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Abstract

This paper describes the Flexible Interconnection Proto-
col, or FLIP, whose main goal is to allow interconnection
of heterogeneous devices with varying power, process-
ing, and communication capabilities, ranging from simple
sensors to more powerful computing devices such as lap-
tops and desktops. The vision is that FLIP will be used
to interconnect such devices forming clouds in the far-
thest branches/leaves of the Internet, while still providing
connectivity with the existing IP-based Internet infrastruc-
ture. Through its flexible, customizable headers FLIP in-
tegrates just the functions required by a given application
and that can be handled by the underlying device. Simple
devices like sensors will benefit from incurring close to
optimal overhead saving not only bandwidth, but, more
importantly, energy. More sophisticated devices in the
cloud can be responsible for implementing more complex
functions like reliable/ordered data delivery, communica-
tion with other device clouds and with the IP infrastruc-
ture.

FLIP is designed to provide a basic substrate on which
to build network- and transport-level functionality. In
heterogeneous environments, FLIP allows devices with
varying capabilities to coexist and interoperate under the
same network infrastructure. We present the basic design
of FLIP and describe its implementation under Linux.
We also report on FLIP’s performance when providing
IPv4 and IPv6 as well as transport-layer functionality a
la TCP and UDP. We show FLIP’s energy efficiency in
different sensor network scenarios. For example, we use
FLIP to implement the directed diffusion communication
paradigm and obtain an improvement of 50% in energy
savings over an existing directed diffusion implementa-
tion. Finally, we showcase FLIP’s flexibility by demon-
strating its ability to incorporate new protocol functions

seamlessly. In particular, we add data aggregation func-
tionality onto FLIP and show that it significantly increases
the system’s energy efficiency.

1 Introduction

One of the implications of ubiquitous connectivity is that
networks have become more heterogeneous as users have
been employing a diverse set of devices ranging from
laptops, hand-helds, cellular phones, pagers, and smart
badges to stay connected anywhere, anytime. Further-
more, forthcoming applications such as smart environ-
ments (homes, offices, buildings, highways, etc.), factory
automation, surveillance, environmental and biomedical
monitoring will add a whole new set of devices that will
need to communicate with one another. Therefore, net-
work heterogeneity will manifest itself in terms of in-
creased diversity in communication medium technology
(e.g., as wired, wireless, satellite, and optical links), as
well as in the types of devices networks will intercon-
nect. In the near future, internetworks will intercon-
nect not only traditional desktop and laptop computers,
but also unconventional devices whose power, processing,
and communication capabilities differ widely. These de-
vices will form clouds, which will be connected among
themselves and with the existing IP infrastructure.

While many of the Internet protocols have proven
successful in accommodating the network’s exponential
growth, they were not designed to handle the degree of de-
vice heterogeneity that will characterize future internets.
Consider IP: it adds an unnecessary and sometimes pro-
hibitive amount of complexity and overhead, especially in
the case of limited-capability devices. More recently, pro-
tocols specifically tailored for sensor networks have been
implemented. Because they are so specialized, these pro-



tocols will not be able to accommaodate more sophisticated
and powerful devices.

In this paper, we describe the design and implementa-
tion of a network protocol whose main goal is to accom-
modate devices with varying power, processing, and com-
munication capabilities. The proposed protocol, Flexible
Interconnection Protocol, or FLIP, will operate among de-
vices in the farthest branches/leaves of an intranet while
providing inter-network connectivity with other clouds
and with the existing IP-based Internet infrastructure.
FLIP’s overhead (both in terms of per-packet overhead
and protocol complexity) is dependent on the capabilities
of the particular device running FLIP and the functionality
needed by the application. For “anemic” devices, FLIP’s
close to optimal overhead not only saves bandwidth, but,
more importantly, energy.
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Figure 1: FLIP in the protocol stack.

Figure 1 shows FLIP’s position in the protocol stack.
FLIP is designed to run atop a data link layer protocol
and provide functionality all the way up to the application
layer, replacing the functionality of network and trans-
port protocols. The FLIP layer can be very “thin”, which
means that FLIP provides minimum functionality; this is
the case of the version of FLIP that very simple devices
like sensors would run. On the other hand, FLIP could
provide functionality (or a subset thereof) of a “heavy-
duty” transport protocol like TCP. It is the application de-
signer’s choice what services are required and should be
included in FLIP.

Figure 2 exemplifies how functionality provided by the
FLIP stack can be selected by applications. Some func-
tions such as fragmentation are either selected or not. Oth-
ers like scope as defined by a Time-to-Live (TTL) field
require that a value be specified. In the case of address-
ing, FLIP provides options for the types of addresses that
can be used (e.g., 2- or 4-byte addresses) 1. Note that a
socket-style interface is assumed. Indeed, as discussed in
Section 3, we implemented a BSD socket interface that
provides the application layer with access to FLIP.

One of our focus is on how FLIP addresses the chal-
lenges posed by networks where most devices are power-
anemic. Sensor networks are typical examples: they

1Section 2.1 provides a more detailed description of FLIP'sfi elds
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Figure 2: The FLIP stack

consist of an arbitrarily large number of sensing devices
which rely on relatively short lifetime batteries. Sensor
network applications usually imply that sensors will be
left on the field unattended for extended periods of time
and must conserve energy in order to maximize the over-
all network’s operational time. Furthermore, while it is
often assumed that sensor networks exhibit homogeneity
(i.e., all sensors are either the same or have similar ca-
pabilities/characteristics), this is not necessarily the case
as such networks can consist of different types of sen-
sors. Take for example environmental monitoring, one of
typical application of sensor networks. It often employs
a variety of sensors ranging from “scalar” sensors (e.g.,
temperature, humidity, etc.), “boolean” sensors (motion,
magnetometers, etc.) to “streaming” sensors (e.g., cam-
eras and microphones).

Protocols like IP (including IPv4 [14] and IPv6 [22]),
which were originally designed for “wired”, fairly ho-
mogeneous networks, impose an unnecessary and some-
times prohibitive amount of complexity and overhead, es-
pecially in the case of limited-capability devices. Con-
sider a sensing application that sends 1-byte packets. In
an IPv4 network, data packets would be 95.2% header (us-
ing a 20-byte IPv4 header) and 97.6% in the case of IPv6
(using 40-byte header), which is pure overhead. For wire-
less, power constrained networks this is certainly wasteful
and often too expensive. In such environments, several IP
features are usually dispensable. For example, fragmen-
tation will rarely, if ever, be needed in sensor network ap-
plications. Therefore, transmitting and carrying IP header
fragmentation information is wasteful and if avoided, will
result in valuable resource savings.

On the other hand, designing and optimizing a protocol
for a single application/network scenario is prone to many
problems. Several protocols will likely have to coexist
in the same network and device interoperability will be
challenging. Besides, in a production network, the cost of
redeployment to enable new features might be high, if not



prohibitive (e.g., unmanned space mission or a sea-bottom
monitoring sensor network).

In heterogeneous environments, FLIP allows devices
with varying capabilities to coexist and interoperate un-
der the same network infrastructure. Due to its extensi-
ble headers, FLIP facilitates protocol evolution and de-
ployment of new features. We demonstrate FLIP’s power
conservation capability in a number of scenarios. In Sec-
tion 4, FLIP is used to provide IPv4 and IPv6 function-
ality. Section 5 evaluates how well FLIP matches the
needs of directed diffusion [2], while still being power-
efficient. Directed diffusion (described in more detail in
Section 5.1) is a communication paradigm designed for
data gathering applications in sensor networks. Using an
optimized FLIP architecture we were able to save more
than half the energy consumed by the unoptimized use of
diffusion. We then consider in Section 6 a sample sen-
sor network application, namely running average calcula-
tion of sensed data. We use temperature as the data be-
ing reported by sensors and develop a simple application-
level data gathering protocol. We implement this data
gathering application using two different protocol header
paradigms: (1) FLIP’s adaptive header and (2) static head-
ers represented by two models, namely complete and min-
imal headers. Our simulation results show that FLIP out-
performs static headers by as much as 12% while provid-
ing full functionality. Finally, in Section 7, we add data
aggregation to the data gathering protocol and show its
energy-savings effects. Adding such new features is part
of protocol evolution and can be easily accomplished in
the case of a flexible-header protocol like FLIP. Employ-
ing data aggregation resulted in energy savings of as much
as 30%. Sections 2 and 3 describe FLIP’s basic design
principles and a reference implementation under Linux,
respectively 2. Related work is discussed in Section 8 and
Section 9 presents our concluding remarks.

