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Abstract— In this paper we make use ofhybrid systems
to model the transient and steady-state behavior of multi-
ple TCP flows that share a single common bottleneck link.
The contributions of our models include: (1) a more com-
plete description of TCP’s behavior, including the effect of
queuing, interaction among competing flows, and finite ad-
vertised window size, (2) theoretical prediction of phenom-
ena such as flow synchronization which have only been ob-
served experimentally; our models predict that, under cer-
tain conditions, the window sizes and sending rates of all
competing flows will synchronize exponentially fast at a rate
of ���, where � is the number of drops experienced by a
flow, (3) theoretical prediction of other TCP congestion con-
trol pathologies, such as unfairness, which previous models
based on single-flow analysis fail to capture. In this paper we
also propose mechanisms that mitigate both synchronization
and unfairness.

We validate our approach by constructing a hybrid
model of TCP-Reno and re-deriving well-known relation-
ships among congestion control parameters—such as the
formula � �� ����

���
�
�
, which relates the average through-

put � , the average round-trip time ��� , and the average
packet drop rate �. We also present simulation results that
validate our theoretical predictions.

To our knowledge, this is the first time hybrid systems
are used to model congestion control. We fully characterize
TCP’s behavior in the dumbbell topology, employing pow-
erful theoretical tools available for hybrid systems. When
compared with previous work, we provide a more complete
characterization of TCP, demonstrating the potential of hy-
brid systems as a modeling tool for congestion control.

I. I NTRODUCTION

For the past decade, TCP congestion control mecha-
nisms have been under the scrutiny of the network research
community. The existence of several versions of TCP such
as TCP-Tahoe, Reno, Vegas, New Reno, and Selective Ac-
knowledgement (SACK) is evidence of the attention TCP
has received over the years. More recently, motivated by
the increased popularity of multimedia services, several ef-
forts have been investigatingTCP-friendly approaches to
congestion control [1], [2], [3]. One goal of TCP-friendly
congestion control is to avoid the large window size vari-
ations that may be experienced by TCP flows and, at the

same time, be able to coexist with TCP in a mutually fair
way.

Our work on TCP congestion control was originally mo-
tivated by trying to make TCP more robust to intrusion at-
tacks. To that effect, we set forth at trying to derive an
analytical model of TCP to help us determine TCP’s base-
line behavior and consequently, identify potential attacks.

Yet another model of TCP?

We approach the TCP congestion control problem from
a control-theoretic point-of-view. More specifically, we
use a hybrid systems framework which allows us to theo-
retically derive specific properties of TCP without the need
to make oversimplifying, often unrealistic, assumptions.
Hybrid systems [4], which to the best of our knowledge
have not yet been employed to investigate TCP, are formal
models that combine both continuous time dynamics and
discrete-time logic. These models permit complexity re-
duction through the continuous approximation of variables
like queue and congestion window sizes, without compro-
mising the expressiveness of logic-based models. For the
specific case of modeling TCP congestion control, when
no drops occur, all variables are treated as continuously
varying variables. When a drop occurs, logic-based mod-
els dictate the discrete transitions of the state variables.
Hybrid system modeling permits us to derive well-known
results (which, to some extent, validate our model), as well
as new characterizations of TCP traffic.

In this paper we provide a detailed understanding of
TCP congestion control algorithms through the use of hy-
brid models. Similarly to existing models of TCP con-
gestion control, we develop our model for thedumbbell
topology1. However, our models provide new insight into
the behavior of TCP congestion control. Unlike the single-
flow analysis conducted by other TCP modeling efforts,
our model considers multiple TCP flows, which allows us
�Several existing models of TCP congestion control have been devel-

oped for the dumbbell topology [5], [6], [7], [8], [2], [9]. In a dumbbell
topology, TCP flows generated at source node�� and directed towards
sink node�� compete for t finite bandwidth� that characterizes the
bottleneck link� connecting�� to ��. Figure 2 shows the dumbbell
topology we use in our simulations.



