
FLIP: a Flexible Protocol for Efficient Communication Between Heterogeneous
Devices

Ignacio Solis, Katia Obraczka and Julio Marcos
Information Sciences Institute, University of Southern California�

isolis,katia � @isi.edu, jmarcos@usc.edu �

Abstract

Interconnecting heterogeneous devices, that is, devices
with varying capabilities, has raised new challenges in
the design of network protocols. This paper describes the
design of the Flexible Interconnecting Protocol, or FLIP,
whose goal is to interconnect heterogeneous devices. FLIP
is a flexible protocol that addresses the needs of heteroge-
neous networks: it incurs little overhead when run by sim-
ple devices, while still providing a range of functions that
can be performed by more sophisticated devices.

We describe a simplified implementation of FLIP un-
der Linux. We also conducted a preliminary evaluation of
FLIP’s overhead and functionality in the context of IP (IPv4
and IPv6) and sensor network environments. FLIP incurs
reasonably low overhead when providing IPv4 and IPv6
functionality (1 and 3 bytes respectively), yet it does partic-
ularly well in the case of small payloads. When compared
to a sensor-specific protocol, FLIP incurs a small overhead
increase while still providing full protocol functionality.

1. Introduction

One of the implications of “being connected anywhere,
anytime” is that networks will become more heterogeneous.
Network heterogeneity will manifest itself in terms of in-
creased diversity in communication medium technology
(such as wired, wireless, satellite, and optical links), as well
as in the types of devices networks will interconnect. We
envision that the Internet of the future will interconnect not
only traditional desktop and laptop computers, but also un-
conventional devices such as sensors, actuators, and home
appliances. These unconventional devices, whose power,
processing, and communication capabilities differ widely,
will form network clouds, which will be interconnected
among themselves and with the existing IP infrastructure.

�
The authors have since moved and can now be reached at�

isolis,katia � @cse.ucsc.edu and julio@donjulio.net

While many of the Internet protocols have proven suc-
cessful and long-lived in traditional networks, they were
not designed to accommodate the degree of device hetero-
geneity that will characterize future internets. Consider IP
(and both its instances, i.e., IPv4 [7] and IPv6 [13]). We
argue that it adds unnecessary and sometimes prohibitive
amount of complexity and overhead, especially in the case
of limited-capability devices. More recently, motivated by
research programs and projects on sensor networks, sensor
manufacturers have implemented protocols specifically tai-
lored for sensing devices. Because they are so specialized,
these protocols will not be able to accommodate more so-
phisticated and powerful devices.

In this paper, we describe the design and implemen-
tation of a network-layer protocol whose main goal is
to accommodate devices with varying power, processing,
and communication capabilities. The proposed protocol,
Flexible Interconnecting Protocol, or FLIP, will operate
among devices in the farthest branches/leaves of an in-
tranet while providing inter-network connectivity with other
clouds and with the existing IP-based Internet infrastruc-
ture. To achieve its main design goals of flexibility and effi-
ciency, FLIP’s overhead (both in terms of per-packet over-
head and protocol complexity) is dependent on the capabil-
ities of the particular device running FLIP and the function-
ality needed by the application. For anemic devices, FLIP’s
close to optimal overhead not only saves bandwidth, but,
more importantly, energy.

Figure 1 shows FLIP’s position in the protocol stack.
FLIP is designed to run atop a data link layer protocol
(such as IEEE 802.11 [17]) and provide functionality all the
way up to the application layer, replacing the functional-
ity of network and transport protocols. The FLIP layer can
be very “thin”, which means that FLIP provides minimum
functionality; this is the case of the version of FLIP that
very simple devices like sensors would run. On the other
hand, FLIP could provide functionality (or a subset thereof)
of a “heavy-duty” transport protocol like TCP. It is the ap-
plication designer’s choice what services are required and
should be included in FLIP. FLIP can also run underneath



any transport- or even network-layer protocol.

Application

FLIP

Network

Data Link

Network

FLIP

Data Link

Application

Transport

Data Link

FLIP

Application

Figure 1. FLIP in the protocol stack.