2 FLIP Design Principles

The overhead and complexity of a protocol is directly
related to the functionality the protocol provides. Re-
call that FLIP’s main goal is to accommodate a range
of devices with varying capabilities and yet provide the
functionality required by applications. Thus FLIP allows
application programmers to select just the functionality
they need, without incurring the overhead associated with
functions they do not need. Furthermore, the ability to se-
lect a subset of protocol functions allows FLIP to accom-
modate a range of devices from very simple sensors to

2A preliminary design of FLIP was presented in [11]

desktop computers. For instance, if the application needs
packets to age, then the application programmer can "turn
on” FLIP’s Time-To-Live (TTL) field. At each hop, the
packet’s TTL value will be decremented and examined, if
it reaches O the packet is discarded; otherwise, the packet
is forwarded. Users can also “turn on” the length field,
whose value will be calculated as part of composing a
packet.

In its simplest form, FLIP does not include end-to-
end reliability or ordering. It might not even perform
routing. This is because, in some scenarios, routing is
done by the application using special information such as
nodes’ geographic positioning or remaining power. Some
of these scenarios may use small, very simple devices
which would only be encumbered with routing. These are
just end devices and do not have the required capability
to perform routing functionality effectively. For example,
in the case of simple sensors, they may just perform one-
hop broadcasts to send out their readings each time. A
nearby, more capable node can then collect these readings
and route them towards the destination.

2.1 TheNetwork Layer

FLIP packets are composed of a meta-header, header
fields and the payload. The meta-header indicates which
header fields are present in the packet and consists of an
array of bits, or bitmap. If a header field is included in
the packet, then the corresponding bit in the meta-header
is one, otherwise, it is set to zero.

In order to minimize the bitmap’s overhead, we split it
into one-byte pieces. Each byte contains a continuation
bit that indicates if more bitmap pieces follow. Figure 3
shows an example of the FLIP meta-header. Note that the
continuation bit is the first bit of each byte. This ensures
that, in the 2-byte version of FLIP’s extra simple packet
(ESP) (FLIP’s ESP mode will be described below), the
payload occupies contiguous bits.

Continuation bit Continuation bit

[To[o[o o[o oe] [o]o[o[o[o o e]o]

Bitr‘nap
Figure 3: FLIP meta-headers

Consider a scenario that only requires the length field,
whose presence bit lies in the first byte of the meta-header.
Then, the packet will only have to carry the first byte of
the meta-header, which will have the bit corresponding to
the length field on, and the others, including the continu-
ation bit, off.



In some cases, the target application need only send
small amounts of data with no header information. Sensor
network environments are a good example of such a sce-
nario: sensors simply broadcast data related to what they
are sensing. In these cases, even a 1-byte meta-header to
indicate that no header is needed is too expensive. For in-
stance, if sensors broadcast 1-byte data, then 1-byte head-
ers result in 50% overhead. To address these scenarios,
FLIP offers the extra simple packet, or ESP. We desig-
nated the second bit of the meta-header, that is, the one
following the continuation bit in the first byte, to be the
ESP bit. If this bit is set, it indicates the packet at hand is
an ESP. The use of the continuation bit in the ESP allows
for 1- and 2-byte ESPs. While a 1-byte ESP, that is, one
with the continuation bit off, contains 6 data bits, a 2-byte
ESP allows for 14 bits of data (all the 8 bits of the second
byte will be counted as data). Figurer 4 depicts both ESP
cases.

[ofzfefefofofo]o]
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Figure 4: Extra Simple Packet (ESP)

FLIP’s ESP addresses the need for a real “barebone”
protocol, which will be used by applications that need
to send small pieces of data with no overhead. FLIP’s
regular meta-header bitmap covers the more general cases
where some fields are required and some are not, thus op-
timizing average use.

As shown in Figure 5, FLIP’s current meta-header
bitmap spans 3 bytes, including three continuation bits
and the ESP bit. The last meta-header byte has been left
unspecified as it will be used for adding new features as
part of FLIP’s evolution.

We should point out that the ordering of the fields was
determined so as to optimize packet overhead for very
simple applications and devices. More complex devices
and applications can normally amortize the cost of hav-
ing more meta-header bytes. Fields are ordered so that
the most commonly needed ones appear in the first meta
header byte(s). More infrequently used fields appear last
so that the corresponding meta-header byte does not have
to be included when these fields are not used. The defini-
tion of each FLIP header field follows.

e \ersion is 1 byte in length. The 4 higher order bits
represent the version field. The current FLIP version
is 0. The 4 lower order bits represent the priority
field. If a packet lacks the version field, version 0
and priority O are assumed.

Continuationbit#l|0|0|0|0|0|0|0‘
ESP bit
Version bit
Destination bits
Type bit
TTL bit
Flow bit
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ContinuationbitJOIO|O|0|0|0|0|0‘
Fragment Offset
Last Fragment
Reserved bit

Figure 5: The FLIP meta-header bitmap

e Destination is a variable-length field. The corre-

sponding meta-header field is composed of 2 bits,
whose value determines the size of the destination
field. If the bitmap bits are set to:

— 00 indicates the destination field is not present.

— 01 indicates we have a destination field of 2
bytes in length carrying a FLIP address.

— 10 indicates it is a 4-byte destination address.

— 11 indicates the destination field is of variable
length.

In the case of a variable length address, the first byte
indicates the size of the field, which could range from
5to 255. Values of 0 to 4 are reserved for future use,
such as geo-location. IPv4 [14] addresses correspond
to 4-byte FLIP addresses and IPv6 [22] addresses to
variable length addresses of size 16.

Type (Protocol) is 1 byte in length and indicates the
protocol type. This matches the IPv4 field by the
same name and IPv6’s next header field.

Time to Live (TTL) is 1 byte in length and is typ-
ically used to limit the scope of a packet. It may
define the scope in number of hops, i.e., at every hop
the TTL is decremented and when it reaches 0, the
packet is discarded. Applications may also define
the scope of their packets in terms of other metrics,
such as geographic area, etc.

Flow is 4 bytes in length. As the name implies, this
field is intended for flow identification. Flow identifi-
cations are useful to implement features such as sup-
port for flow-based quality of service (QoS). Packets



belonging to a given flow will be subject to QoS pa-
rameters negotiated for that flow.

e Source is a variable-length field and its length is de-
termined by 2 bits in the meta-header exactly the
same way as the destination field.

e Length is 2 bytes, which means that the maximum
packet size is limited to 64 KBytes.

e Checksum is 2 bytes in length and checks the packet
payload. It is calculated similarly to the IP Check-
sum.

e Don’t Fragment is a flag which means it does not
require the corresponding header field. It explicitly
informs the forwarding nodes not to fragment this
packet.

e Fragment Offset is a 2-byte field indicating this
fragment’s offset with respect to the original packet.

e Last Fragment is a flag used to indicate this is the
last fragment of a packet.

e Reserved are still to be defined fields.