to theoretically describe several phenomena that had only
been observed experimentally. For example, in the case of
a drop-tail queue, we prove that, under certain conditions,
the window sizes and sending rates will synchronize ex-
ponentially fast at a rate of��� where� is the number of
drops experienced by a flow (Theorem 1). To the best of
our knowledge, this is the first formal proof that an opti-
mal and fair state of TCP is exponentially stable. While
synchronization of TCP flows has long been observed em-
pirically [10], [5]—in the form of in-phase periodic varia-
tions of the sending rates of competing flows—, a formal
proof had not been provided. Neither had the conditions
for flow synchronization. An apparently neglected condi-
tion for the stability of synchronization is that there must
be a significant mismatch between the bandwidths of the
links leading to the bottleneck link and the bandwidth of
the bottleneck link. If this “bandwidth mismatch assump-
tion” is not met, the flows will not synchronize. Also, for
synchronization to occur the advertised windows must be
large (sufficiently large to have no effect on the congestion
window). However, as discussed in Section V, if the adver-
tised window assumption does not hold, then pathological
situations can occur, e.g., one TCP flow ending up utiliz-
ing far more bandwidth than the competing flows. Indeed,
it is possible that a sophisticated algorithm could fully ad-
here to the principles of TCP and yet acquire an unfairly
large amount of bandwidth by manipulating its advertised
window size.

Many of the recently proposed TCP-friendly algorithms
are based on the well known relationship

� �
����

���
�
�

(1)

where � is the average throughput,��� the average
round-trip time, and� the average drop rate [11], [12],
[7], [13] or variations of (1) that consider timeouts [14],
[2]). Our hybrid systems model provides an alternative
derivation of this relationship. One key difference is that
our derivation did not need to make various simplifying
assumptions found in previous work. For example, we do
not assume that the round-trip time is constant. As it is
well known, the round-trip time plays an important role
in TCP: when the queue fills, the round-trip time increases
and the TCP congestion window increases more slowly. In
essence, the round-trip time has a stabilizing effect on the
TCP flows, evenbefore a drop has occurred. Interestingly
enough, we observe that the relationship between through-
put, drop rate, and round-trip time given by Equation (1) is
essentially unchanged when the variation of the round-trip
time is included.

Our hybrid systems model also allows for the derivation

of many other properties of competing TCP flows. For ex-
ample, various relationships between the number of flows,
the drop probability, the round-trip time, and the time be-
tween drops are derived (Theorem 2). With this level of
detail about TCP’s behavior, a source can, for example,
anticipate congestion and temporarily increase the level of
error correction. For intrusion detection purposes, our de-
tailed models of TCP’s congestion control algorithms al-
low an accurate characterization of TCP’s baseline behav-
ior and thus makes it easier to identify potential attacks.

The remainder of this paper is organized as follows. The
next section details the hybrid systems framework and de-
fines a simplifying normalization of the temporal variable.
In Section III, the hybrid systems methodology is used to
analyze TCP-Reno under a drop-tail queuing discipline.
This section contains the main theoretical results: expo-
nential stability and steady-state characterizations. Sec-
tion IV focuses on the issue of flow synchronization. As
noted above, in the case of a small advertised window,
synchronization can lead to drastic unfairness. The exact
mechanisms for this unfairness is detailed in Section V. Fi-
nally, Section VI provides a summary of the results, some
concluding remarks, and our future work plans.

II. H YBRID SYSTEM MODELING FORCONGESTION

CONTROL

We start by describing how TCP’s congestion control
mechanism can be modeled using a hybrid system, i.e., a
system that combines continuous dynamics with discrete
logic. We consider here a simplified version of TCP-Reno
congestion control [15], [16], [17] but the model proposed
also applies to more recent variations on Reno such as
New Reno, SACK [6], and general AIMD [18]. We de-
note by��� the round-trip time, and by�� and ���

� ,
� � ��� �� � � � � 	� the window size and slow-start thresh-
old, respectively, for the congestion controller associated
with the �th flow. As we will see shortly, the round-trip
time is a time-varying quantity.

In Reno, the algorithm to update�� is as follows: While
the window size�� is below the slow-start threshold���

� ,
the congestion controller is in theslow-start mode and��
is multiplied by a fixed constant
�� (typically 
�� � �)
every round-trip-time��� . When the window size raises
above���

� , the controller enters thecongestion avoidance
mode and�� is incremented by a fixed constant� � �
every round-trip-time��� . The above takes place un-
til a drop occurs. A drop can be detected through two
mechanisms that lead to different reactions by the con-
gestion controller. When the drop is detected because
of the arrival of three consecutive duplicate acknowledg-
ments,�� is multiplied by a constant
 � ��� �� (typi-



cally
 � ���) and the system proceeds to the congestion
avoidance mode. In some cases, three consecutive dupli-
cate acknowledgments never arrive and a drop is detected
when a packet remains unacknowledged for a period of
time longer than theretransmission timeout ��
. In this
case, the slow-start threshold is set equal to
�� and�� is
reduced to one. Unless there are many consecutive drops
per flow, timeouts occur mostly when the window size be-
comes smaller than four and therefore no three duplicate
acknowledgments can arrive after a drop.