The remainder of this paper is organized as follows. In
the next section we highlight the main principles that guided
the design of FLIP. Section 3 describes FLIP’s protocol
specification, including FLIP’s header fields. In Sections 4
and 5, we present our implementation of FLIP and results
of a preliminary evaluation of the protocol, respectively.
Section 6 describes related work and Section 7 presents
concluding remarks and our future work plans.

2. FLIP Design Principles

The overhead and complexity of a protocol is directly re-
lated to the functionality the protocol provides. Recall that
FLIP’s main goal is to accommodate a range of devices with
different capabilities and yet provide the functionality appli-
cations need. Thus FLIP allows application programmers
to select just the functionality they need, without incurring
the overhead associated with functions they do not need.
Furthermore, the ability to select a subset of protocol func-
tions allows FLIP to accommodate a range of devices from
very simple sensors to desktop computers. For instance,
if the application needs packets to age, then the applica-
tion programmer can ”turn on” FLIP’s Time-To-Live (TTL)
field (we describe FLIP’s TTL and other fields in Section 3
below) and assign its maximum value. At each hop, the
packet’s TTL value will be examined and in the case it is
greater than the maximum value, the packet will be dis-
carded. If not, the node increments the TTL and forwards
the packet. Users can also “turn on” the length field, whose
value will be calculated as part of composing a packet.

In its simplest form, FLIP does not even provide routing
as in some scenarios FLIP can be used, routing is done by
the application which uses special information such as ge-
ographic positioning or power conservation. Some of these
scenarios may use small, very simple devices which would
only be encumbered with routing: these are just end de-
vices and do not have the required capabilities to perform
the routing function effectively. End-to-end reliability and
ordering are not included in FLIP’s simplest form.

A more complete version of FLIP could provide similar
functionality to TCP/IP. Applications could, however, dis-
able requirements such as ordered delivery while keeping
reliable delivery.

3. Protocol Description

Recall that FLIP’s main design goals are flexibility and
efficiency. To achieve these goals, FLIP makes use of ex-
tensible headers, which allows customization of the header
fields as a function of the underlying device and the target
application. Thus FLIP’s extensible headers allow near op-
timum power, bandwidth, and processing overhead by ex-
cluding unneeded information.

FLIP packets are composed of a meta-header, the header
fields and the payload. The meta-header indicates which
header fields are included in the packet and consists of an
array of bits, or a bitmap. If a header field is included in
the packet, then the corresponding bit in the meta-header is
one, otherwise, it is set to zero.

In order to minimize the bitmap’s overhead, we split it
into one-byte pieces. Each byte contains a continuation bit
that indicates if more bitmap pieces follow. Figure 2 shows
an example of the FLIP meta header. Note that the continu-
ation bit is the first bit of each byte. This ensures that, in the
2-byte version of FLIP’s extra simple packet (ESP) (FLIP’s
ESP mode will be described below), the payload occupies
contiguous bits.

0 0 0 0 00 0

Continuation bit

Bitmap

0 0 0 0 00 0

Continuation bit

Bitmap

1 1

Figure 2. FLIP Meta Headers

Consider a scenario that only requires the length field,
whose presence bit lies in the first byte of the meta-header.
Then, the packet will only have to carry the first byte of the
meta-header, which will have the bit corresponding to the
length field on, and the others, including the continuation
bit, off.

In some cases, the target application need only send
small amounts of data every time with no header. Sensor
network environments are a good example of such a sce-
nario: sensors simply broadcast data related to what they
are sensing. In these cases, even a 1-byte meta-header to
indicate that no header is needed is a lot. For instance, if
sensors broadcast 1-byte data, then 1-byte headers results
in 50% overhead, which is often too high.

