of polygon aggregation we em-
ploy temporal aggregation so we can conduct a fair per-
formance comparison against isolines.

3 Isolines

The goal of isoline aggregation is to provide energy-
efficient data collection by reducing redundant transmis-
sions. One challenge is to achieve this goal using only
local information. Another challenge is to maintain high
data accuracy. To address these challenges, isoline ag-
gregation uses the concept of isolines, lines of the same
value. Energy efficiency is achieved by having each node
only report to the sink if it detects an isoline between itself
and its neighbors; otherwise, no report is generated.

3.1 Neighbor-to-Neighbor Protocol

Isolines are detected based on neighborhood informa-
tion gathered through a neighbor-to-neighbor protocol,
or NNP. Essentially, NNP broadcasts the local sensed
value. Nodes decide when they need to communicate their
sensed information to their neighbors. This happens when
(1) a node is started and (2) when data changes cause an
isoline to appear or disappear. First-time reports allow the
network to detect initial values and the presence of new
nodes.

2

3.2 Isoline Detection and Reporting

Isoline detection is a very simple yet elegant method of
collecting information efficiently for contour map genera-
tion. It works as follows. First, a node compares its read-
ing with the reading of all neighboring nodes. If the read-
ings lie in different sides of an isoline, then a report needs
to be generated. For example, if the isolines measure mul-
tiples of 10, then a node sensing 35 and a neighbor whose
sensed value is 42 are able to detect that there is (at least)
one isoline of value 40 passing between them.

Once the existence of an isoline has been determined, it
needs to be reported to the data collection sink. Reporting
an isoline consists of sending to the sink the node’s sensed
value and the value of the neighboring node across the
isoline. Sending just the isoline value saves some bytes at
the expense of accuracy.

The detection of the isoline is symmetric, i.e., both the
node and its neighbor will detect it. The node who reports
the isoline is the one closest to the sink (according to hop
count). If both nodes are at the same distance, the node
with the lowest reading will send the message.

Nodes will only report to the sink when there are new
isolines nearby. This could lead to problems since we as-
sume that, on the absence of reports, nothing has changed.
For this situation we also implement probabilistic report-
ing. Nodes broadcast their information periodically even
when they do not need to do so. This also helps improving
the accuracy of the maps generated and can be fine-tuned
appropriately.

B (52)

A (56)

C (51)

D (54)

E (48)

F (49)

Node (temp value)

50 isoline

Figure 1: A temperature isoline.

Nodes that are inside the same isoline are said to belong
to the same isocluster. Figure 1 depicts a temperature iso-
line where temperatures within 10-degree ranges belong
to the same isocluster. Nodes A and C are part of the same
isocluster and will know, upon exchanging sensed values,
that an isoline does not exist between them. On the other
hand, nodes B whose value is 52 and E who is measuring
a temperature of 48 will detect the 50-degree isoline when

they compare values.
There is a clear trade-off between the range of the iso-

lines which determines the accuracy of the aggregation
algorithm and its energy efficiency. The smaller range an
isoline covers, the more accurate the overall map is. How-
ever, denser contour maps (in terms of number of isolines
per area), generate more data and thus are less energy ef-
ficient.

3.3 Continuous Monitoring

while(1){
get_reading_from_sensor()
if(reading_has_changed_range){

broadcast_reading_to_neighbors()
}
while_monitor_events {

switch(event){
case receive_reading_from_neighbor:
if(reading_ranges_differ()){

//determine who sends the readings
//to the sink, me or the neighbor
if(i_am_closer_to_sink ||

(we_are_at_same_distance &&
my_reading_is_lower)){

add_readings_to_report()
}
//else
// neighbor will send readings

}
//else
// we are in the same range so we
// don’t report
break;

case period_over:
exit_event_monitoring()

}
}
if(report_contains_readings){

send_report_to_sink()
reset_report()

}
}

Figure 2: Continuous isoline main loop pseudo-code

In applications that are continuously monitoring a spe-
cific condition, the sensor network needs to continuously
sample sensing nodes and report the current state to the
sink. To accomplish this task in an energy-efficient man-
ner, isoline aggregation takes advantage of temporal data
correlation since it reports only when changes are signifi-
cant (ie. isolines move).