Although the window size takes discrete values, it is
convenient to regard it as a continuously varying variable.
The following hybrid model provides a good approxima-
tion of the�th window size dynamics: While the�th flow
suffers no drops, we have in the slow start mode2

��� � �	
�
���������� (2)

and in the congestion avoidance mode

��� � ������ (3)

When a drop is detected at time� through three duplicate
acknowledgements, we have

����� � 
��� ����

where��� ��� denotes the limit from below of����� as� �
�, and when the drop is detected through timeout, we have

���
� ��� � 
��� ���� ����� � ��

The round-trip time is given by��� ��� � �� � �������
where �� denotes thepropagation time (together with
some fixed component of the service time at nodes
� and

�) and���� is the size of the output queue of node
� at
time �. We assume here that the bandwidth� is measured
in packets per second. Denoting by����

� the advertised
window size for the�th flow, the output queue at node
�
receives a total of

� �� �
�
�

��
���� �
���
� ������

packets per second and is able to send� packets to the
link in the same period. The difference between these two
quantities determines the evolution of����. In particular,

�� �

�
� � � �� � � � or � � �	�
� � � �

� �� otherwise
(4)

�This equation leads precisely to a multiplication by��� on each
round-trip time��� .

The first branch in (4) takes into account that the queue
size cannot become negative nor should it exceed themax-
imum queue size �	�
. When���� reaches�	�
 drops oc-
cur. These will be detected by the congestion controllers
some time later.

As mentioned above, drops will occur whenever�
reaches the maximum queue size�	�
, and the rate of in-
coming packets to the queue� exceeds the rate� of out-
going packets. Typically, drops detected through duplicate
acknowledgments will be detected roughly one round-trip
time after they occur, whereas the one detected through
timeout will be detected��
 seconds later. Because of
this delay in detecting a drop, the rate of incoming pack-
ets will not change immediately after the queue becomes
full and multiple drops are expected. To complete our
model we need to know which flows will suffer a drop
during this interval. To determine exactly the set of flows
� 	 ��� �� � � � � 	� that suffer a drop, one would need to
keep track of which packets are in the queue, leading to
a complex packet-level model. However, for purposes of
traffic flow analysis, it is sufficient to assume that� is a
function of the window sizes of the individual flows (��).
Denoting by���� the set of flows that suffer drops at time
�, we have

���� � ����


�
��� ��� � � � � ��

�
� (5)

We call����
 thedrop model. As we shall see below, sev-
eral drop models are possible, depending on the queuing
discipline.

Although drops are essentially discrete phenomena, we
can incorporate them in our hybrid model by consid-
ering distinct modes (or discrete states) for the system.
Four modes should be considered to cover all possible
cases: slow-start or congestion avoidance and, in each
case, queue full or not. The queue-full modes are active
from the moment� reaches�	�
 until the drops are de-
tected and congestion control reacts leading to a decrease
in the queue size�. The time it takes for this to happen is
either��
 or��� depending on whether�� was smaller
than 4 or not at the time of the drop. When the drop is de-
tected, the flows in� will suffer the appropriate changes in
their window sizes and slow-start thresholds. The transi-
tion from slow-start to congestion avoidance occurs when
the window size�� exceeds the slow-start threshold���

� .
The system is initialized with all�� equal to one and
���
� equal to infinity. Figure 1 contains a graphical rep-

resentation of the resulting hybrid system. Each ellipse
in this figure corresponds to a discrete mode and the con-
tinuous state of the hybrid system consists of the queue
size�, the window sizes and slow-start thresholds��� �

��
� ,



� � ��� �� 
 
 
 � 	�, and a timing variable���	 used to en-
force that the system remains in thequeue-fullmodes for
either��
 or ��� seconds. The differential equations
for these variables in each discrete mode are shown in-
side the corresponding ellipse. For simplicity we assume
here that the queue size� never reaches zero. The arrows
in the figure represent discrete transitions between modes.
These transitions are labeled with their enabling conditions
(followed by “?”) and any necessary reset of the continu-
ous state that must take place when the transition occurs
(with the corresponding assignments denoted by��). We
assume here that a jump always occurs when the transi-
tion condition is enabled. The transition on the top-left
entering theslow-start/queue-not-full represents the sys-
tem’s initialization. This model is consistent with most of
the hybrid system frameworks proposed in the literature
(cf. [4] and references therein).

