
Guiding Sensor-Node Deployment Over 2.5D Terrain

Kerry Veenstra and Katia Obraczka

Computer Engineering Department

University of California, Santa Cruz, CA, USA

Email: {veenstra, katia}@soe.ucsc.edu

Abstract—We propose a novel distributed deployment algo-
rithm for sensor networks whose nodes reside upon and are
obstructed by 2.5D terrain. Our algorithm optimizes area cov-
erage by computing cumulative visibility over terrain. Through
simulation and comparison to centralized algorithms, we demon-
strate that our distributed algorithm achieves good results and
degrades gracefully with reduced internode communication. To
the best of our knowledge, our distributed deployment algorithm
is the first use of a distributed simulated annealing algorithm for
sensor network deployment. In addition, to our knowledge, this is
the first time range-limited cumulative visibility is used to guide
sensor deployment over 2.5D terrain. Our results show that a
centralized Simulated Annealing algorithm outperforms Pattern
Search and Gradient Ascent approaches. Results also show that
our version of Distributed Simulated Annealing performs well,
degrading gracefully as communication radius is reduced.

I. INTRODUCTION

Deployment algorithms for wireless sensor networks aim
to find node locations that optimize network characteristics
such as energy usage, network lifetime, and sensor coverage.
These algorithms often constrain node locations to a region of
a two-dimensional (2D) plane [3] [13] [14] [21] [32] and [37].
Some research has been conducted in deployment within a
region of 3D space with or without obstructions [16] and
[23]. 2D and 3D scenarios like these can model many real-
world network deployments, but they may only approximate
the characteristics of networks that are deployed over non-
planar 2.5D terrain (The term “2.5D” has different meanings
in different disciplines. We use the meaning from machining in
which the third dimension is a function of the first two [33].)

Most sensors that do not physically touch a target must
have a clear line of sight (CLOS) to sense their target’s
characteristics. In 2.5D deployments, the CLOS requirement is
a constraint. For example, sensors that detect visible and near-
visible light, such as cameras and motion detectors, cannot
see through or around terrain. Other sensors that require
CLOS include those that detect ultrasonic acoustic waves or
microwave electromagnetic waves.

These scenarios can be modeled using opaque 2.5D sur-
faces, with corresponding deployment algorithms considering
obstructions that are caused by the terrain itself [4] [5]. On
2.5D terrain the “obstructions” to CLOS are hills rather than
the assumed vertical walls of 2D scenarios. Consequently
apparent boundaries of obstructions in 2.5D seem to vary with
the positions sensors and targets.

In this paper we propose a novel distributed deployment
algorithm for sensor networks whose nodes reside upon and
are obstructed by 2.5D terrain. Our algorithm optimizes area
coverage by maximizing cumulative visibility over terrain.

As will become clear in section V-C, our algorithm uses
a distributed simulated annealing approach that is funda-
mentally different from other distributed simulated annealing
algorithms. Through simulation and comparison to centralized
algorithms, we demonstrate that our distributed algorithm
achieves good results and degrades gracefully with reduced
internode communication.

We believe that this is the first use of Distributed Simulated
Annealing for sensor network deployment and the first use of
range-limited cumulative visibility to guide sensor coverage
over 2.5D terrain.

We start with a description of our coverage model in
Section II. Then in Section III we define the 2.5D optimization
problem that we aim to solve, and we show how the problem’s
characteristics affect our choice of optimization algorithms. In
Section IV we briefly review some algorithms for non-linear
optimization problems. Next we present and evaluate both
centralized and distributed Simulated Annealing algorithms in
Section V. Finally we present our results in Section VI and
conclusions and future work in Section VII.

II. COVERAGE

Coverage is a key concept in sensor networks. Its definition
depends on the type of sensor network and its application.
Quantitatively, coverage measures the quality of service that
the sensor network provides to its driving application. In this
work, we define an objective measure of coverage f(s) as the
total number of targets that are visible to at least one member
of the set of network sensors.

In the 2D plane, coverage often is defined using the Disk
Model, which determines visibility between a sensor and a
target using just the distance between them [30, ch. 2]. Using
the Disk Model, we can evaluate the value of a sensor’s
position as the number of targets that the sensor’s disk covers
(where the radius of the disk is the sensor’s range). We can
extend this idea to measure the value of an entire sensor
network in the 2D plane as the number of targets that reside
within the union of all of the sensors’ disks.