This capability is based on the normal isoline detec-
tion mechanism. More specifically, a node starts by sam-
pling its sensor and using the NNP to communicate its
reading to its neighbors. Based on the information it gets
from its neighbors, a node will report to the sink if an
isoline is detected. Nodes will then sample the sensor pe-
riodically, but will broadcast their reading only when the
value changes from one range to another. For example, if

3

sensors are monitoring ranges of 10s (0-9,10-19,20-29,...)
and a node’s reading goes from 17 to 23, the node sends
out a NNP broadcast. This basically means that an isoline
moved, appeared or disappeared, and the node needs to
check if it needs to report.

The pseudo-code for the continuous isoline main
loop algorithm can be seen in Figure 2. The
neighbor to neighbor protocol is simply the broad-
cast reading to neighbors(). This message contains a
node’s reading, the node id and its distance (hop count)
to the sink. For clarity the pseudo-code leaves out some
error detection features.

Isoline aggregation uses cascading timers [3] to sched-
ule node transmissions as a function of the node’s position
in the data collection tree. The outcome is that a cascad-
ing effect is achieved from the leaf nodes to the data sink;
in other words, the farthest away node schedules its trans-
mission first; the next hop (toward the sink), schedules
its transmission next allowing enough time to receive data
from its children, etc. Not only does this reduce delay, but
it fits very well with schemes that save energy by turning
off the radio when the node is idle.

4 Experimental Methodology

We use simulations to evaluate the performance of iso-
line aggregation and compare it against no aggregation
and polygon aggregation. The remainder of this sec-
tion presents our experimental methodology in detail, in-
cluding descriptions of the scenarios and simulation setup
used.

4.1 Other Aggregation Algorithms

Polygon aggregation is used to represent the existing al-
gorithms of eScan and isobars. Our implementation of is
as follows: when a node receives data from its children, it
aggregates it into polygons and sends only the polygons’
vertices. All nodes in the polygon are assigned the aver-
age value of the polygon’s range; for example, in the case
of a [40-50) temperature range, nodes take the value of 45.
Similarly to isobar aggregation [5], we use the sensors’
grid coordinates as their locations. Reports from nodes
may contain multiple polygons if multiple value ranges
have been aggregated. Polygon aggregation uses the Poly-
Boolean library [8] for handling polygons and aggregating
them. For both polygon- and isoline aggregation, data is
grouped in ranges of 10, that is, from [0-10),[10-20), etc.

Just like isolines, we use cascading timers [3] as the
timing model since it allows nodes to wait for their chil-
dren to report without increasing the data collection delay.
This is important because we are doing continuous moni-
toring and need to deliver information in a timely fashion.

The original eScan and isobars algorithms did not pro-
vide continuous monitoring. For fairness reasons, we
incorporate temporal aggregation when extending poly-
gon aggregation to perform continuous monitoring. For
instance, if the temperature of a node has not changed
ranges from the last time this node reported, a report will
not be generated. This implies that leaf nodes will not
report if there has been no range change since the last re-
port. Inner tree nodes will have to report if leaf nodes
report since they are part of the aggregation tree. Poly-
gon aggregation needs them to include their information
to perform aggregation.

No aggregation is our baseline algorithm. Nodes sim-
ply send their readings down the aggregation tree to the
sink. This is very simple and effective. Basically the sink
will get a reading from every node and will be able to
generate the most accurate map using all possible sensed
values. However, there are various problems with this ap-
proach. Having all nodes report means that considerable
traffic will be flowing through the network.

No Aggregation Optimized builds on No aggregation by
using temporal data correlation to reduce the number of
reports generated. In this optimized version, nodes report
their readings directly to the sink only when their temper-
ature has changed from one range to another.

4.2 Scenarios

In our experiments, we try to model two types of phenom-
ena: hotspots and moving fronts. For our first scenario,
we generate a hotspot in our map with a temperature in-
crease of 25 degrees. Temperature increase decays at a
power of 4 from the center of the hotspot. The region will
then slowly go back to the original temperature, as the
hotspot vanishes. In our second scenario, we have a front
moving in from the left to right. Temperature increases
from the forties to the seventies in about 150 meters. The
front moves to the right in 13 seconds.

4.3 Simulation Setup

As the experimental platform, we employ the ns-2 [9]
network simulator. We use a sensor network consisting of
16x16 nodes arranged in a evenly spaced grid monitoring
temperature in a 400m

2
area. We should point out that,

although, in these experiments, nodes are placed accord-
ing to a grid pattern, isoline aggregation is not specific to

4

50

50

60

60

50

50

50 50

50

50

60

60

70

70

50

50

60

60

70

70

t=4 t=7 t=11

Figure 3: Hotspot and front scenarios.

grid placement. For random node placement, further op-
timization for more careful determination of which nodes
should be reporting is needed to avoid unnecessary redun-
dancy.