To address these scenarios, FLIP offers the extra simple
packet, or ESP. The second bit of the meta-header, that is,
the one following the continuation bit in the first byte, is
the ESP bit. If this bit is set, it indicates an ESP. The use
of the continuation bit in the ESP allows for 1- and 2-bytes
ESPs. While a 1-byte ESP, that is, one with the continuation
bit off, contains 6 data bits, a 2-byte ESP allows for 14 bits
of data (all the 8 bits of the second byte will be counted as
data). Figure 3 depicts both ESP cases.



0 0 0 0 00 00 0 0 00 0

DataESP bit

0 0 0 00 01

1 11

0

Figure 3. Extra Simple Packet (ESP)

FLIP’s ESP addresses the need for a “barebone” proto-
col, which will be used by applications that need to send
small pieces of data with no overhead. FLIP’s regular meta-
header bitmap covers the more general cases where some
fields are required and some are not, thus optimizing aver-
age use.

As shown in Figure 4, FLIP’s current meta-header
bitmap spans 3 bytes, including three continuation bits and
the ESP bit. The last portion is still undefined since not all
uses have been considered. Defining the missing fields is an
item we will address as part of our future work on FLIP.

Continuation bit
Source bits

CRC bit
Undefined

Continuation bit
Undefined

0 0 0 0 00 0

0 0 0 0 00 0

Destination bits

Continuation bit
ESP bit
Version bit

Length bit
TTL bit
Flow bit

0 0 0 0 00 0

Protocol bit

1

1

1

Figure 4. The FLIP meta header bitmap

A sample of a complete FLIP packet can be seen in Fig-
ure 5. The shaded area is the header and rest is the payload.
The definitions of the FLIP header fields are given below.
The ordering of the fields was determined so as to optimize
packet overhead for very simple applications and devices.
More complex devices and applications can normally amor-
tize the cost of having more meta-header bytes.

1

32 bits

Version Destination

Length Data

Data

0 0 00 01 1

Figure 5. FLIP sample packet

� Version is 1 byte in length, The 4 higher order bits
are considered the version field. The current version
is version 0. The 4 lower order bits are considered the
priority field. If a packet lacks the version field, it’s
considered version 0 and priority 0.

� Destination is a variable-length field. The correspond-
ing bitmap field is composed of 2 bits, whose value de-
termines the size of the field. If the bitmap bits are set
to:

–
���

indicates the destination field is not present.

–
���

indicates we have a destination field of 2 bytes
in length carrying a FLIP address.

–
���

indicates it is a 4-byte field

–
���

indicates the field is 16 bytes in length.

It is no coincidence that this matches IPv4 [7] and IPv6
[13] addresses.

� Length is two bytes in length, which means that the
maximum packet size is limited to 64 KBytes.

� Time to Live (TTL) is one byte in length and is inter-
preted by the application. It can be used to limit the
scope of a packet.

� Flow is four bytes in length. As the name implies, this
field is intended for flow identification.

� Source is a variable-length field and its length is de-
termined by 2 bits in the meta-header exactly the same
way as the destination field.

� Protocol is one byte in length and indicates the proto-
col type. This refers to the same field in IPv4 or next
header in IPv6.

� Checksum is two bytes in length and checks the
packet payload. It is calculated similarly to the IP
Checksum.

For increased flexibility, FLIP also allows for user-
defined header fields. If the continuation bit of the third
meta-header byte is set, it indicates that user-defined header
fields are included in the packet. Each user header field def-
inition is one byte in length. The first bit, as usual, is the
continuation bit, the remaining 7 bits are defined and inter-
preted by the application.

An example of a user-defined field would be geographic
positioning, latitude and longitude. A host might use this in-
formation for packet processing or routing, but it might not
be directly related to application level. Another example
might be a minimum power field. In a sensor network envi-
ronment it might be useful to determine the power (lifetime)
of a certain route, and this might be done by using such a
field.

One could argue that these user-defined header fields
stretch the line between what should be in the header versus
the payload. In other words, FLIP’s user-header fields could
be seen as protocol layering violation. However, we claim
that, when networking in heterogeneous environments, the
device layer need to be more exposed to the application de-
veloper.