A sample of a FLIP packet is depicted in Figure 6. The
shaded area represents the header, and the remainder, the
payload. In this example, the meta-header is 1-byte long
(continuation bit set to 0) and signals the presence of the
version field, a 2-byte destination address, and the type
field. All other fields, including the source address, are
not included in the packet

i 32bits
[o[o]a]o]1[2]o[o]  verson I

Destination

1
|
‘ Type I Data |
|

[ Data

Figure 6: FLIP sample packet

For increased flexibility, FLIP also allows for user-
defined header fields. If the continuation bit of the third
meta-header byte is set, it indicates that user-defined
header fields are included in the packet. Each user-defined
header field definition is one byte in length: the first bit is
the continuation bit, and the remaining 7 bits are defined
and interpreted by the application.

An example of a user-defined field is the velocity of the
source, in case the source is currently moving. The des-
tination may use this information to compute its velocity
relative to the source to evaluate the “stability” of its con-
nection to the source. User-defined information may also
include a list of hosts this packet has traveled through.

A node might use this information for packet processing
or routing. Another example is current energy level. In
power-constrained environments (e.g., sensor networks),
this information might be useful to determine the current
power limitations of a certain route.

FLIP header fields are usually fixed size. For exam-
ple, TTL is always 1 byte and length is always 2 bytes
long. Addresses are a special case. Assigning 2 bits to
the meta-header address field allows FLIP addresses to
be of variable length. 2-byte addresses are adequate for
scenarios where addresses need not be globally unique
(i.e., system-unique or locally-unique addresses suffice).
Addresses that are 4-byte long give us effective compati-
bility with IPv4 networks. Variable length addresses can
be used to emulate other addressing schemes, including
IPv6, Ethernet, or even hierarchical address types.

In some cases, source and/or destination addresses may
be omitted. If a packet does not include destination ad-
dress, it is assumed to be a broadcast packet. If a source
address is not present, it is assumed to be irrelevant or
somehow implied by the packet.

When present, fragmentation information is handled in
a similar way to IP. A don’t fragment flag indicates that
this packet should not be fragmented. The fragment offset
is a two-byte field, and the last fragment flag is again a
single flag. These two fields are included in the third byte
of the meta-header, leaving two unused bits in the second
byte. This is because not many packets are fragmented,
and when they are, it normally means they are large, so
we can amortize the cost of the extra meta-header byte.
We anticipate that fields that might be needed in the future
may be of more frequent use and hence it would be more
efficient to use the space in the second meta-header byte.
A clear example is security-related fields, which we have
currently not included.

FLIP allows application developers to customize its
header by selecting fields required by the target applica-
tion. Allowing direct manipulation of header fields by the
application layer can be considered a violation of layered
system design. However, exposing network-layer features
to higher layers allows for protocol optimization, which
is especially critical in power-constrained environments
such as the ones in which FLIP will likely be more widely
used. Our reference implementation of FLIP in the Linux
2.4 kernel, which is described in the next section, pro-
vides access to header manipulation functions through the
socket () and set/ get sockopt () interfaces.



2.2 TheTransport Layer

As previously discussed, FLIP provides the basic sub-
strate on which to build network- as well as transport-
layer functionality. In this section, we present an example
transport protocol, we call GTP or Generic Transport Pro-
tocol, built atop FLIP. GTP’s design is based on the same
principles as FLIP, i.e., generality with flexibility. In other
words, GTP provides support for a variety of transport-
level functionality yet allows the application developer
to select only the functions required by the target appli-
cation. To this end, it also employs customizable head-
ers through a meta-header describing the transport-layer
header fields.

Continuationbit‘lll0|0|O|0|O|O|O‘
Flags bit
Source bit
Destination bits
Seq # bit
ACK bit
Timestamp bit
Checksum bit
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Window Size bit
Urgent bit
Length bit
Next Protocol bit
Reserved

Figure 7: GTP meta-header

Figure 7 depicts GTP’s meta-header and its fields.
GTP’s header includes fields used by existing transport
protocols, specifically TCP [15], UDP [13], and RTP [9].
Similarly to FLIP, the most general fields were placed in
the first byte to optimize for more common use. It is note-
worthy that FLIP packets can contain various transport
protocol data units (TPDUSs), which can come in handy
when performing data aggregation.

GTP’s header fields are described below.

e Flags is a variable-size bitmap field which, similarly
to the meta-header, can grow dynamically through
the use of continuation bits. Currently, only the first
byte has been defined. Figure 8 shows the composi-
tion of GTP’s flag field and the description of each
flag follows.

— Extended mode indicates that this packet uses
extended addressing, in which case the source
and destination fields are four bytes long as op-
posed to two bytes.

— SYN is the normal synchronization flag used
for three-way handshake at connection estab-
lishment.

— FIN is the flag used to end a connection.

— Reset is used to reset a connection to an initial
state.

— Push informs the receiver to pass the received
data to the application without waiting for the
internal buffer to fill.

— Marker is a application-level mark on a
stream. It can be used for example, to mark
frames in a video stream.

— Padding informs the receiver that this data unit
was padded to the next 4-byte boundary.

Source is a 2-byte field used for addressing multiple
sources within the same host. It is the equivalent to
a TCP/IP source port. On extended mode, this is a
4-byte field.

Destination is similar to Source.

Sequence # is a 4-byte field that determines the po-
sition of this packet in the data stream. The position
is by default in bytes.

ACK is a 4-byte field used to acknowledge the re-
ception of data from the other end of the connection.
Its value is in bytes.

Timestamp is a 4-byte field with a relative value.
Timestamps are relative to each other and can be
scaled by the application.

Checksum is a 2-byte field used to check the in-
tegrity of the data unit.

Window Size allows the receiver to inform the
source the amount of data it can receive. It is a 4-
byte field (to avoid having to use scaling factors a la
TCP).

Urgent is a 2-byte field to indicate to the receiver this
2-byte field is carrying urgent data.

Length defines the size of the data unitand is 2 bytes
long. This is used normally for multiple data units in
the same packet, since the size of a single data unit
can be inferred from the packet length.

Next Protocol is a single byte that specifies the type
of the next data unit.

Reserved are fields that have not yet been defined.
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Figure 8: GTP Flags field

The use of a flags field as opposed to including the flags
as part of the meta-header (a la FLIP) is due to the fact that
(1) there are more transport-layer flags and (2) they will
only be used in some packets. Thus adding them to the
meta-header would have meant that the meta-header’s av-
erage size would have increased. With the current design,
packets that do not require SYN and FIN, for example, do
not need to carry the extra bits.

We should also point out that some of TCP’s flags are
implicit in GTP’s meta-header. Hence there is no need
for an extra flag for ACK or urgent data. Note that in the
case the packet is not carrying an acknowledgement nor
urgent data, the meta-header bits corresponding to these
fields will be 0 or not present.

Figure 9 shows a sample FLIP/GTP packet. The shaded
area corresponds to the FLIP and GTP headers. In this ex-
ample, the FLIP meta-header is 2 bytes and indicates the
presence of 2-byte destination and source addresses, plus
the protocol type (which should be set to GTP), the TTL
and length fields. GTP’s meta-header is also 2 bytes long.
It signals the presence of source and destination addresses,
as well as sequence number, acknowledgment and win-
dow size information.

Like FLIP, GTP’s design makes use of flexibility to ad-
dress heterogeneity and accommodate devices with dif-
ferent capability. Yet, it provides a variety of transport-
level functions that can be combined to address the ap-
plication’s needs. Section 4, which evaluates GTP for
providing different transport-level functionality, demon-
strates that GTP’s ability to include only the functions re-
quired by the target application leads to higher efficiency
when compared to static protocols like TCP and UDP.

2.3 FLIP and Heterogeneity

One of the main goals in designing FLIP was to construct
a protocol that allows a diverse set of devices to speak to
each other in an efficient manner using the same protocol
suite. As an example, consider deploying an ad hoc net-
work consisting of thousands of different types of sensors
(temperature-, humidity-, and motion sensors, as well as
microphones, cameras, etc.) for environmental monitor-
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Figure 9: FLIP/GTP packet

ing in a remote location.