For medium access control, nodes use CSMA at
115Kbps. Their transmission range is set to 40m.
FLIP [10] was used as the network protocol. Node iden-
tifiers and location information are 2 bytes long. Tem-
perature information is also 2 bytes. Nodes sample the
environment in rounds every 1 second.

The experiment collects the temperature information of
the area for a period of 15 seconds. Figure 3 shows the
real maps for our two scenarios at different points in time.
Reality is simulated by a matrix of 80x40 points. This
will represent the area we are monitoring. When a node
located at the center of our area samples its sensor it will
read the center value of the matrix. These values are de-
termined by the scenario and time in the simulation. The
starting value of all points is centered at 45 degrees with
a small randomness factor of +/- 2. The sensor network
will be basically subsampling this matrix of 80X40 with a
maximum of 16X16 samples if all nodes are reporting.

The sink node, which is placed at the center of the
map, starts by broadcasting a query for the map at time
1s. From time 3s to 14s, nodes report their temperature
readings. The simulation is stopped at time 15s. The data
points used to compute the tabulated results in Section 5
are obtained by averaging over 10 runs.

4.4 Performance Metrics

With these considerations in mind, the performance of
the aggregation algorithms is evaluated according to two
metrics: their energy efficiency and their accuracy. Of
course, our goal is to minimize energy consumption with-
out sacrificing data accuracy. We use average number of
bytes transmitted by each aggregation protocol to mea-
sure energy consumption. This includes all data transmit-
ted by all nodes, intermediate nodes included. While this
might seem to not take receive power into consideration
we should note that the timing scheme used, cascading
timeouts, is well suited to MAC protocols that switch idle
nodes off to low-power radio mode since communication
is not taking place. This is true for both polygon aggre-

5

gation and isoline aggregation. No aggregation doesn’t do
scheduling of transmissions and cannot use such a scheme
without additional modifications.

Accuracy is measured by how similar the map pro-
duced is to reality. Since our goal is to draw contour maps,
it seems appropriate to calculate similarity as the percent-
age of points that are actually in the correct value range
when compared to reality. That is, for every point, we
compare the reality value to the value interpolated from
the data collected in a specific round. We calculate the
percentage of points in the correct value range and then
average it over all simulation rounds (seconds). Simula-
tions were run 10 times. This metric is called contour
similarity.

5 Results

Plotting results obtained from the simulations helps us vi-
sualize how the aggregation algorithms perform in terms
of accuracy. We should point out that the graphing tools
we use, which interpolate the data points to generate a
map, have not been optimized for aggregation algorithms.
For example, in the case of isolines, if there are no read-
ings received from an area, then it is an indication that an
isoline does not exist. In the case of polygon aggregation,
reported areas should be graphed as polygons. Moreover,
some of the anomalies in the graphs can be caused by lost
packets. However, since we do not insert artificial drops,
the effects are not very evident. Packet losses can still
occur caused by collisions.

To generate the maps we interpolate the missing points
from the data the sink received. We use the ngmath
part of the NCAR Graphics Library[11] to interpolate the
80x40 reality data points. As previously pointed out, the
assumptions made by the interpolation algorithm may not
be adequate to the data collection scenarios under consid-
eration. For example, if we are capturing a gradient, like
the one in the moving front scenario, some of the collec-
tion algorithms will only send the points corresponding to
the nodes that changed value. If we only provide these
points to the interpolation algorithm, it will assume that
the gradient continues on both sides of the front. This will
create very disparate graphs. The solution to this problem
is to use the last data reported by a node as input to the
interpolation. This problem was very pronounced on the
“optimized” version of no aggregation.

In the case of isoline aggregation we have, by defini-
tion, nodes reporting only when they detect an isoline.
Hence, we can infer that if no node reported, the values
of that area have not changed over to the “next” isoline.
So, if the highest report is a 46, we know that if the inter-

polation algorithm generates a value greater than 50, that
value should not be considered.