Although we focused our presentation on Reno conges-
tion control, it is also possible to construct hybrid models
for other congestion control algorithms [19].

The following are the key novel features of the hybrid
models presented above:
1. They consider a continuous approximation for the
queue dynamics and the window sizes. This avoids the
complexity inherent to a detailed packet-level description
that results from coupling congestion control with the error
correction protocol.
2. They model packet drops as events that trigger transi-
tions between discrete modes with distinct continuous dy-
namics. The flexibility of combining continuous dynamics
with discrete logic can be exploited to model existing and
novel congestion control mechanisms and queuing poli-
cies.
3. Although we utilized a deterministic hybrid system in
the example above, one can incorporate in this type of
model stochastic events that trigger transitions. This is
needed to model random queuing disciplines such as Ran-
dom Early Detection/Drop active queuing [20].

III. A NALYSIS OF TCP-RENO WITH DROP-TAIL

QUEUING

In this section we study the dynamics of the TCP-Reno
congestion control model in Figure 1 under drop-tail queu-
ing and infinitely large advertised window size. We as-
sume here that the window sizes do not decrease below 4
and therefore the system only stays in slow-start for a brief
initial period.

To complete the hybrid model it remains to specify the
drop dynamics that determine the set of flows� that suffer
drops while the system is in one of thequeue-fullmodes.

It turns out that under drop-tail queuing policy exactly one
drop per flow will occur in most operating conditions [5].
To understand why, we must recall that, while there are no
drops, in every round-trip time the window size of each
flow will increase because each flow will receive as many
acknowledgments as its window size. When the acknowl-
edgment that triggers the increase of the window size by
� � � arrives, the congestion controller will attempt to
send two packetsback-to-back. The first packet is sent be-
cause the acknowledgment that just arrived decreased the
number of unacknowledged packets and therefore a new
packet can be sent. The second packet is sent because the
window size just increased, allowing the controller to have
an extra unacknowledged packet. However, at this point
there is a very fragile balance between the number of pack-
ets that are getting in and out of the queue, so two packets
will not fit in the queue and the second packet is dropped.
Formally, this corresponds to the followingone-drop-per-
flow model

� � ����


�
��� ��� � � � � ��

�
�� ��� �� � � � � 	�� (6)

For a very large number of flows, a single drop per flow
may not be sufficient to produce the decrease in the win-
dow size required to make the queue size drop below�	�


after the multiplicative decrease. In this case, the one-
drop-per-flow model is not valid. However, we shall see
in Section III-B that, for most operating conditions, this
model accurately matches packet-level simulations per-
formed using thens-2 network simulator [21]. In fact,
this hybrid model only fails when the number of flows is
so large that the drop rates take very large values.

A. Transient Behavior

We proceed now to analyze the joint evolution of the
window sizes of all the flows. Our analysis shows that
the window sizes converge to a periodic regimen, regard-
less of their values at the end of the slow-start period. Be-
cause we are considering the variations of the round-trip-
times caused by varying queuing delays, this regimen is
more complex (but also closer to reality) than the simple
saw-tooth wave form that is often used to characterize the
steady-state behavior of this type of algorithms. We are in-
terested here in characterizing the short-term evolution—
also known as thetransient behavior—of the window sizes
until the periodic regimen is reached. The following is
proved in [19] (the proof was omitted here for lack of
space.)

Theorem 1: Let ��� � �� � ����� � � �� be the
set of times at which the system enters thecongetion
avoidance/queue-not-fullmode. For infinitely large adver-
tised window size����

� and�	�
 ���� � ���
���	, all the
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Fig. 1. Hybrid model for TCP-Reno.

������, � � ��� �� � � � � 	� converge exponentially fast to

�� ��

�

��

�������� � ��� (7)

as� �
 and the convergence is as fast as
�. In (7),��
is the unique solution to

�� � 

�
�� � �������

�
�

��


�	
��	�
 ������
�

where� � ���
�� ���
� denotes the smooth bijection

� ��
�

�
����� � � � �� �

� � � �
�

The condition�	�
 ���� � ���
���	 essentially limits the

maximum number of flows under which the one-drop-per-
flow model is valid. When this condition is violated, i.e.,
when

	 �
��


�
�
��	�
 ������

a single drop per flow may not be sufficient to produce a
decrease in the sending rates that would make� drop below
�	�
 after the multiplicative decrease.