Simple sensors such as temperature would use FLIP’s
ESP packets to report their readings. Data collection
nodes would gather sensed data received from local sen-
sors. Using a more complex FLIP header, they would
form data collection structures (trees, meshes) and reli-
ably convey data they collect to information sinks. For
energy efficiency, data would be aggregated as it flows
from collection points to sinks.

For energy conservation reasons, sensors such as cam-
eras and microphones would be kept in “stand-by” mode
most of the time. As soon as an event is detected (e.g.,
wind sensors notice winds picking up above a certain
threshold), cameras and microphones in that area would
receive a “wake-up” signal from the local data collect-
ing node and would start collecting information to reg-
ister a possible weather phenomenon (e.g., dust devil,
tornado, etc.). The “wake-up” signal could use FLIP’s
priority field to indicate that this information needs to
be forwarded by intermediate nodes with higher priority.
Cameras and microphones are attached to more power-
ful nodes that can keep up with their data generation rate
and perform local processing in order to avoid overload-
ing sinks with too much information and consuming too
much network resources. Some cameras and microphones
in the same neighborhood could also perform informa-
tion fusion among them to decide whether they should
send information to sink(s), and if so, what kind of in-
formation representation to use (e.g., if the probability of
event occurrence is deemed low, send only the base layer
of the compressed stream from the camera that is closest
to where the action is). These real-time streams could be
sent using FLIP/GTP’s unreliable stream functionality a
la RTP.

Scientists on the field equipped with hand-held devices
could also be collecting sensed information in real-time.
They could then communicate among them sharing infor-
mation and/or exchanging files using FLIP/GTP’s reliable
end-to-end delivery functionality. They might also need
to communicate with their collaborators connected to the



wired Internet; this would be accomplished via translation
gateways, which convert FLIP/GTP packets to TCP/IP
and forward them onto the wired infrastructure.

Clearly, all exchanges in this heterogeneous scenario
could be carried out using different protocols to handle
the different types of communication. The main advan-
tage of using the FLIP stack is that it provides a single, yet
efficient protocol architecture which can be used for sim-
ple data gathering, point-to-point data communications as
well as more complex exchanges.

3 Implementation

As proof of concept, we implemented a barebone version
of FLIP in the Linux 2.4 kernel. We generated a patch for
the kernel which allows the inclusion of FLIP at compile
time or as a loadable module. Linux is making its way
into devices of various kinds and capabilities; having a
Linux implementation of FLIP will allow us to conduct
live experiments in heterogeneous environments.

Below the FLIP code lies the device code, specifi-
cally the device output/input queues, through which FLIP
sends/receives data. When data is received, the receiving
device passes it to the FLIP layer which queues the data
on the corresponding socket.

FLIP uses the BSD socket abstraction to interface with
applications. In order to send and receive data using FLIP,
application programmers will use the same set of socket
system calls they would use to handle TCP/IP communi-
cation endpoints. For instance, to create a FLIP socket, all
they have to do is request a socket of family AF_FLI P.

char* buf = "Hello Wrld";
__ul6 addr;

s = socket (AF_FLI P, SOCK_RAW FLI P_NO ESP) ;

addr = htons(1000);

set sockopt (s, SOL_FLI P, FLI PO_DESTI NATI ON,
&addr, si zeof (addr));

wite(s, buf, strlen(buf));

Figure 10: Sample application code

Figure 10 illustrates the FLIP API. In this example,
a FLIP socket of type SOCK_RAW (allowing the pro-
grammer to modify most of the fields) is defined. The
CAP_NET _RAWCcapability is required to use the socket if
capabilities are being used. FLIP sockets will eventually
be able to support datagram and stream once transport
layer functionality is implemented. Socket ’s last pa-
rameter is used to select ESP or non-ESP mode. With the

current implementation, the programmer cannot change
from one mode to another once the socket is created.

The programmer can then use set sockopt () to set
the necessary header fields. For instance, address fields
(source and destination) identify a given communication
end-point. If a socket is assigned an address, that socket
will only receive packets with that address in the desti-
nation field. The address of a FLIP traffic source is set
through the FL1 PO_SOURCE option. If no address is as-
signed to a socket, FLIP will not set the source address on
outgoing packets from that socket. In the example of Fig-
ure 10, the destination field is defined as a 16-bit FLIP
destination and is set with the FLI PO_DESTI NATI ON
option.

Since ESP packets have no headers, and thus no desti-
nation or source addresses specified, ESP sockets always
receive all packets.

The get sockopt () call is used to read header defi-
nitions for a certain socket, as well as to read the header
fields of incoming packets on that socket. As previously
pointed out, to achieve flexibility and efficiency, our de-
sign exposes the network layer to the application pro-
grammer.

In order to speed up packet header construction, we
cache header information for every socket that has been
defined. Dynamic header fields, which change from
packet to packet, are computed on the fly before the packet
is sent. Packet length and checksum are examples of dy-
namic header fields.

In the current implementation, we use Ethernet and
802.11b as the MAC layer protocols. Like RF wireless
access, Ethernet assumes a shared broadcast medium. A
unique protocol number was selected as Ethernet’s next
protocol field. Using these underlying MAC protocol
means that FLIP packets must be at least the size of the
minimum frame payload. Consequently, in this imple-
mentation, we cannot take full advantage of FLIP’s ESP
mode.

4 Evaluation

In this section we compare FLIP’s functionality and over-
head against a more “traditional” protocol, namely IP. We
also evaluate FLIP in the context of a sensor network en-
vironment.

41 FLIPandIP

We should point out that both FLIP and IP were designed
to address different goals and target environments. Thus
comparing them is not really fair to either. While the IP



Table 1: FLIP-IP comparison in terms of packet size

[ Data I none I 1byte I 1000 bytes |
| [[TPv& [ T6 [ FLIP || ™4 | w6 | FLIP || ™4 | w6 [ FLIP |
Full 1Pv4 functions 20 | N/A | 24 || 21(2000%) N/A 24 (2300%) || 1020 (2%) N/A 1024 (2.4%)
Typical IPvAfuncions || 20 | N/A | 17 || 21 (2000%) N/A 18 (1700%) || 1020 (2%) N/A 1017 (L.7%)
TPv6 functions N/A | 40 a4 N/A 41 (4000%) | 45 (4400%) N/A 1040 (4%) | 1044 (4.4%)
Dest. & Source 20 20 10 21 (2000%) | 41 (4000%) | 11 (1000%) || 1020 (2%) | 1040 (4%) | 1010 (1%)
Dest. only 20 20 3 21 (2000%) | 41 (4000%) | 4 (300%) 1020 (2%) | 1040 (4%) | 1003 (0.3%)

layer provides a fixed set of functions, FLIP’s function-
ality and overhead are application-dependent. In other
words, the application determines which fields are to be
included in the FLIP packet header. Therefore, applica-
tions send just what they need, avoiding the cost of trans-
mitting and processing unnecessary information.

Take for example an application that sends out data in
1000-byte chunks. Using IPv4, the overhead would be
20 bytes (corresponding to the IPv4 header), which is
not significant given the size of the payload. However,
if hosts are just sending 1-byte heartbeat messages (e.qg.,
either their address or some form of identification), then
20 bytes of header would seem unacceptable. Fields such
as fragmentation information, ToS, or even packet length
(in the case of fixed-size packets) would be adding un-
necessary overhead and wasting network, and even more
importantly, device resources (such as power). If IPv4 is
used, the message would be 21 bytes long, where only 1
byte is payload. The corresponding barebone FLIP packet
could be 5 bytes long: 1 meta-header byte, a 4-byte des-
tination address, and 1-byte heartbeat, which results in a
400% increase in efficiency (when compared to the IPv4
packet).