Similarity KBytes sent
No Agg. 98.7 (sd 0.09) 180.0 (sd 5.4)
No Agg opt. 98.9 (sd 0.09) 21.1 (sd 0.4)
Polygons 98.1 (sd 0.49) 62.9 (sd 4.6)
Isolines 97.0 (sd 0.36) 15.3 (sd 1.2)

Table 1: Hotspot scenario: contour similarity and number
of bytes sent.

Tables 1 and 2 present results for the hotspot and mov-
ing front scenarios, respectively. The first column shows
contour similarity and corresponding standard deviation
(in parenthesis). The second column shows the average
number of kilobytes sent per round. This measures poten-
tial energy savings.

For the hotspot scenario we observe that all algorithms
exhibit very good accuracy. This is to be expected as there
are not many nodes changing values. The greatest differ-
ences can be seen in the amount of data sent. The unop-
timized version of no aggregation sent a total of 180KB.
That is more than 11 times the amount of data sent by
isoline aggregation.

No aggregation optimized sends a total of 21KB. That
is 38% more than isoline aggregation. Yet, isolines yields
similar accuracy. This difference is mostly due to the fact
that the initial collection without using aggregation is very
expensive. When data changes in groups, isoline aggre-
gation exhibits lower overhead since nodes with neigh-
bors in the same range will not need to report. There-
fore, if larger areas change values (e.g., if the hot spot
affects larger regions), we expect that the energy savings
achieved by isoline aggregation will be even more pro-
nounced.

In the case of polygon aggregation more data is sent be-
cause aggregation happens only down the collection tree,
and this implies that nodes which would otherwise not
have reported will report. It also means that aggregation
does not take place as soon as possible.

Figure 4 shows the maps generated from the data col-
lected at time T = 4 for the hotspot scenario. This can
be compared to the real map in Figure 3. Note that the
maps in Figure 4 are a snapshot at time T = 4 of a sin-
gle run; therefore, nuances and quirks are to be expected.
We can see that the maps from Isoline and None (i.e., no
aggregation without optimization) are the ones that most
resemble the reality map.

6

50

50

60

60
50

50

50

60

60

50

50

50

60

60

50

50

60

60

None None optimized Polygon Isoline

Figure 4: Hotspot scenario, T=4.

50

50

60

60

70

70

50

50

60

60

70

70

50

50

60

60

70

70

50

50

60

60

70

70

None None optimized Polygon Isoline

Figure 5: Front scenario, T=7.

Similarity KBytes sent
No Agg. 93.2 (sd 1.72) 177.1 (sd 5.9)
No Agg opt. 89.3 (sd 0.70) 62.1 (sd 2.3)
Polygons 82.4 (sd 2.93) 77.0 (sd 3.6)
Isolines 96.7 (sd 0.50) 55.8 (sd 3.1)

Table 2: Front scenario: contour similarity and number of
bytes sent.

Results for the moving front scenario are presented in
Table 2. In this scenario, all nodes will eventually change
value. The amount of data that needs to be reported is thus
larger.

In terms of accuracy, isoline aggregation comes on top,
with 96.7% similarity. Sending less data causes less con-
tention at the MAC layer and therefore is able to achieve
better accuracy. Note that this is true even if an underly-
ing reliable MAC protocol were used. In fact, depending
on the the reliability mechanism used by the MAC layer,
higher contention and higher delays can be incurred.

The other optimized methods, i.e., “optimized” no ag-
gregation and polygons, both have accuracy in the 80%s
while still transmitting more data than isolines. The un-
optimized no aggregation method exhibits 3.5% less sim-
ilarity than isolines yet reporting over 3 times more data.

Figure 5 shows maps generated by the algorithms for

the moving front at time T = 7. In the case of isolines
and “unoptimized” no aggregation, the resulting graphs
are relatively accurate. There are still some minor mis-
takes which happen from reports that got lost along the
way. In the case of “optimized” no aggregation, the errors
are different: they are “carry overs”. Since nodes only
report when data changes, and the map is constructed us-
ing old readings, a node whose update is lost might stay
with an old value and create a semi-permanent error in the
graph.

In the case of polygon aggregation, when a packet is
lost, we loose an aggregated report, and hence we see ar-
eas where there are problems. Isoline aggregation reports
quite accurately with some minor distortion near the edges
due to the lack of nodes to sample reality and the interpo-
lation algorithm.