For this work, sensors and targets reside not in 2D but in
3D. However the locations of the sensors and the targets are
confined to a 2.5D surface of which the third dimension is a
function of the first two [33]. That is, given a height function
h(x, y), we define a location in 2.5D as s =

(

x, y, h(x, y)
)

.

With sensors and targets confined to the surface of 2.5D
terrain, sensor-target visibility can be blocked by features of
the terrain itself. For coverage, we use range-limited visibility,
which requires not only that a target be in a sensor’s range,
but also that the target has a clear line of sight to the sensor



(CLOS). Furthermore, range-limited cumulative visibility is the
number of targets that a sensor can see over 2.5D terrain.
Using this definition of coverage, our measure of a sensor
network’s deployment f(s) is its range-limited cumulative
visibility, which is the number of targets that have CLOS to
at least one in-range sensor.

visibility
The ability of a sensor to see a target without
obstruction. Requires clear line of sight (CLOS).

range-limited visibility
Visibility that is restricted by a maximum range.
The range limit can be due to, for example, atten-
uation (a microphone hearing sound) or resolution
limits (a camera viewing a distant object).

cumulative visibility
The number of targets that a sensor or a sensor
network can see (point coverage) or the visible
area of the target region (area coverage).

range-limited cumulative visibility
Cumulative Visibility that is restricted by a max-
imum range.

III. PROBLEM FORMULATION

In this section we define the 2.5D problem that we aim
to solve. But first we note that when we are presented with a
sufficiently simple coverage problem, we have available many
avenues for finding a good sensor placement that optimizes
the Objective Function f(s). For instance, when the number of
potential sensor locations L is very small, we can exhaustively
compute the Objective Function for all useful combinations of
sensor locations and then choose the best. (The number of
combinations evaluated will be no more than 2L.) Alterna-
tively, given a sufficiently small point coverage problem, we
can treat it as an equivalent problem in set covering, which can
be attacked straightforwardly using a greedy algorithm [8].
Another approach for a point coverage problem is to create
an equivalent set of linear inequalities which can be solved
effectively using integer linear programming [30, p. 56].

In all of these cases, the number of potential sensor
locations L and the number of targets n both are small enough
for these algorithms to be tractable. But in this paper we
consider area coverage, and so L and n literally are the number
of distinct placement locations across terrain. Consequently our
problem requires a different approach.

In this paper we compare centralized deployment algo-
rithms and a distributed deployment algorithm. These algo-
rithms attempt to find locations for a given set of nodes that
maximize area coverage over 2.5D terrain. The centralized
algorithms compute locations for all of a set of nodes assuming
that all location and coverage information is available. The
distributed algorithm considers communication constraints:
each node attempts to optimize the overall Objective Function
while it has only limited position information for other network
nodes.

IV. NON-LINEAR OPTIMIZATION

Presented with a large optimization problem, often one
cannot find an algorithm that guarantees an optimal solution in
reasonable time. Instead one uses an iterative heuristic to find

a good solution. Examples of heuristics are gradient ascent,
pattern search, and the Nelder-Mead simplex algorithm.

Gradient-based optimization algorithms follow the slope of
the objective function to select a series of candidate solutions
[15, Ch. 5] [10, p. 111]. These algorithms assume smooth
gradients. However, considering outdoor deployments, prac-
tical 2.5D terrain elevation data is noisy [11, ¶100], making
computed visibility-based objective functions noisy as well.
Consequently we prefer optimization algorithms that do not
rely on objective-function gradients.

There is an alternative optimization scheme that requires
no derivative computations and compares just the values of
the objective function: direct search [36]. Examples of direct
search are Fermi and Metropolis’s coordinate search [9] and
Nedler and Mead’s simplex search [19, §9.5], [22].

While less susceptible to noise than gradient-based meth-
ods, direct-search methods still are greedy, and so they can get
caught in a local optimum. Even a seemingly simple terrain
function h(·) can lead to in an objective function f(s) that
has multiple local optima. This shortcoming of direct search
algorithms traditionally leads one to restart the algorithms from
numerous random starting points in an attempt to improve the
chance of discovering the global optimum.

V. PROPOSED SOLUTION

Rather than repeatedly restarting an optimization algorithm
from the beginning, an alternative strategy is to develop an
optimization algorithm that backtracks partway from a local
optimum. The heuristic algorithm Simulated Annealing has
been developed to use this strategy.