When comparing the functionality of IP and FLIP, we
need to examine the issue of header compatibility. IP
header fields are easily mapped into FLIP fields. Indeed,
FLIP was designed with IP-compatibility in mind. It is
fully compatible with IPv6. To emulate IPv6 functional-
ity, the version, flow, length, protocol (for next header),
and TTL (for hop limit) header fields need to be enabled.
Moreover, 16 byte addresses for source and destination
should be selected. The overhead of using FLIP instead
of IPv6 is four bytes: two bytes for the meta-header, one
extra flow id byte (FLIP’s flow id is 4 bytes long while
IPv6’s is only 3) and the size specification of the address.
This additional overhead is relatively low: it results in
only 10% header size increase.

IPv4 emulation varies a little bit. If we provide “full
IPv4 functionality”, including fragmentation, we would
need to choose the same fields as IPv6 plus checksum and
fragment offset. We would use the 4-byte flow field as

IPv4’s id. This would waste 2 bytes. IPv4 options can
be included as FLIP user defined fields. The overhead of
using FLIP to emulate a header like this would be 4 bytes:
three meta-header bytes, two extra bytes in the flow field,
a smaller priority (ToS) field and no header length field.
When providing “typical IPv4 functionality”, there is no
need for fragmentation or flow id; the version field can
also be omitted. This results in a header of 17 bytes for
the typical case of IPv4 functionality.

In homogeneous environments (e.g., where all devices
are capable of speaking IP), FLIP’s flexibility is dispens-
able, and thus even a small increase in overhead may
be unwarranted. However the main point in comparing
FLIP’s and IP’s functionality is to show that FLIP can
be used by very simple devices with minimum overhead,
and, at the same time, provide IP-style functionality when
needed with minimum cost.

FLIP’s main drawback, when compared to IP (or any
“fixed-header” protocol), is associated with the fact that
header parsing becomes a more involved task. Clearly,
higher header processing overhead implies that it takes
longer to forward packets. Regarding protocol imple-
mentation, communication between layers becomes more
complex since now varying-size data has to be passed be-
tween layers. Furthermore, allowing users to modify pro-
tocol header fields raises implementation correctness is-
Sues.

Table 1 shows a comparison between FLIP and IP (IPv4
and IPv6) in terms of packet size. Each column is associ-
ated to one of the protocols, namely IPv4, IPv6, and FLIP.
The rows list the required functionality. “Destination and
Source” uses 4-byte addresses for the the destination and
the source only, while “Destination” includes only a 2-
byte destination address. The cells show the packet size.
The number in parenthesis is the size of the header com-
pared to the payload (given as a percentage). We con-
sider 3 payload sizes: 0- (or no payload), 1-, and 1000
bytes. For instance, in the case of the 1-byte payload,
IPv4 uses a 20-byte header. Thus the header to payload
ratio is (200/1) = 2,000%.

As previously pointed out, the purpose of this table



is to showcase FLIP’s flexibility-overhead tradeoff when
compared to fixed-header protocols. FLIP can provide
both functionality of “traditional”, more complex inter-
networking protocols, such as IPv4 and IPv6, at reason-
ably low cost, as well as functionality of a barebone pro-
tocol incurring minimal overhead.

Table 2 compares GTP (running atop FLIP) to
TCP/UDP (atop IPv4). The rows represent different types
of exchange: connection setup (SYN), reliable and un-
reliable data packets. The first column shows the data
size, that is, the payload. The following columns show
the packet size for TCP/UDP and for GTP. The number in
parenthesis is the breakdown of header and payload sizes.

The FLIP header size of 17 bytes supports typical IPv4
functionality requirements as previously derived. The
setup packet includes flags, source and destination ad-
dress, sequence number, checksum and window size, re-
sulting in a GTP header size of 17 bytes. For reliable ex-
changes, the GTP header includes the ACK field in addi-
tion to source, destination, sequence number, and check-
sum. Note that, when compared to the connection setup
case, flags and window size (assuming it does not change
during the connection) are not included, resulting in a
header size of 15 bytes. The header for unreliable ex-
change includes source, destination and checksum. GTP
meta-header requirements are 2 bytes for the setup packet
(need to include flags) and 1 byte for the last 2 cases.

Table 2: GTP - TCP/UDP comparison in terms of packet
size (in number of bytes)

| [[ Daasze | __TCAUDP | GTP |
Setup Packet 0 70 (20 + 20) J/A7+17)
Reliable Packet 50 90 (20 + 20+ 50) | 82 (i7 + 15 + 50)
Unreliable Packet 50 78(20+8+50) | 74(17+7+50)

We should reiterate that the goal of FLIP/GTP is not
to replace the TCP/IP network architecture but to extend
its scope to interconnect heterogeneous devices among
them and to the existing IP infrastructure. The compar-
ison in Table 2 shows the benefits of using a flexible, cus-
tomizable protocol suite in heterogeneous network envi-
ronments. Essentially, FLIP/GTP is able to provide the
same functionality as TCP(UDP)/IP at lower cost. This is
due to FLIP/GTP’s ability to include only the functional-
ity needed by target applications.

4.2 FLIP-IP Integration

FLIP’s goal is not to replace but rather extend the scope
of IP to interconnect clouds of varying capability devices

to the existing IP infrastructure.

FLIP and IP can co-exist and inter-operate using dif-
ferent integration strategies. One way of integrating the
two protocols is through simple encapsulation. For exam-
ple, in order to interconnect FLIP-capable islands across
an IP infrastructure, FLIP tunnels can be used. Upon
leaving a FLIP cloud, FLIP packets are encapsulated into
IP datagrams by a FLIP-IP gateway. When reaching the
FLIP-capable network destination, IP-FLIP gateways re-
store the original FLIP packets, stripping off the IP en-
velope. An alternate mechanism is to tunnel IP traffic
through FLIP networks. IP datagrams could be encap-
sulated in a header indicating a “IP-in-FLIP” type and an
address.

In fact, we foresee that, even though FLIP-IP encapsu-
lation will likely be more common, both tunneling mech-
anisms will be needed in heterogeneous networks and will
be used complementary to one another.

5 Sensor Networks

Sensor networks are one of FLIP’s key target application
domains. In most sensor network scenarios, the goal is
energy conservation as sensing devices rely on batteries
with relatively short lifetime. Typically, sensor network
applications imply that sensors will be left on the field
unattended for extended periods of time and must con-
serve energy in order to maximize the whole network’s
operational lifetime.

Sensor devices, and implicitly sensor networks, are data
driven in the sense that the whole network cooperates on
the task of communicating data from sensors to end users.
In these kinds of scenarios, FLIP optimizes communi-
cation among nodes by only transmitting required infor-
mation with minimum protocol overhead. For instance,
FLIP’s ESP provides application programmers with a con-
siderably lightweight packet. ESPs can be used in sce-
narios such as coordination between peers in radio range
or transmission of small data chunks (e.g., readings from
temperature, humidity-, and motion sensors). The inclu-
sion or exclusion of destination and source fields could
determine the scope of the data as routable or one-hop
(such as “running out of battery” or “hello” messages).
FLIP’s different address types allow proposals such as the
address-free architecture [16] to coexist with more tradi-
tional addressing schemes.

In order to evaluate how FLIP addresses the needs of
sensor network applications, we selected as a case study
the directed diffusion architecture [2]. Directed diffusion
is a communication paradigm for sensor networks which
establishes interests for specific data (e.g., number of cars



that flow through busy intersections during rush hour).
Relevant data flows towards nodes that expressed interest
in named information. Routing is done by the application,
which aggregates data when possible. Since these appli-
cations are very involved with the network, a transport
layer is not used.