We defer to Sections IV and V a detailed discussion of
the implications of Theorem 1 and proceed with the anal-
ysis of the model.

B. Steady-state behavior

In the previous section we established that the window
sizes converge to a periodic regimen, also known as the

steady-state regimen. We proceed now to analyze the sys-
tem when it operates under this regimen. Among other
things, we will show that the relationship between aver-
age throughput, average drop rate (i.e., the percentage of
dropped packets), and average round-trip time that appears
in [11], [12], [7], [13] can also be derived from our model.
In this section we concentrate on the case where�� is
much larger than one and therefore

������� � �� � �� (8)

This approximation is valid when

	� ��


�
�
��	�
 ����� (9)

and causes the system to remain in the statecongestion-
avoidance/queue-not-fullfor, at least, a few round-trip
times3. In practice, this is quite common and a deviation
from (9) results in very large drop rates.

Suppose then that the steady-state has been reached
and let us consider an interval���� ����� between two
consecutive time instants at which the system enters the
congestion-avoidance/queue-not-fullstate. Somewhere in
this interval lies the time instant��� at which the system en-
ters thecongestion-avoidance/queue-fullstate and drops
occur. During the interval���� �����, the instantaneous rate
� at which the nodes are successfully transmitting packets


When the system remains in thequeue-not-fullfor at least 4 round-
trip times, (8) already yields an error smaller than 2%.



is given by

���� �

���
��� 
����
�

 ��� � � ���� ����

� � � ����� �����
(10)

The total number of packets�� sent during the interval
���� ����� can then be computed by

�� ��

� ����

��

������ � ��
�

��	
��	�
 ���� � ��	���

(11)

Details on the computation of the integrals in (11) and in
(13) below are given in [19]. Since	 drops occur in the
interval ���� �����, the average drop rate � is then equal to

� ��
	

��
� ��

��
�

�
	

�	�
 ���� � ��	

��

� (12)

Another quantity of interest is the average round-trip time
��� . We consider here a packet-average, rather than a
time-average, because the former is the one usually mea-
sured in real networks. This distinction is important since
the sending rate� is not constant. In fact, when the send-
ing rate is higher, the queue is more likely to be full and the
round-trip time is larger. This results in the packet-average
being larger than the time-average. Thepacket-average
round-trip time can then be computed as

��� ��

� ����
��

������� �����

��

� �

�

�
�

�

��
�

��
�

�	�
 ���� � ��	

	
� �

��


� �


�
�

(13)

where� �� 	
� is the average throughput of each flow.

We recall that, because the queue never empties, the total
throughput is precisely the bandwidth� of the bottleneck
link.

It is interesting to note that the average drop rate� can
provide an estimate for the quantity �

�����	
����� . In par-
ticular, we conclude from (12) that

�	�
 ���� � ��	

	
�
	

��

���
���
� (14)

This, in turn, can be used together with (13) to estimate
the average throughput� . In fact, from (13) and (14) we
conclude that

� � �

���
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�
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�

	
��

���
���
� �

��


� �


�

The following theorem summarizes the results above for
the hybrid model for TCP-Reno congestion control in Fig-
ure 1:

Theorem 2: For infinitely large advertised window size
����
� and�	�
 � ��� � ���

���	, the average drop rate�,

the packet average round-trip time��� , and the average
throughput� of each flow are approximately given by

� � ��

��
�

�
	

�	�
 ���� � ��	

��

� (15)

��� � 	

�

�
�

�
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�

��
�

�	�
 ���� � ��	

	
� �

��


� �


�
�

(16)
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��
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�
�

(17)
To verify the formulas in Theorem 2, we simulated the

dumbbell topology of Figure 2, using thens-2 network
simulator [21]. Figure 3 summarizes the results obtained
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Fig. 2. Dumbbell topology with n TCP flows, 10 Mbps bottle-
neck link, 100 Mbps incoming links, 40 millisecond round
trip propagation delay, and queue size at the bottleneck link
of 250 packets.

for a network with the following parameters:

� �
��� bits/sec

� bits/char� ���� char/packet
� ���� packets/sec�

�� � ��� sec,�	�
 � ��� packets,� � � packet/RTT,

 � ���. As seen in the figure, the theoretical predictions
given by (15)–(17) match the simulation results quite accu-
rately. Some mismatch can be observed for large number
of flows. However, this mismatch only starts to become
significant when the drop rates are around 1%, which is
an unusually large value. This mismatch is mainly due
to two factors: the quantization of the window size and a
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Fig. 3. Comparison between the predictions obtained from the hybrid model and the results fromns-2 simulations.

crude modeling of the fast-recovery algorithm [16]. We
are now in the process of incorporating these two features
into our model to obtain formulas that are accurate also in
very congested networks.