4. Implementation

As proof of concept, we implemented a barebone version
of FLIP in the Linux 2.3 kernel. We generated a patch for
the kernel which allows the inclusion of FLIP at compile
time or as a loadable module. Linux is making its way into
devices of various kinds and capabilities; having a Linux
implementation of FLIP will allow us to conduct live exper-
iments in heterogeneous environments.

Below the FLIP code lies the device code, specifi-
cally the device output/input queues, through which FLIP
sends/receives data. When data is received, the receiving
device passes it to the FLIP layer which queues the data on
the corresponding socket.

FLIP uses the BSD socket abstraction to interface with
applications. In order to send and receive data using FLIP,
application programmers will use the same set of socket
system calls they would use to handle TCP/IP communi-
cation endpoints. For instance, to create a FLIP socket, all
they have to do is request a socket of family AF FLIP.

char* buf = "Hello World";
__u16 addr;

s = socket(AF_FLIP,SOCK_RAW,FLIP_NO_ESP);
addr = htons(1000);
setsockopt(s,SOL_FLIP,FLIPO_DESTINATION,

&addr,sizeof(addr));
write(s, buf, strlen(buf));

Figure 6. Sample application code

Figure 6 illustrates the FLIP API. In this example, a
FLIP socket of type SOCK RAW (allowing the programmer
to modify most of the fields) is defined. The CAP NET RAW
capability is required to use the socket if capabilities are
being used. FLIP sockets will eventually be able to sup-
port datagram and stream once transport layer functionality
is implemented. Socket’s last parameter is used to se-
lect ESP or non-ESP mode. With the current implementa-
tion, the programmer cannot change the ESP mode once the
socket is created.

The programmer can then use setsockopt() to set
the necessary header fields. For instance, address fields
(source and destination) identify a given communication
end-point. If a socket is assigned an address, that socket
will only receive packets with that address in the destina-
tion field. The address of a FLIP traffic source is set through
the FLIPO SOURCE option. If no address is assigned to a
socket, FLIP will not set the source address on outgoing
packets from that socket.

Since ESP packets have no headers, and thus no desti-
nation or source addresses specified, ESP sockets always
get all packets. In this example, the destination field is

defined as a 16-bit FLIP destination and is set with the
FLIPO DESTINATION option.

The getsockopt() call is used to read header defini-
tions for a certain socket, as well as to read the header fields
of incoming packets on that socket. As previously pointed
out, to achieve flexibility and efficiency, our design exposes
the network layer to the application programmer.

In order to speed up packet header construction, we
cache header information for every socket that has been de-
fined. Dynamic header fields, which change from packet
to packet, are computed on the fly before the packet is
sent. Packet length and checksum are examples of dynamic
header fields.

In the current implementation, we use Ethernet as the
MAC layer protocol. Like RF wireless access, Ethernet as-
sumes a shared broadcast medium. A unique protocol num-
ber was selected as Ethernet’s next protocol field. Using
Ethernet as the underlying MAC protocol means that FLIP
packets must be at least the size of the minimum Ethernet
payload. Consequently, in this implementation, we cannot
take full advantage of FLIP’s ESP mode.

Furthermore, accurate evaluation of FLIP’s power re-
quirements cannot be conducted with the current wired im-
plementation. A comparison between the power require-
ments of FLIP and other protocols is an item in our future
work list.

5. Evaluation

In this section we present a preliminary evaluation of
FLIP. We compare its functionality and overhead with a
more “traditional” protocol, namely IP. We then evaluate
how FLIP integrates into an IP environment. We also eval-
uate FLIP in the context of a sensor network environment.

5.1. FLIP and IP

We should point out that both FLIP and IP were designed
to address different goals and target environments. Thus
comparing them is not really fair to either. While the IP
layer provides a fixed set of functions, FLIP’s functionality
and overhead are application-dependent. In other words, the
application determines which fields are to be included in the
FLIP packet header. Therefore, applications send just what
they need, avoiding the cost of transmitting and processing
unnecessary information.