Directed diffusion’s original header is 22 bytes long. If
IPv4 was used to implement directed diffusion, it would
incur an overhead of 9 bytes, and would have to carry
packet number information in the payload. In the case
of IPv6, the overhead would increase to 29 bytes. Using
FLIP, the overhead would be only 2 bytes, corresponding
to FLIP’s meta-header.

5.1 Directed Diffusion and FLIP

Directed diffusion [2] is a communication paradigm es-
pecially targeted at data-centric sensor networks. In such
environments, nodes collaborate to get the data from its
source(s) across the sensor network to the data sink(s). A
sink node sends an interest for a certain data. This interest
will be broadcast to the whole network. As a result, a gra-
dient will be set up along the path. If a node has relevant
information to that interest, it will send the data along the
gradient back to the sink.

Originally, directed diffusion was implemented as a
very specialized application-level protocol. Diffusion im-
plementors’ main goal was to develop a working architec-
ture for data-driven sensor networks, rather than build a
generic network-layer protocol. In this section, we evalu-
ate the tradeoff between FLIP’s flexibility and efficiency
as the network-layer protocol underlying diffusion.

We implemented “diffusion-over-FLIP” in two ways.
In the first approach, we constructed diffusion’s complete
header using FLIP and evaluated the resulting protocol’s
overhead when compared to “plain” diffusion. In other
words, we left every diffusion field intact and did not per-
form any sort of optimization. Secondly, we implemented
diffusion from scratch assuming FLIP as the underlying
protocol. In this case, we optimized where possible.

5.2 Diffusion over FLIP

We use the diffusion packet definition from their 3.0 beta
release [23]. Figure 11 shows a sample diffusion packet.
We then map each diffusion field to the corresponding
FLIP field. Most diffusion fields can be directly translated
to FLIP header fields: | ast _hop is mapped to sour ce,
next _hop todest i nati on, etc. More specialized dif-
fusion fields are carried in the payload. nunber of
attributes and sender port are two examples.

The resulting FLIP packet is 2 bytes longer than the orig-
inal diffusion packet since we have the overhead of the
meta-header.

32 bits

Last Hop

Next Hop
Ver I Type I Length
Packet Number

Header

Random id

# Attributes I Sender port

Attribute key
Type[ Op [ Length

z ]

Figure 11: Diffusion packet for ani nt attribute

Payload

The goal of this exercise is to show that it is relatively
simple for an existing application to adopt FLIP as its
underlying network protocol without incurring excessive
overhead.

5.3 Optimizing Diffusion with FLIP

The second approach to evaluating FLIP in the context of
diffusion is to address the following question: how would
one re-design diffusion assuming FLIP as the underly-
ing protocol? We consider diffusion’s different packet
types: i nterest, rei nforcenent, and data. As
expected from a fixed-header protocol, all packet types
use the same packet header. The question then becomes:
can one take advantage of FLIP’s flexible headers to opti-
mize diffusion’s exchanges?

In the case of i nt er est packets, the header only
needs to carry source, fl ow (packet id), and
t ype fields. This customization reduces i nt er est
headers to 11 bytes, including the meta-header overhead.
The payload portion of this type of packet can be reduced
to 10 bytes for simple interests. That is, interests that have
only one attribute and that can deduce the type of data
fromtheatt ri but e key. The total packet size for in-
terests will be 21 bytes, in contrast to 36.

In addition to interest header fields,
rei nforcements also require a destination field
because they reinforce a specific path. This results in
25-byte packets as we are using 4-byte addresses.

Data packets flow in the opposite direction to in-
terests.  Similarly to rei nf or cenent s, they carry
both sour ce and desti nati on fields because they
need to leave a trail for reinforcements. Data and
r ei nf or cement packet headers end up being the same.
In their payload, we are able to save one byte used for
specifying query on attributes, making it 9 bytes long for



ani nt attribute type interest. The total packet length will
be 24 bytes. Figure 12 shows the resulting optimized dif-
fusion packets. Shaded and unshaded areas denote header
and payload, respectively.

Interest
T 8 bytes 1
Meta—Header l Type Flow Forw...
Forwarder # Attr Attribute Key
Value Opt ‘
Reinforcement
T 8 bytes 1
Meta—Header I Destination Type | Flow...
... Flow l Forwarder # Attr
Attribute Key I Value
Opt
Data
T 8 bytes 1
Meta—Header I Destination Type | Flow...
... Flow l Forwarder # Attr
Attribute Key I Value

Figure 12: FLIP-optimized diffusion headers

5.4 Simulation Results
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Figure 13: Energy levels over time for different diffusion

variants.

the diffusion algorithm operates: it resends interests every
5 seconds. Simulations were run for 21 seconds.

As expected, diffusion over FLIP consumes slightly
more energy than diffusion since the packets are 2 bytes
longer. However, difference in energy consumption be-
tween the two protocols is relatively small.

Optimized diffusion on the other hand yields consider-
able energy savings when compared to the other diffusion
variants. It consumes less than half the energy for the
same period of time. This means that FLIP-optimized dif-
fusion could double the lifetime of a sensor network when
compared to “plain” diffusion. Table 3 summarizes en-
ergy consumption results for the different diffusion vari-
ants.

To evaluate these FLIP-based diffusion variants, we modi-
fied the original diffusion code in the ns- 2 network simu-
lator [8]. We ran a data gathering experiment with the dif-
fusion algorithm, a sink sends out an interest and one node
responds with information (data source). In our experi-
ments, we use sensor networks consisting of 300 nodes
scattered across a 2000 x 2000 meter area. 802.11 is the
underlying MAC protocol. The energy values for radio
transmission and reception are based on the original dif-
fusion evaluation values, i.e., 395mW in reception mode
and 660mW when transmitting. Nodes remain static in the
sensor network and have a 250m transmission range. To
accentuate the difference between diffusion variants we
reduce idle energy dissipation to 0, which suppresses the
effects of lower layer (data link and physical) overhead.
Node failures were not considered.

Figure 13 shows average node energy over time.
Nodes’ starting energy is 1.0 Joules. Data points represent
averages over 10 runs with different random topologies.
We use one sink, one source and a requested data rate of
10 packets/second. The graph’s “step” shape is due to how

Table 3: Diffusion variant energy consumption

[ [[ Energy consumed [ packetsize |
Diffusion 0.109 36
Diffusion + fip 0.114 38
Optimized Diffusion 0.050 varies (21 - 25)

We should point out that, when implementing the orig-
inal diffusion protocol, diffusion developers were likely
not trying to implement a completely optimized protocol.
The original diffusion header includes extra functionality
that our optimized header does not provide as it is not re-
quired by this diffusion implementation. Of course, if this
functionality is required by future diffusion variants, it can
easily be incorporated by FLIP.

It is also noteworthy the fact that FLIP’s optimization of
diffusion which results in three different types of packets
to implement diffusion’s interest, reinforcement, and data
exchanges also showcases FLIP’s ability to accommodate



heterogeneity.

6 Effectsof Flexible Headers

In this section, we demonstrate FLIP’s energy efficiency
in the context of another data gathering application for
sensor networks. The specific scenario we consider is
temperature running average calculation.

We designed a simple data gathering protocol which
works as follows. A requesting node sends a query for
a certain variable, for example temperature. Each node
then sends back an answer reporting their current temper-
ature measurement. The requesting node can then per-
form some calculation over the requested data. This cal-
culation might be something like finding the average over
each round of reported temperature values. This is a sim-
plified example since this average would not take into ac-
count node location. Nodes perform two basic exchanges:
the query that originates at requesting nodes, and the re-
sulting replies. The TTL is decremented at each hop. We
will explain the use of the TTL in Section 7. We describe
the different packet formats below.

6.1 Header Models

We compare FLIP’s flexible headers with two static
header models: minimal and full headers. Figure 14 show
the three header models considered.