C. Comparison with Previous Results

For� � � and
 � ���, the formula (17) becomes

� � �

���

�
�����
�
� �

�

�
� (18)

For reasonable drop rates, the term����	
� dominates over

1/3 and (18) matches closely similar formulas derived in
[11], [12], [7], [13]. However, the analysis presented here
goes several steps further than the ones presented in these
references because of the following: (i) previous deriva-
tions of (17) ignored queuing, assumed constant round-
trip time, considered a single flow, and ignored transient
behavior; (ii) the results in Theorem 1 provide informa-
tion about the transient behavior of the individual flows;
(iii) Theorem 2 also provides a more complete description
of the steady-state behavior of TCP because it gives ex-
plicit formulas for the average round-trip time��� and
the drop rate� as a function of the number of flows	. It
is important to emphasize that��� in (16) denotes the
average round-trip time. It turns out that the actual round-
trip-time��� varies quite significantly around this aver-
age because of fluctuations on the queue size. In fact, even
after the steady-state is reached, the variation of the “in-
stantaneous” round-trip time is often larger then 50% of
the average round-trip time.

IV. FLOW SYNCHRONIZATION

One conclusion that can be drawn from Theorem 1 is
that all flows converge exponentially fast to the same limit
cycle. This limit cycle corresponds to a continuous in-
crease of the window size from�� to �

���, followed by
an instantaneous decrease back to�� due to drops. Be-

cause all flows converge to thesame limit cycle, this means
that the flows will become synchronized. We were able to
observe this synchronization effect inns-2 simulations
using the dumbbell topology. Figure 4 plots the conges-
tion window of 8 TCP-Reno flows and the queue size at
the bottleneck link. Even though each flow starts at a ran-
dom time between 0 and 5 seconds, we observe that they
are almost perfectly synchronized at around 30 seconds.
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Fig. 4. Congestion window and bottleneck link queue size for
the default dumbbell topology with� � � flows.

Window size synchronization had been observed in
[10], [5] for TCP-Tahoe congestion control [6] and ac-
tually led to the development of Random Early Detec-
tion/Drop active queuing [22], [20]. In [5], the authors
defend that synchronization is closely related to the packet
loss synchronization that we also use in our model. In
fact, they provide an informal explanation—supported
by packet-level simulations—of how synchronization is
a self-sustained phenomenon. Although [5] only deals
with TCP-Tahoe congestion control, the arguments used
there also apply to Reno. Theorem 1 goes much further
because it demonstrates that synchronization is not just
self-sustained but it is actually an exponentially attracting
state. This means that synchronization will occur even if
the flows start unsynchronized or lose synchronization be-



cause of some temporary disturbance. Moreover, the con-
vergence to this state is very fast and the distance to it is
reduced by at least
 (typically 1/2) with each drop. To
the best of our knowledge this is the first time that these
type of theoretical results were obtained. Note that syn-
chronization cannot be captured by single-flow models.

As long as the output queue of node
� does not get
empty (which was the case in all our simulations), the bot-
tleneck link is used at full capacity and flow synchroniza-
tion does not have any effect on the average throughput.
However, it does produce large variations on the size of
the bottleneck queue and therefore large variations on the
round-trip time. The network traffic also becomes more
bursty and network resources are used unevenly. The
larger variations on the round-trip time are particularly
harmful to TCP because they often lead to inefficient time-
out detection. They are also a problem for multimedia
flows that cannot withstand large delay jitter, i.e., delay
variation associated with the delivery of packets belonging
to a particular flow.

Three assumptions were instrumental in the proof of
Theorem 1: infinite (or very large) advertised window size,
drop-tail queuing, and large bandwidth mismatch between
the data sources and the bottleneck link. The last assump-
tion is actually implicit in the dumbbell topology in Fig-
ure 2. It was under these three assumptions that we derived
the one-drop-per-flow model (6). Indeed, without a limit
on the advertised window size, each flow will increase its
window size by one while the system is in thecongestion-
avoidance/queue-fullmode. When this increase takes
place, the large bandwidth mismatch between incoming
and bottleneck links results in back-to-back packets arriv-
ing at the bottleneck link queue. Finally, under a drop-tail
policy the second packet is dropped resulting in exactly
one drop per flow. The next section discusses the impact
of finite advertised window sizes. In the remaining of this
section, we study the link bandwidth mismatch issue and
the effect of queuing policies other than drop-tail on flow
synchronization.