We have defined our optimization problem as determining
the locations of a set of nodes, s, that maximize cumulative
visibility f(s). In this section we present a distributed deploy-
ment algorithm that uses our version of distributed simulated
annealing. But we start by justifying our choice of terrain
representation since it affects the algorithm (Section V-A).
Afterward, in Section V-B we present a centralized placement
algorithm using classic Simulated Annealing, and then in
Section V-C we present an algorithm that uses our distributed
version of Simulated Annealing.

A. Terrain Representation

Practical terrain data is discontinuous, as it is a set of
distinct elevation samples. Our evaluations for this paper
use a dataset from NASA’s 2005 Shuttle Radar Topography
Mission (SRTM) [26], [27]. One result of that mission is a
dataset of global elevations with one-second-of-arc resolution
(approximately 30 meters or 100 feet in the latitude direction).
This sort of data is called a Digital Elevation Model or DEM
[7]. Such a high-resolution DEM offers an opportunity to
evaluate the coverage of a WSN deployment.

Since DEM data does not define a continuous surface,
visibility computations must assume a spatial representation
for the data in order to compute obstructions. For example,
if one were to represent terrain using a Regular Square Grid
(RSG) [24], the world would be a collection of tightly packed
prisms with each prism’s height determined by a corresponding
point in the DEM. Then the author of a visibility algorithm



would need to decide what “seeing a datapoint” means: is it
seeing the top face of the prism? Is it seeing part of an edge?
An RSG representation is far removed from actual topography,
and our reading of the literature suggests that it is not the most
popular representation in visibility computations.

A more popular representation is a Triangulated Irregular
Network (TIN) [25], which most GIS (Graphical Information
Systems) visibility algorithms use. The advantage of using
a TIN is that a group of TIN triangles can be merged into
a larger triangle for efficient storage. De Floriani evaluates
several TIN-based visibility algorithms [12].

Although TIN is popular for visibility computations, sen-
sor nodes require an efficient algorithm, and so we have
selected the terrain representation that is used by a dynamic-
programming-based viewshed algorithm by Wang, Robinson,
and White [31]. This algorithm represents terrain as a grid of
vertical height poles, fitting sight planes through the viewpoint
and selected pairs of adjacent poles and then computing
visibility by checking whether a more distant pole pierces the
sight plane.

B. Centralized Algorithm

Simulated Annealing is a general stochastic optimization
method whose operation is inspired by the annealing of a
metal. The method is notable in that it has been used suc-
cessfully in finding solutions to various discrete optimization
problems, including deployment of sensor networks [18], [20]
and even the physical design of VLSI circuits [35].

A Simulated Annealing algorithm generates a sequence of
incremental candidate solutions, determining at each point in
the sequence whether the candidate solution is accepted or
rejected. The criteria for acceptance depends on the change in
the system’s global utility, comparing a candidate solution to
the solution that was most recently accepted. (Often Simulated
Annealing acceptance criteria depends on the change in cost
rather than the change in utility. One negates the change in cost
to obtain the change in utility.) Given a prior accepted solution
s and a candidate solution s

′, the probability of accepting s
′

is computed from the potential change in utility

∆ = f(s′)− f(s) (1)

yielding

P (accept s
′) =

{

1 if ∆ ≥ 0

e∆/T if ∆ < 0
(2)

In (2) T is a control parameter that is analogous to a system’s
temperature during annealing. (Stated more accurately, T com-
bines temperature and Boltzman’s constant, but the Simulated
Annealing algorithm functions without their separation and
refers to their combination as “temperature” [35, p. 5].)

Our centralized Simulated Annealing algorithm mostly
follows the classic algorithm presented in [29, p. 54] except
for the mechanism that determines the annealing schedule. As
in the classic algorithm, the outer repeat/until loop in lines 2–
17 controls temperature. During each iteration of this loop, the
contained for loop of lines 4–13 (called the Metropolis loop)
generates and evaluates a succession of M candidate solutions
at a fixed temperature T . The value of T is recomputed only
after every M solution evaluations.

An important aspect of any Simulated Annealing algorithm
is the mechanism whereby one chooses a sequence of values
for T . In line 11 of the listing, where the exponential of the
probabilistic acceptance criteria (2) is implemented, note that
as T → ∞ all attempts to decrease utility are accepted, but
as T → 0 all such attempts are rejected. Early applications
of Simulated Annealing just entered the outer loop with a
large value of T that forced acceptance of all attempts at
utility reduction. The loop then periodically multiplied T by a
constant between zero and one, reducing T monotonically [29,
p. 54]. However, a disadvantage of this simple method is that
the rate of temperature reduction is fixed without any feedback.
So if one reduces T too rapidly the system “quenches” early
before finding an optimum, degenerating early to a greedy
algorithm. But if one changes T too slowly, execution time
of the algorithm extends unnecessarily.