In FLIP, the query packet header consists of sour ce
(2 bytes), TTL (1 byte), and t ype (1 byte). The re-
sponse header includes desti nation (2 bytes) and
t ype only. Query and response header sizes (including
meta-headers) are 6- and 4 bytes, respectively. The pay-
load in the two cases is 2- and 4 bytes long. Query packets
carry the query id; in the case of response packets, the data
being reported is also included. This makes the packets 8
bytes long. Ring nodes, defined below, reset FLIP’s meta-
header bit corresponding to the TTL field.

Minimal static headers are 6 bytes long. They con-
sist of the union of all FLIP header fields, i.e., sour ce,
destination, type, and ttl. The corresponding
query packet is 8 bytes, like in FLIP. But responses are
10 bytes long.

The full header mode includes all fields typi-
cally present in “traditional” network-level protocols:
version, source, destination, type, TTL,
si ze, CRC, and sequence nunber . The total header
size is 15 bytes which makes queries 17- and responses
19 bytes long.

In this particular application scenario, since flows in
different directions need to carry different information,

FLIP header

Response
32bits 1

Query
T 32bits 1 T
Meta—Header

Source ‘ ’ Meta I Destination l Type ‘

TTL Type

Minimal static header

Query and Response

T 32bits 1

Destination Source ‘

TTL I Type

Full static header

Query and Response

T 32bits

Source

CRC

Destination

Size

Sequence Number
TTL l Type lVersion‘

Figure 14: Header models

FLIP’s flexible headers are able to minimize protocol
overhead, while not limiting protocol functionality. As
our simulation results show, FLIP yields the highest
energy efficiency even when compared to the minimal
header model case.

6.2 Simulation Results
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Figure 15: Data gathering (temperature averaging) energy
consumption

The graph in Figure 15 shows how average node energy
varies over time for the temperature averaging application.
Similarly to the directed diffusion experiments, we use a



300-node sensor network spanning a 2000 x 2000 meter
area. We also use ns- 2’s 802.11 MAC protocol and the
same radio energy consumption parameters, i.e., 395mW,
660mW, and 0 for receive, send and idle, respectively. As
before, these parameters are based on the empirical values
used in the original evaluation of diffusion [2]. Reported
data points are averages over 10 runs. Initial node energy
is 0.2 Joules. The experiment consists of running the av-
erage calculation algorithm once, where a node sends a
query and waits for the responses. There are no delivery
guarantees of any kind nor recovery mechanisms address-
ing node failures.

In the initial part of the experiment (between 0 and 2
seconds) average energy consumption is low since nodes
are only sending the query packet away from the requester
node. As more and more nodes reply to this packet and
forward the responses, energy consumption increases. Af-
ter a few seconds the energy levels off as packets arrive at
the requester or are lost due to collisions. The number
of readings collected by the requester were similar for all
three header models with an average of 266 readings out
of (maximum) 300.

Table 4: Total energy consumption for the data gathering
application

[ [[ Energy consumed [ Query size | Responsesize |

FLIP header 0.0493 8(7) 8
Minimal static header 0.0499 8 10
Full static header 0.0551 17 19

Table 4 summarizes the energy consumption results for
the different header models. The minimal static header
model consumed 1.2% more energy than FLIP, while full
headers consumed 11.8% more. Both the minimal header
protocol and FLIP provide exactly the same functional-
ity, which is optimized for the data gathering application.
The full static header model on the other hand includes
the usual fields present in “traditional” network-layer pro-
tocols. This extra, but dispensable, functionality results
in almost 12% additional energy consumption when com-
pared to FLIP. For applications that need some or all the
functionality provided by a full header model, FLIP could
easily add the required fields.

One can argue that it is possible to use a different static
header for each protocol exchange. To this end, the pro-
tocol still needs a way to differentiate between the differ-
ent packet types. For example, nodes can use the packet
type field to decide how to process a packet. However, we
claim that if protocol designers are willing to make packet
processing more complex, they will be better off using

FLIP, which is fully customizable. As demonstrated by
our results, FLIP’s meta-header provides an efficient way
to define which fields are included in the header.

7 Data Aggregation

Previous sections showed that FLIP’s flexible headers are
an effective power-conservation mechanism. The goal of
this section is to showcase FLIP’s flexibility as a way to
incorporate new protocol functions seamlessly. As an ex-
ample, we modify the data gathering protocol described
in Section 6 to include data aggregation. We demonstrate
that FLIP’s ability to incorporate new functionality may
lead to a more (power-)efficient protocol.

We assume applications where information from nodes
closer to the requester is considered more important than
information from farther away nodes. An example ap-
plication that falls in this category is monitoring a con-
trolled chemical reaction (e.g., temperature), where data
from sensors close-by to where the reaction is taking place
is more critical than data from sensors farther away. This
means that information from close-by nodes should be re-
ceived as soon and as accurately as possible. Information
from more distant nodes is not so critical and can be deliv-
ered later. The objective then becomes to optimize energy
efficiency while still delivering important data in a timely
fashion.

Our data aggregation mechanism works as follows. The
requester node defines an area it considers important. It
does so by setting the TTL of the query packet, which de-
fines the hop count of the importance area. At every hop,
the TTL is decremented by one. Once it reaches zero, it
means the packet left the importance area. After this point
the packet no longer needs the TTL field since it already
knows it is far away from the requester. Figure 16 shows a
sample scenario. The central (gray) node is the requester
and the dashed circle defines its transmission range. The
shaded area is an approximation of a 2-hop importance
area. The black, or ring nodes delimit the importance
area.

Nodes reply as soon as they get a request. Nodes in-
side the importance area will forward these replies imme-
diately so they reach the requester as soon as possible.
Nodes outside the importance area will reply and forward
other nodes’ replies at their leisure. In our experiments,
outside nodes also reply immediately. However, instead
of forwarding immediately, ring nodes aggregate replies
into a single packet which they forward to the requester
when new data is received.

Data aggregation at ring nodes compensates for energy
consumption at nodes within the requester’s importance
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Figure 16: Sample ring aggregation scenario

area. Of course the tradeoff is that information from far-
ther away nodes is delayed. However, since this infor-
mation is not considered critical, the added delay is toler-
ated. The same aggregation technique can be applied to
other data-driven applications such as hierarchical map-
ping algorithms which require accurate information from
close-by nodes and are tolerable to less accurate readings
from distant nodes.

In these experiments, we used the same simulation pa-
rameter values as described in Sections 5.1 and 6. The
radius of the importance area (number of hops between
requester and ring nodes) was set to 4. Periodic messages
from ring nodes to requester are sent every 0.5 seconds.
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Figure 17: Data gathering (temperature averaging) energy
consumption with data aggregation.

Figure 17 shows the effects of data aggregation when
applied to our average computation protocol. Note that
the resulting energy level graphs for data gathering with

and without aggregation exhibit similar shape. However,
data aggregation results in lower power consumption as
nodes inside the importance area end up sending fewer
packets when aggregation is used.

Table 5 shows total energy consumption with aggrega-
tion for the different header models. FLIP’s energy sav-
ings is 1.1% higher than the minimal static header model
and 6.0% higher than full headers. Thus FLIP is able
to achieve comparable energy efficiency to a fully opti-
mized protocol and still offer functionality provided by
full header models. We should also point out that, for all
header models, the requester collected similar number of
readings (averaging 284 out of the original 300 readings
transmitted), which measures the data accuracy obtained
by aggregation. Figure 18 demonstrates the energy sav-
ings obtained by aggregating data by comparing the en-
ergy consumption of propagating data with- and without
aggregation. Aggregation, in this experiment, uses FLIP
as the underlying protocol.

Table 5: Total energy consumption for data gathering ap-
plication with aggregation for different header models.