Even though the source generates back-to-back pack-
ets when the window size is increased, these packets do
not arrive back-to-back at the bottleneck link, when the
incoming link has finite bandwidth. In fact, the smaller
the bandwidth of the incoming link, the more spread will
the packets arrive at the bottleneck link. This can be seen
in Figure 5 that shows a trace of packets arriving at the
bottleneck link from each of the incoming links. The two
plots in figure 5(a) correspond to the topology in Figure 2
with a bandwidth of 20Mbps in the incoming link, versus
10Mbps in the bottleneck link. The bottom plot is just a

zoomed version of the top one. Although the packets no
longer arrive exactly back-to-back, we still have one drop
per flow and synchronization occurs. In the lower plot in
Figure 5(a), we can actually see the effect of a window
size increase and the corresponding drop in flow 4 at time
502.623 seconds. Figure 5(b) contains similar plots but
for an incoming link bandwidth of 15Mbps. We can see in
this plot that a back-to-back packet in flow 8 at time 501.90
seconds actually causes a drop in flow 1.

We also investigated what effect different queuing dis-
ciplines have on flow synchronization. Figure 6(a) shows
that by using a simpledrop-head queuing policy (drop the
packet at the head of the queue)—while keeping all the
other dumbbell characteristics the same—we are able to
eliminate synchronization. Figure 6(b) shows that Ran-
dom Early Detection (RED) queuing also eliminates flow
synchronization by adding randomization to the network,
as suggested in [22].

It is interesting to note that a deterministic queuing dis-
cipline such as drop-head can be very effective in break-
ing synchronization. This is not completely surprising be-
cause there is not a significant difference between the dis-
tribution of the packets that are at the head of the queue
and any random packet in the queue. Therefore drop-head
is not significantly different from random-drop [23], [24].
However, when compared to random-drop and RED, drop-
head has the advantage that drops will be detected sooner
since queuing delay is minimized. Drop-head is therefore
the most responsive of these algorithms. Incorporating dif-
ferent queuing disciplines (including random-drop and de-
terministic early drop) into our models and developing the
formal analysis for them is an item for future work.

V. FAIRNESS

From Theorem 1 we can conclude that all flows con-
verge to the same limit cycle and therefore TCP-Reno con-
gestion control is asymptotically fair. Although this has
generally been accepted as true, a formal proof of this
property of TCP for an arbitrary number of flows, taking
queuing into account, had not been developed before. In-
deed, this is one of the contributions of this work.

It turns out that fairness may be lost when the assump-
tions used to derive Theorem 1 do not hold. In particular,
when some or all the flows have finite advertised window
sizes. The graph in Figure 7(a) demonstrates this behav-
ior. It plots the congestion window size of 8 TCP-Reno
flows all of which are limited by an advertised window
size of 50 packets. We observe that 4 out of the 8 flows are
able to reach the maximum window size of 50 packets and
keep sending at that constant rate throughout the simula-
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Fig. 5. Packet traces for (a) 20 Mbps and (b) 15 Mbps incoming link bandwidths.
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Fig. 6. Congestion window and bottleneck link queue size for the default dumbbell topology using (a) drop-head queuing and (b)
RED queuing.

tion. Because they will not further increase their sending
rates, these flows will never attempt to send back-to-back
packets, making it very unlikely that they will suffer drops.
The remaining flows were not able to reach the advertised
window size (possibly because they started slightly later)
and therefore they will surely suffer drops when the bottle-
neck queue fills up. In this specific scenario, TCP favors
the first four flows to start, which end up exhibiting almost
four times higher throughput than the remaining flows.

Similar behavior is observed when simulating scenarios
in which only a few flows have limited advertised window
size. Figure 7(b) shows the simulation results when 2 (out
of 8) flows are limited by a 50-packet advertised window.
It is interesting to observe that one of these flows is the sec-
ond flow to start and is able to achieve the 50-packet win-
dow size limit. Since it never sends back-to-back packets,
it never suffers packet drops and is thus able to keep send-

ing packets at the maximum rate (corresponding to a 50-
packet window size). The other flow, which is also limited
by a 50-packet advertised window size, ends up starting
last and behaves like all other flows, suffering drops peri-
odically. This is because the bandwidth is not sufficient to
allow the last flow to reach the 50-packet window size.