To avoid both quenching and long run times, adaptive
cooling schedules have been developed. For our Simulated
Annealing algorithm, we adopt an efficient general cooling
schedule [29, p. 72]. This schedule attempts to control T
such that consequential increases in the objective function
are limited to the value of the objective function’s standard
deviation. (See the reference for the inspiration behind this
choice.)

Another important aspect of a Simulated Annealing al-
gorithm is the generation of candidate solutions. Candidate
solutions should be incremental changes to the current so-
lution rather than large jumps. In addition, the algorithm
that generates candidate solutions should allow the possibility
of returning to any earlier solution. For our algorithm, a
candidate solution is generated by selecting a random node
and computing a random new location for it. The new location
is selected from a uniform circular distribution that is centered
on the current location. The radius of the distribution is set to
an arbitrary value over all test runs.

1: Initialize state s, cycle count M , and temp. T .
2: repeat
3: Select a random sensor k.
4: for i = 1 to M do
5: Select a random potential move for sensor k.
6: Create a potential next state s

′ from this move.
7: Compute ∆ = f(s′)− f(s)
8: if ∆ > 0 then
9: s← s

′

10: else
11: s← s

′ with probability e∆/T

12: end if
13: end for
14: time← time + M
15: M ← βM {0 < β < 1}
16: Reduce T. {see text}
17: until time ≥ time max or T = 0
18: Return the best s seen.

C. Distributed Algorithm

A single computer running the centralized deployment
algorithm that we just described must know all of the node’s
positions. We relax that requirement in this section when
we distribute the deployment algorithm among the nodes
and limit each node’s knowledge to the positions of just its



neighbors. The distributed Simulated Annealing algorithm that
we discuss here is not the same as a parallel implementation
of a Simulated Annealing algorithm: instead each node runs
its own annealing loop with different, incomplete knowledge
of the other nodes.

The best way to distribute a Simulated Annealing algorithm
depends on the method of generating candidate solutions
and the nature of the system’s objective function. Arshad
and Silaghi present a straightforward distributed Simulated
Annealing algorithm, DSAN, in which all nodes attempt to
solve an identical scalar optimization problem [1]:

1: Initialize value v, cycle count M , and temp. T .
2: repeat
3: Randomly choose a value for v.
4: for i = 1 to M do
5: if v changed then
6: Send the new value of v to neighbors.
7: end if
8: Collect neighbors’ new values of v, if any.
9: Choose a random neighbor’s value v.

10: Compute ∆ = f(v′)− f(v)
11: if ∆ > 0 then
12: v ← v′

13: else
14: v ← v′ with probability e∆/T

15: end if
16: end for
17: Reduce T.
18: until time ≥ time max or T = 0
19: Return v

In DSAN, during each iteration of the Metropolis loop
(the for loop), each node shares its current best solution to
the problem with its neighbors (line 6) and then adopts a
random neighbor’s solution based on the Simulated Annealing
probabilistic acceptance criteria given by (2) (see lines 11
through 15).

Our distributed Simulated Annealing algorithm, which we
present below, differs from DSAN in two fundamental ways.
First, while a node running DSAN communicates its solution
to its neighbors during each iteration of the Metropolis loop,
our algorithm saves energy by performing inter-node commu-
nication only at the completion of the loop (that is, after every
M iterations, when temperature parameter T is recomputed).
This change reduces communication energy by a factor of M .

Second, and more significantly, nodes running DSAN work
together to converge on a single scalar value, while our 2.5D
deployment problem needs a vector of different locations, a
different location for each node of the network. In other words,
while nodes using DSAN probabilistically adopt a neighbor’s
scalar solution, the current solution (or state) of a node in
our system corresponds to a vector of node locations, with the
node’s own location being the only one known with certainty.
A node running our distributed algorithm will create a new
solution through two steps: (1) moving itself probabilistically
using the Simulated Annealing Metropolis loop (updating its
own location in its own solution vector) and then (2) accepting
all of its neighbors’ own self-reported locations with 100%
certainty.

Each node running our algorithm needs to estimate its

contribution to the objective function f(s). For a node to
answer this question, our distributed algorithm uses a local
objective function called the “wonderful life utility,” or WLU.