Take for example an application that sends out data in
1000-byte chunks. Using IPv4, the overhead would be 20
bytes (corresponding to the IPv4 header), which is not a
lot relative to the payload. However, if hosts are just send-
ing 1-byte heartbeat messages (e.g., either their address or
some form of identification), then 20 bytes of header would



Table 1. Packet size comparison
Data none 1 byte 1000 bytes

IPv4 IPv6 FLIP IPv4 IPv6 FLIP IPv4 IPv6 FLIP

IPv4 functions 20 N/A 21 21 (2000%) N/A 22 (2100%) 1020 (2%) N/A 1021 (2.1%)
IPv6 functions N/A 40 43 N/A 41 (4000%) 44 (4300%) N/A 1040 (4%) 1043 (4.3%)
Dest. & Source 20 40 10 21 (2000%) 41 (4000%) 11 (1000%) 1020 (2%) 1040 (4%) 1010 (1%)
Dest. only 20 40 3 21 (2000%) 41 (4000%) 4 (300%) 1020 (2%) 1040 (4%) 1003 (0.3%)

seem unacceptable. Fields such as fragmentation informa-
tion, ToS, or even packet length (in the case of fixed-size
packets) would be adding unnecessary overhead and wast-
ing network, and even more importantly, device resources
(such as power). If IPv4 is used, the message would be
21 bytes long, where only 1 byte is payload. The corre-
sponding FLIP packet would come down to 7 bytes: 2 meta-
header bytes, 4-byte address, and 1-byte heartbeat, which
results in a 200% increase in efficiency. If MAC addresses
can be used for host identification and the data can fit in 6
bits (instead of 1 byte), the resulting FLIP packet will be
only 1 byte long.

When comparing the functionality of the two protocols,
we need to examine the issue of header compatibility. IP
header fields are easily mapped into FLIP fields. Indeed,
FLIP was designed with IP-compatibility in mind. Clear ex-
amples of FLIP-IP compatibility are the 2-, 4-, and 16-byte
address fields that accommodate IPv4 and IPv6 addresses.

FLIP is fully compatible with IPv6. To emulate it’s func-
tionality the higher layers would select version, flow, length,
protocol (for next header), TTL (for hop limit) and 128 bit
addresses for source and destination. The overhead of us-
ing FLIP instead of IPv6 is three bytes: two bytes from the
meta-header and one extra flow id byte (FLIP’s flow id is
4 bytes long while IPv6’s is only 3). This additional over-
head is relatively low: it results in only 7.5% header size
increase.

If we want to achieve full IPv4 compatibility however,
we need to assign a slightly different meaning to the flow
field. FLIP allows this since it can be tightly integrated with
the higher layers. For IPv4 emulation we would choose the
same fields as IPv6 plus Checksum. The flow field would
be considered as IPv4’s id + fragment information, which
accommodates into 4 bytes. Even the IPv4 options can be
included in the user defined fields. Without these fields, and
taking a look at only the normal 20 byte IPv4 header, our
overhead is 1 byte. That would be because we have 2 bytes
of meta headers, don’t have a header length field (4 bits)
and our priority field is only 4 bits compared to the IPv4’s 1
byte ToS field.

Of course if FLIP’s flexibility is not needed, then this
small increase might be unwarranted. In most situations,
devices that speak IP do not need FLIP. Gateways interfac-
ing FLIP clouds and IP networks will need to speak both.
However the main point in comparing FLIP’s and IP’s func-

tionality is to show that FLIP can be used by very simple
devices with minimum overhead, and, at the same time,
provide IP-style functionality when needed with minimum
cost.

FLIP’s main drawback, when compared to IP (or any
“fixed-header” protocol), is associated with the fact that
header parsing becomes a more involved task. Clearly,
higher header processing overhead implies that it takes
longer to forward packets. Regarding protocol implemen-
tation, communication between layers is more complicated
since now varying-size data has to be passed between lay-
ers. Furthermore, allowing users to modify protocol header
fields raises implementation correctness issues.