The next set of graphs demonstrate that, by using dif-
ferent queuing disciplines, unfairness can be avoided. In-
deed, Figure 8 shows that both drop-head and RED queu-
ing eliminate unfairness when all flows have finite adver-
tised window size. Both queuing policies result in nor-
malized average throughputs just a few percentage points
away from one. When some flows have finite advertised
window size and others do not, we observe that the latter
are at an advantage and exhibit larger normalized through-
puts. This is expected and occurs both with drop-head
queuing and RED. A simulation for the drop-head case is
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Fig. 7. Congestion window and bottleneck link queue size for the default dumbbell topology when (a) all flows have 50-packet
advertised window size and (b) only flows 1 and 2 have finite (50-packet) advertised window size. In (a) four of the flows
exhibit a normalized throughput of 138% and the remaining a normalized throughput in the range���� ��, in (b) one flow
exhibits a normalized throughput of 167% and the remaining a normalized throughput of	
�� ���
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Fig. 8. Congestion window and bottleneck link queue size for the default dumbbell topology where all flows have 50-packet
advertised window size using (a) drop-head and (b) RED queuing. In (a) all flows exhibit a normalized average throughput in
the range�� ���� and in (b) in the range�� ����.

shown in Figure 9.

One item for future work is the use of formal methods to
predict and explain when TCP exhibits an unfair behavior,
as well as ways to avoid it. The hybrid models in Figure 1
already take into account finite advertised windows sizes
but the drop model (6) in Section III does not. One sim-
ple model that can capture the phenomena described above
with drop-tail queuing is given by

� � ����


�
��� ��� � � � � ��

�
�� �� � �� � ����

� �� (19)

because drops will most likely only occur in those flows�
that did not yet reach their advertised window sizes����� .
Using the drop model (19), one should be able to predict
when will finite advertised window sizes result in unfair-
ness and which values for the throughputs are expected.
We are now in the process of deriving drop-models analo-
gous to (19) for drop-head queuing and RED. These should
allow us to demonstrate that these queuing policies solve
the fairness problem and also to quantify precisely how ef-

fective these policies are in achieving this. Note that this
type of analysis is only possible with multiple-flow models
like the ones considered here.

VI. CONCLUSIONS

In this paper we proposed a hybrid model for TCP con-
gestion control. Using this model, we analyzed both the
transient and steady-state behavior of	 competing TCP
flows on a dumbbell network topology. Besides using our
model to confirm well-known formulas, we also used it to
derive new relationships and thus provide a more complete
description of TCP’s steady-state behavior. Our model en-
abled us to explain the flow synchronization phenomena
that have been observed in simulations and in real net-
works but, to the best of our knowledge, have not been the-
oretically justified. We were also able to demonstrate that
the limit cycle that corresponds to flow synchronization is
global exponentially stable. This means that synchroniza-
tion will occur even if the flows start unsynchronized or
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Fig. 9. Congestion window and bottleneck link queue size for
the default dumbbell topology where flows 1 and 2 have
50-packet advertised window size using drop-head queuing.
The flows with finite advertised window size exhibit a nor-
malized average throughput in the range	
���� ���� and
the remaining flows in the range�
����� ����.

loose synchronization because of temporary disturbances.

Another contribution of our hybrid model was that it al-
lowed us to identify conditions under which TCP fairness
is lost. We observed TCP’s unfair behavior when some or
all flows have finite advertised window size.

We also showed methods to avoid synchronization and
unfairness. Throughout the paper, experimental results ob-
tained throughns-2 simulations were used to support our
theoretical analysis.

To our knowledge, this was the first time hybrid systems
were used to model congestion control. We fully charac-
terized TCP’s behavior in the dumbbell topology, employ-
ing powerful theoretical tools available for hybrid systems.
When compared with previous work, we provided a more
complete characterization of TCP, demonstrating the po-
tential of hybrid systems as a modeling tool for congestion
control algorithms. We are now in the process of gener-
alizing the analysis presented here to more complex net-
work topologies and traffic loads (e.g., flows with differ-
ent propagation delays and different duration), other con-
gestion control mechanisms (such as delayed acknowledg-
ments, fast recovery), other TCP variations (e.g., TCP-
Vegas and Equation-Based), and different queuing poli-
cies (such as drop-head, random-drop, RED, and SRED).
We are also investigating alternative mechanisms to avoid
synchronization and unfairness. Another direction we are
exploring is the application of the hybrid models derived
here to detect abnormalities in TCP traffic flows. This has
important applications in network security.
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