The WLU for a node compares the global utility of the
system with the global utility of an alternate world in which
the node doesn’t exist. The WLU is the node’s individual
contribution to global utility. (The local utility function’s name
is inspired by a scene in the Frank Capra movie It’s a
Wonderful Life [6] during which James Stewart’s character
learns what his home town would have been like if he hadn’t
been born.) For example, in Fig. 1 the value of WLU(s) is
represented by a shaded region. The area of this region is the
contribution that node s makes to overall coverage. As one can
see from the figure, as long as the other nodes are momentarily
immobile, changes in a node’s WLU equal changes in overall
coverage.

Changes in a node’s WLU are the same as changes in the
global objective function f(s) as long as no two nodes change
state simultaneously [2], [34]. That is

WLU(s′)−WLU(s) = f(s′)− f(s) = ∆ (3)

One can see from (3) that an algorithm that bases its decisions
on changes in an objective function can guide its operation
with the local utility function WLU(s) instead of the global
objective function f(s). While this choice does not affect the
operation of a centralized algorithm, with the addition of a few
constraints, one can use WLU(s) to construct a distributed
algorithm whose average results closely match those of the
centralized algorithm.

1) Communication: A node can compute its WLU accu-
rately as long as it has three values: its own location, the
locations of its neighbors, and an understanding of visibility
over terrain. Depending on the circumstances, the node does
not need to know the locations of all of its neighbors.

Considering communication between nodes, we must ac-
count for the fact that radio signals have vastly different
propagation properties than visible light. On one hand, under
appropriate conditions, radio waves (such as VHF) can travel
around and through obstacles that are opaque to visible light
[28, §16.2.2]. On the other hand, even with CLOS, radio
propagation can be affected by fading due to multi-path effects
[17, §7.3]. Clearly radio propagation is more complicated than
can be represented by the disk model. However we use the
disk model for radio communication for simplicity, and we
require CLOS for sensing. (As part of future work, we plan to
use a more realistic radio propagation model.)

Consider first when all nodes are immobile. To properly
compute their WLUs, two neighboring nodes must be aware

Fig. 1. The Wonderful Life Utility (WLU) of a node is its individual
contribution to overall utility. In this example, the overall utility of three nodes
working together is the total area of three overlapping disk models. The WLU
of node si is represented by the central black region, which shows what would
be uncovered were node si to move to a completely different location.



when they cover the same region. If the nodes are separated by
twice the sensing radius Rs, then (assuming CLOS) they both
can just cover the point midway between them. To be aware
of each other’s positions, the nodes’ communication radius Rc

must be at least twice Rs:

Rc ≥ 2Rs

Now let us consider a mobile node (assuming the same sensing
and radio-propagation models). If a node is mobile and it is
evaluating a potential move, then for an accurate WLU com-
putation, the required communication radius must be increased
by the maximum possible distance that the node could move
away from its current position before communicating with its
neighbors again. We call this distance the nodes’ exploration
radius Re.

Rc ≥ 2Rs + Re

The prior inequality assumes immobile neighbors. Since two
nodes that are out of communication range may move si-
multaneously toward each other, the required communication
distance must be increased by another Re. This gives us the
constraint relation in its most general form:

Rc ≥ 2Rs + 2Re (4)

We can rearrange (4) to create a constraint on Re:

Re ≤
1

2
Rc −Rs (5)

This constraint on the exploration radius is sufficient to prevent
nodes that are not communicating (that is, which are separated
by a distance greater than Rc) from inadvertently covering the
same area of interest after moving.

2) Our Algorithm: Our version of distributed Simulated
Annealing, as it runs on a single sensor node, is below. It
differs from the centralized algorithm in two ways. First,
instead of selecting a random node k to move (centralized
algorithm line 3), each node always selects itself. Second,
while both algorithms follow the same Metropolis procedure
(lines 4–13 of both algorithms), the centralized algorithm uses
always up-to-date neighbor positions during all iterations of
the Metropolis loop, but the distributed algorithm must use
neighbor positions that are communicated outside of the loop
in lines 14–15.