It is important to note that the algorithms presented here
might not be able to get 100% similarity under the con-
tour similarity metric. This is because a perfect score im-
plies that all of the reality points are placed in the cor-
rect ranges. This might not be possible since we are only
subsampling the space. At some point it is necessary to
increase sensor density to obtain higher accuracy. We ex-
pect that higher sensor density will help isoline aggrega-
tion’s accuracy. As pointed out previously, accuracy in-

7

creases at the expense of energy savings. However, isoline
aggregation minimizes this trade-off.

One of the disadvantages of using polygon-based ag-
gregation lies in the fact that a node cannot make a local-
ized decision of whether or not its information is redun-
dant. Aggregation is limited to nodes on the same branch
of a tree and only happens when a shared ancestor exists.
If this ancestor node is far away, redundant information
will propagated closer to the sink.

6 Conclusions and Future Work

Continuous monitoring is one key application of sensor
networks. This paper introduced isoline aggregation, an
energy-efficient data collection technique targeting con-
tinuous mapping in sensor networks. By having nodes
monitor the presence of isolines and report when they ap-
pear, isoline aggregation is a simple, elegant, and efficient
algorithm for generating accurate maps of continuously
changing conditions.

Through simulations, we evaluate the performance of
isoline aggregation in terms of its accuracy and energy
efficiency. Two different temperature monitoring scenar-
ios were simulated, namely hotspot and moving front. In
the hotspot scenario, a spot of activity appears and dis-
appears; in the front scenario, temperature increase wave
moves through the area. Both of these scenarios have real
life analogies (e.g., fires, animal migration).

In the hotspot scenario, isolines delivered comparable
accuracy while sending 38% less data than our nearest
competitor, an optimized form of no aggregation, where
nodes report only when the sensed value changes. The
non-optimized alternative required more than 11 times the
amount of data transmitted. For the front scenario, isoline
aggregation delivered higher accuracy than all other pro-
tocols we studied (including polygon aggregation, which
represented schemes like eScan and isobars, while still
yielding the highest energy efficiency.

We plan to continue our work on mapping techniques
using isolines. We will use node placement policies other
than grid placement will also study the effect of positive
acknowledgement aggregation. The effect of range size
on accuracy is also being investigated. We will also de-
velop and evaluate isoline aggregation on a small sensor
network testbed consisting of Berkeley Motes.

References

[1] C. Intanagonwiwat, R. Govindan and D. Estrin: Di-
rected diffusion: A scalable and robust communica-

tion paradigm for sensor networks. In: Proceedings
of the International Conference on Mobile Comput-
ing and Networking (MobiCom), ACM (2000)

[2] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong: TAG: a tiny aggregation service for ad-
hoc sensor networks. In: Proceedings of the Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI. (2002)

[3] Solis, I., Obraczka, K.: The impact of timing in data
aggregation for sensor networks. Proceedings of the
IEEE International Conference on Communications
(ICC) (2004)

[4] J. Zhao, R. Govindan and D. Estrin: Residual en-
ergy scans for monitoring wireless sensor networks.
In: Proceedings of the IEEE Wilress Communi-
cations and Networking Conference (WCNC’02).
(2002) 17–21

[5] J. M. Hellerstein, W. Hong, S. Madden and K.
Stanek: Beyond average: Towards sophisticated
sensing with queries. In: Proceedings of the 2nd In-
ternational Workshop on Information Processing in
Sensor Networks (IPSN ’03). (2003)

[6] A. Boulis, S. Ganeriwal, and M.B. Srivastava: Ag-
gregation in sensor networks: An energy-accuracy
trade-off. In: Proceedings of the First IEEE Interna-
tional Workshop on Sensor Network Protocols and
Applications. (2003)

[7] L. Doherty and K. S. J. Pister : Scattered data selec-
tion for dense sensor networks. In: Proceedings of
the Third Symposium on Information Processing in
Sensor Networks. (2004)

[8] Leonov, M.: PolyBoolean Library (2004)
http://www.complex-a5.ru/polyboolean/.

[9] VINT: The Network Simulator NS-2.
http://www.isi.edu/nsnam (2001)

[10] Solis, I., Obraczka, K.: FLIP: A flexible intercon-
nection protocol for heterogeneous internetworking.
ACM/Kluwer Mobile Networking and Applications
(MONET) Special on Integration of Heterogeneous
Wireless Technologies (2004)

[11] National Center for Atmospheric Re-
search: NCAR Graphics Library (2004)
http://ngwww.ucar.edu/ng4.3/.

8