Energy consumption Energy

no aggregation | aggregation | savings

FLIP header 0.0493 0.0336 31.8%
Small Static header 0.0499 0.0346 30.7%
Full Static header 0.0551 0.0409 25.8%

Average Node Energy - Flip Header
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Figure 18: Effect of data aggregation on energy consump-
tion

We used aggregation as an example functionality that
can be incorporated into an existing protocol and showed
that it has considerable impact on energy conservation.
This aggregation example also demonstrates how FLIP al-
lows higher-layer protocols to add and remove functional-



ity as needed. In the case of the ring aggregation example,
when TTL field was no longer needed, it was removed,
decreasing the header overhead.

Protocol designers have to make choices. If they
choose to optimize the protocol in excess, they might
make it very hard (if no impossible) to add future en-
hancements/functionality as the protocol evolves. On the
other hand, if they try to provide complete functionality
(as in the full static header), they will undoubtedly in-
cur unnecessary overhead in most or all cases. FLIP per-
mits a balance between the functionality provided by full
header models and optimized overhead achieved by mini-
mal headers.

8 Reated Work

Communication protocols for wireless networks have
been an active area or research and include efforts such as
Packet Radio [25], GloMo [3] and the IETF’s Mobile Ad-
hoc Networks (manet) working group [12]. In the early
90’s, several efforts focused on the concept of “ubiquitous
computing” [27]. Some examples include a number of
projects at Xerox PARC [28] and the Daedalus/BARWAN
project [4] at UC Berkeley. More recently, some research
has turned to embedded systems and sensor networks. To
our knowledge, FLIP is the only initiative to develop a
protocol to interconnect heterogeneous devices. Almeroth
et al. [18] introduced the main concepts behind FLIP.

AT&T Laboratories Cambridge (former Olivetti Re-
search Labs) has lead several related initiatives including:
Piconet [5] and its low-range radio network, an infra-red
(IR) network [10] connecting active badges and IR-base
sensors. Their efforts to develop a low-power protocol
stack [6] focuses on optimizing the MAC layer for low-
bandwidth, low-power systems. They have also devel-
oped services atop these networks, including the Active
Badge location system [26], and the Active Floor [1].

In the Scalable Coordination Architectures for Deeply
Distributed Systems (SCADDS) project [23], nodes loose
their individuality and the focus lies in the data generated
by the whole system. In this context, the directed diffu-
sion [2] architecture was developed to convey data from
information sources (e.g., sensors) to information sinks.
Directed diffusion uses its own protocol which is specially
tailored to its needs. In Section 5.1, we use FLIP to imple-
ment diffusion and demonstrate FLIP’s energy efficiency
when compared with an existing diffusion implementa-
tion.

The Dynamic Sensor Networks (DSN) project [24] is
also designing and implementing a protocol specially tai-
lored for their sensor network application. DSN aims to

take advantage of GPS in sensor networks and therefore
their MAC-layer protocol uses a GPS-based TDMA while
their network-layer protocol uses GPS for spatial address-
ing and routing. The WINS project, Wireless Integrated
Network Sensors [7], describes a basic sensor network en-
vironment and presents a solution based on layered pro-
cessing.

Research such as the Address Free Architecture [16] is
related to FLIP as it proposes new approaches to provid-
ing network-layer functionality, in this case addressing.
They describe an architecture where nodes select proba-
bilistically unique addresses in order to uniquely identify
data flows at any point in time.

There is also the BlueTooth [21] consortium effort
whose primary goal is to develop low-cost, low-power ra-
dios with link ranges on the order of a few meters. The
goal is to implement this technology into cheap chips to
be plugged into computers, printers, mobile phones, etc.

There has also been work on header compression. The
recently proposed Unified Header Compression Frame-
work [17] aims at creating a standard way in which proto-
cols in general can define header compression. Previous
work [19][20] targeted specific protocols such as TCP/IP.
Unlike FLIP, current header compression schemes re-
quire persistent data exchange between endpoints. A full-
header packet establishes state and then subsequent pack-
ets can be compressed. Another limitation of current
compression schemes is that they are intended for mostly
point-to-point communication.

9 Conclusions

This paper described the design and implementation of
FLIP, a network protocol whose goal is to accommodate
varying capability devices. FLIP uses customizable head-
ers to satisfy, with minimal overhead, the requirements
of a wide-range of applications and devices. We imple-
mented FLIP under Linux and used the BSD socket ab-
straction to make FLIP available to application program-
mers.

We evaluated FLIP in a number of scenarios. First
we compared FLIP’s overhead and functionality against
(IPv4 and IPv6). We showed that when providing IP func-
tionality, FLIP incurs relatively small overhead (1 and 3
bytes respectively), yet provides close to minimal over-
head in scenarios that require less functions than what IP
provides (specially when carrying small payloads). We
presented the Generic Transport Protocol, or GTP, a flexi-
ble transport layer protocol that runs atop FLIP. We com-
pared GTP to TCP/UDP and showed that it yields in-
creased efficiency when providing transport level func-



tionality for different application needs. GTP’s efficiency
is a direct consequence of its ability to provide only the
functions needed by target applications.

We also evaluated FLIP in the context of sensor net-
work environments. In particular, we used FLIP to im-
plement the directed diffusion communication paradigm.
In the first set of experiments, we performed direct trans-
lation between diffusion and FLIP header fields. We ob-
serve a slight increase in the resulting protocol’s overhead
due to FLIP’s meta-headers. We argue, however, that even
though using FLIP is slightly more energy consuming, it
would pay off if there is the need to interconnect different
types of devices with different capabilities. We then re-
designed diffusion assuming FLIP as the underlying net-
work protocol. Using FLIP’s flexible headers, we were
able to provide just the required functionality incurring
minimal protocol overhead. Simulation results show that
optimized diffusion can be 50% more energy efficient than
original diffusion.

Data gathering applications in sensor networks were the
other scenario we used to evaluate FLIP. We designed a
simple protocol to perform running average calculation
and compared the efficiency of FLIP’s flexible header
against static headers. We used two static header mod-
els: full headers include most fields present in “tradi-
tional” network-layer protocols, while minimal headers,
which are optimized for the target application, only carry
required fields. We showed that FLIP is more energy effi-
cient than both header models. It outperforms optimized
static headers by a small margin and still has the addi-
tional advantage of being able to accommodate other de-
vices if needed. FLIP is able to match the functionality of
the full header model and yet yields 12% higher energy
efficiency.

As networks become more heterogeneous, FLIP’s flex-
ibility allows devices of widely varying power, commu-
nications, and processing capability to be networked to-
gether. We also showed FLIP’s ability to evolve seam-
lessly and include new protocol functionality as needed.
We demonstrated that FLIP’s ability to incorporate new
functionality may lead to a more (power-)efficient proto-
col. To this end, we enhanced the running average calcu-
lation protocol by adding data aggregation. When com-
pared to the original version of the average calculation
protocol, data aggregation reduced the system’s overall
energy consumption by as much as 30%. The addition of
this feature required the use of the TTL field. TTL (or any
other fields) could be easily incorporated into the FLIP
header. Had any of the static header protocols not been
implemented with this feature from the start, they would
not have been able to take advantage of such an enhance-

ment.

This highlights the fact that, good design (including
plans for protocol evolution) is of extreme importance.
However, no matter how much protocol designers plan,
they are not able to predict all possible features a proto-
col should have. One good example is IP evolution. IP
designers predicted that IP’s (IPv4) address space would
likely last for several more decades. Now we know this
is not the case and to fix that limitation, IPv6 was born.
Given that the Internet became a complex, intricate com-
munication infrastructure whose uninterrupted operation
is critical, deployment and compatibility with IPv4 are the
big challenges faced by IPv6. Flexible protocols such as
FLIP enables application-specific optimization leading to
maximal protocol efficiency, and yet allows seamless pro-
tocol evolution.
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