1: Share this sensor’s location with neighbors.
2: Initialize state s, cycle count M , and temp. T .
3: repeat
4: for i = 1 to M do
5: Select a random potential move for this sensor.
6: Create a potential next state s

′ from this move.
7: ∆← WLU(s′)−WLU(s).
8: if ∆ > 0 then
9: s← s

′

10: else
11: s← s

′ with probability e∆/T

12: end if
13: end for
14: Share this sensor’s location with neighbors.
15: Incorporate other sensors’ locations into s.
16: time← time + M
17: M ← βM {0 < β < 1}
18: Reduce T. {see text}
19: until time ≥ time max or T = 0
20: Return the best s seen

VI. RESULTS

A. Experimental Methodology

To evaluate our use of range-limited cumulative visibility
as an objective function, we created a custom simulation
testbed in C++. The testbed reads terrain data from DEM files,
executes one of several deployment algorithms for a set of
nodes over a region of terrain, and then reports the cumulative
visibility of the computed solution s. In addition, the testbed
lets us write a sequence of bitmap images that we use to
animate an algorithm’s operation.

The DEM terrain data comes from two sources. The first is
SRTM radar topography data for two areas near our university.
We use topography of a forested valley (identified as “Real”)
and topography of flatter urban region (identified as “RealB”).
We use a subregion of each area with 240 × 180 elevation
values. (To simplify our algorithms’ distance computations, we
treat these SRTM samples as square although actually they
represent elevations of non-square regions that subtend one
second of arc in latitude and longitude.)

The second source of DEM data are four mathematically
defined synthetic terrains. These represent a flat surface, a
set of irregular steps, and two terrains that are defined by
sinusoids:

hwavy
1
(x, y) = 1000

[

sin2(
π

360
x) + sin2(

π

240
y)

]

hwavy
2

(x, y) = 1000
[

sin2(
π

180
x) + sin2(

π

120
y)

]

where

x = {0, . . . , 239}

y = {0, . . . , 179}

In all cases, the objective function f(s) measures the
number of elevation points that are visible to one or more
nodes. Given a subregion of 240 × 180 elevation points, the
maximum value of the objective function is the total number
of elevation points, or 43,200.

B. Centralized Algorithms

We ran our centralized algorithm on our testbed with each
of the six terrains. We compared its results to those of greedy
algorithms Gradient Ascent [15, ch. 5] and Pattern Search [9].
Each algorithm/terrain combination was run ten times. We
initialized each run with a different set of ten random node
locations.

The results (Fig. 2) show that Simulated Annealing finds
better deployments over all tested terrains than either Gradient
Ascent and Pattern Search. Since Simulated Annealing can
avoid getting stuck in local optima, we expect that is why
it outperforms the greedy-style algorithms. That said, we are
surprised at the performance of Pattern Search on the synthetic
terrains.



C. Distributed Algorithm

We ran our distributed algorithm over the same terrains
and under the same conditions that we used for testing the
centralized algorithms. The performance of our version of Dis-
tributed Simulated Annealing (Fig. 3) improves with increased
communication radius Rc, which is expected. Comparing the
results of our Distributed Simulated Annealing algorithm with
the centralized Simulated Annealing algorithm, we see that
communication is important in achieving good results. Notice
that as the communication radius of the distributed algorithm
increases to values that are nearly equal to the dimension of
the test range, the results become comparable to those of the
centralized algorithm.

We also ran the algorithm for the case where 20 sensor
nodes are used. We observe that the algorithm exhibits similar
behavior in terms of how its performance varies with Rc.

In our test runs, while varying the maximum communi-
cation radius Rc we set the maximum exploration radius Re

correspondingly by treating (5) as an equality. To determine
whether our results were affected more by constraining com-
munication or by constraining exploration, we also ran a set of

Fig. 2. Results for centralized algorithms. Each data point is computed as
an average over ten random starting positions for ten nodes. For the Real
and RealB terrains, the gradient ascent results show a standard deviation that
is 13%–15% of the mean, pattern search results show a standard deviation
that is 3%–4% of the mean, and simulated annealing results show a standard
deviation that is 1%–3% of the mean. Note that all algorithms find the optimal
solution for flat terrain. The optimal results for other terrains are unknown.

Fig. 3. Results for Distributed Simulated Annealing. Each data point is
computed as an average over ten random starting positions for ten nodes. For
all terrains, results show a standard deviation of about 10% of the mean with
some variation as low as 5% and as high as 21%. We expected to see a larger
communications radius Rc help the algorithm find a placement with greater
utility.

tests that increase Re beyond the limit specified in inequality
(5). The results (Fig. 4) show that limiting the exploration
radius has little effect on the final results obtained by the
distributed algorithm.

While initially puzzled with this result, we now believe
that we understand it. Our motivation for limiting Re is to
ensure that changes in WLU always equal changes in global
utility (3). While this restriction ensures that the Simulated
Annealing algorithm never makes a decision based on an
incorrectly computed value of the objective function, the algo-
rithm already tolerates missteps. Following each Metropolis
procedure, after neighboring nodes communicate their new
locations, changes in WLU once again will match changes
in the objective function. Then at the beginning the next
Metropolis loop, any nodes that have inadvertently moved to
cover the same topography will tend to part since the updated
WLU will favor separation. Indeed, since Simulated Annealing
algorithms benefit from—and actually rely on—randomness,
we should not be surprised to see that restricting movement is
not beneficial (such restrictions even could extend convergence
times).

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel distributed deployment algo-
rithm for sensor networks whose nodes reside upon 2.5D
terrain. To the best of our knowledge, our distributed algorithm
is the first to use a distributed simulated annealing algorithm
for sensor network deployment in 2.5D terrain. In addition, to
our knowledge, this is the first time cumulative visibility is
used to guide sensor deployment over 2.5D terrain. In order
to limit communication requirements, our algorithm uses the
Wonderful Life Utility as a local utility function. The WLU
measures a node’s individual contribution to global utility,
making it ideal for a distributed algorithm.

Our results show that a centralized simulated annealing
algorithm outperforms Pattern Search and Gradient Ascent
approaches. Results also show that our version of distributed
simulated annealing performs well, degrading gracefully as
communication radius is reduced.

Fig. 4. There appears to be no trend in the influence of the exploration
radius Re on the final objective function found by the distributed deployment
algorithm. Upon reflection, we believe that this result is expected: simulated
annealing algorithms automatically correct for missteps. In this case, any
inadvertent coverage overlap caused by a large exploration radius is tends
to be corrected during the following executions of the Metropolis procedure.



Our inclusion of an exploration radius Re was intended to
help the algorithm avoid unintended node-to-node interference
when communication is limited, but our tests show that this
feature apparently is unnecessary.

In the future we want to incorporate a more realistic
communications model than the Boolean disk, and we would
like to include connectivity in the utility model. In addition,
we want to see the effect of removing the movement restriction
Re completely. At present we are porting our algorithm into
a sensor network simulator which will help us explore more
realistic communication models. In this platform, we also will
compare our algorithm to other distributed heuristic algorithms
such as gradient descent.

ACKNOWLEDGMENT

The authors would like to thank Jorge Cortés of UCSD for
introducing us to Potential Games and WLU.

REFERENCES

[1] M. Arshad and M. C. Silaghi. Distributed simulated annealing. In
W. Zhang and V. Sorge, editors, Distributed Constraint Problem Solving

and Reasoning in Multi-Agent Systems, pages 35–47. IOS Press, 2004.

[2] G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vehicle-target
assignment: A game-theoretical formulation. Transactions of the ASME,
129:584–596, September 2007.

[3] M. Batalin and G. Sukhatme. The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor network
deployment. IEEE Transactions on Robotics, 23(4):661–675, 2007.

[4] P. Bose, D. G. Kirkpatrick, and Z. Li. Efficient algorithms for guarding
or illuminating the surface of a polyhedral terrain. In Proceedings of the

8th Canadian Conference on Computational Geometry, pages 217–222.
Carleton University Press, 1996.

[5] P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral
terrains. Computational Geometry: Theory and Applications, 7:173–
185, 1997.

[6] F. Capra. It’s a Wonderful Life. Film, 1946. Liberty Films.

[7] K. Chang. Introduction to geographic information systems. McGraw-
Hill, 6th edition, 2012.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, Cambridge, 3rd ed. edition, 2009.

[9] W. C. Davidon. Variable metric method for minimization. SIAM Journal

on Optimization, 1(1):1–17, February 1991.

[10] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. A. K. Peters, Ltd., Wellessley, Mas-
sachusetts, 2006.

[11] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley,
M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer,
J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Als-
dorf. The shuttle radar topography mission. Reviews of Geophysics,
45(2), 2007.

[12] L. D. Floriani and P. Magillo. Algorithms for visibility computation on
digital terrain models. In SAC, pages 380–387, 1993.

[13] N. Heo and P. Varshney. An intelligent deployment and clustering
algorithm for a distributed mobile sensor network. In Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics,
2003.

[14] A. Howard, M. J. Matarić, and G. S. Sukhatme. An incremental self-
deployment algorithm for mobile sensor networks. In Autonomous

Robots, Special Issue on Intelligent Embedded Systems, volume 13,
pages 113–126, 2002.

[15] S. L. S. Jacoby, J. S. Kowalik, and J. T. Pizzo. Iterative Methods

for Nonlinear Optimization Problems. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1972.

[16] C.-W. Kang and J.-H. Chen. Multi-objective evolutionary optimization
of 3d differentiated sensor network deployment. In GECCO’09, 2009.

[17] C. A. Levis, J. T. Johnson, and F. L. Teixeira. Radiowave Propagation:

Physics and Applications. John Wiley & Sons, Inc., Hoboken, New
Jersey, 2010.

[18] F. Y. Lin and P. Chiu. A simulated annealing algorithm for energy-
efficient sensor network design. In Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks, pages 183–189, April 2005.

[19] T. V. Mikosch, S. I. Resnick, and S. M. Robinson, editors. Numerical

Optimization. Springer Series in Operations Research and Financial
Engineering. Springer Science+Business Media, LLC, 2nd edition,
2006.

[20] G. Molina and E. Alba. Wireless sensor network deployment using a
memetic simulated annealing. In International Symposium on Applica-

tions and the Internet, pages 237–240, August 2008.

[21] H. Mousavi, A. Nayyeri, N. Yazdani, and C. Lucas. Energy conserving
movement-assisted deployment of ad hoc sensor networks. IEEE

Communications Letters, 10:269–271, 2006.

[22] J. A. Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7:308–313, 1965.

[23] C. D. Ortiz, J. M. Puig, C. E. Palau, and M. Esteve. 3d wireless sensor
network modeling and simulation. In SensorComm 2007: International

Conference on Sensor Technologies and Applications, pages 307–312.
IARIA, October 2007.

[24] T. K. Peucker and D. H. Douglas. Detection of surface-specific points
by local parallel processing of discrete terrain elevation data. Computer

Graphics and Image Processing, 4:375–387, 1975.

[25] T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark. The
triangulated irregular network. In Proceedings, American Society of

Photogrammetry: Digital Terrain Models (DTM) Symposium, pages
516–540. American Society for Photogrammetry & Remote Sensing,
May 1978.

[26] E. Rodriguez, C. S. Morris, and J. E. Belz. A global assessment of the
SRTM performance. Photogrammetric Engineering & Remote Sensing,
72:249–260, 2006.

[27] E. Rodriguez, C. S. Morris, J. E. Belz, E. C. Chapin, J. M. Martin,
W. Daffer, and S. Hensley. An assessment of the SRTM topographic
products. Technical Report JPL D-31639, Jet Propulsion Laboratory,
Pasadena, California, 2005.

[28] R. Rudd. Short-range and Indoor propagation. In L. Barclay, editor,
Propagation of Radiowaves, 3rd ed., pages 308–310. The Institution of
Engineering and Technology, 2013.

[29] S. M. Sait and H. Youssef. Iterative Computer Algorithms with

Applications in Engineering. IEEE Computer Society, Los Alamitos,
CA, 1999.

[30] B. Wang. Coverage Control in Sensor Networks. Springer, 2010.

[31] J. Wang, G. J. Robinson, and K. White. Generating viewsheds without
using sightlines. Photogrammetric Engineering & Remote Sensing,
66(1):87–90, January 2000.

[32] Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng. Efficient placement and
dispatch of sensors in a wireless sensor network. IEEE Transactions

on Mobile Computing, 7:262–274, 2007.

[33] Wikipedia. “2.5D (machining)”. http://en.wikipedia.org/wiki/2.5D
(machining).

[34] D. H. Wolpert and K. Tumer. An introduction to collective intelligence.
In J. M. Bradshaw, editor, Handbook of Agent Technology. AAAI
Press/MIT Press, 2000.

[35] D. Wong, H. Leong, and H. Liu. Simulated Annealing for VLSI Design.
The Springer International Series in Engineering and Computer Science.
Springer, 1988.

[36] M. H. Wright. Direct search methods: once scorned, now respectable.
In Numerical Analysis 1995, pages 191–208. Addison Wesley Longman
Limited, 1995.

[37] C.-H. Wu, K.-C. Lee, and Y.-C. Chung. A delaunay triangulation
based method for wireless sensor network deployment. Computer

Communications, 30(14–15):2744–2752, 2007.