Table 1 shows a comparison between the use of IP and
FLIP. The columns define the payload size and the proto-
col used. The rows define the functionality expected of the
protocol. In the case of Destination and Source we mean 4
byte addresses, and in the Destination only we mean 2 byte
addresses. It might seem like an unfair comparison but we
are trying to illustrate the flexibility of FLIP. The cells show
the packet size. The number in parenthesis is the size of the
header compared to the payload.

5.2. FLIP-IP Integration

FLIP’s goal is not to replace but rather extend the scope
of IP to interconnect clouds of varying capability devices to
the existing IP infrastructure. Below, we examine different
FLIP-IP integration strategies.

One way of integrating the two protocols is through sim-
ple encapsulation. For example, in order to interconnect
FLIP-capable islands across an IP infrastructure, FLIP tun-
nels can be used. Upon leaving a FLIP cloud, FLIP packets
are encapsulated into IP datagrams by a FLIP-IP gateway.
When reaching the FLIP-capable network destination, IP-
FLIP gateways restore the original FLIP packets, stripping
off the IP envelope.

A less common scenario is to tunnel IP traffic through
FLIP networks. IP datagrams could be encapsulated in
a header indicating a “IP-in-FLIP” type and an address.
FLIP routers, upon viewing the “IP-in-FLIP” type would do
some fast path forwarding scheme, bypassing FLIP’s regu-
lar mechanisms.



5.3. Sensor Networks

Sensor networks and their applications are one of FLIP’s
key target application domains. In most sensor network sce-
narios, the goal is energy conservation as sensing devices
rely on relatively short lifetime batteries. Typically, sen-
sor network applications imply that sensors will be left on
the field unattended for extended periods of time and must
conserve energy in order to maximize the whole network’s
operational time.

Sensor devices, and implicitly sensor networks, are data
driven in the sense that the whole network cooperates on
the task of communicating data from sensors to end users.
In these kinds of scenarios, FLIP optimizes communication
among nodes by only transmitting the required information
with minimum protocol overhead. For instance, FLIP’s ESP
provides application programmers with a very lightweight
packet that can be used to coordinate between peers in ra-
dio range or send small data chunks. The inclusion or ex-
clusion of destination and source fields could determine the
scope of the data as routable or one-hop (such as a “run-
ning out of battery” or “hello” messages). FLIP’s different
address types allow proposals such as the address-free ar-
chitecture [8] to coexist with more traditional addressing
schemes.

In order to evaluate how FLIP addresses the needs of
sensor network applications, we selected as a case study the
directed diffusion architecture [1]. Directed diffusion is a
communication paradigm for sensor networks which estab-
lishes interests for specific data (e.g., number of cars that
flow through busy intersections during rush hour). Relevant
data flows towards nodes that expressed interest in named
information. Routing is done by the application, which ag-
gregates data when possible.

We examined a sample implementation of directed dif-
fusion that uses commercially available sensing nodes [14].
Sensors exchange data in the form of attribute-value pairs.
This data is transmitted using the fixed-header packet for-
mat shown in Figure 7. Notice that this protocol is com-
pletely tailored, and thus optimal, to the requirements of
directed diffusion.

Length

Sener port

Ver Type

Number of Attributes

Packet Number

Next Hop

Last Hop

32 bits 32 bits

Type Ver

Number of Attributes

Sener port

Length

Meta Header

Flow

Source

Destination

Destination

Diffusion Header Diffusion Header using FLIP

Figure 7. Diffusion header

Now consider using FLIP as the underlying network pro-

tocol for this implementation of directed diffusion. Ver-
sion information is application related, thus is carried in the
payload. This is also the case of number of attributes and
source port. Last and next hop information is carried in the
source and destination fields, respectively. Message type
and length correspond to FLIP’s protocol and length fields.
Packet number can be mapped into flow. Consequently, the
total overhead incurred by FLIP is the 2-byte meta-header.
Figure 7 shows the resulting packet, the header part being
the shaded one.

Since FLIP was not available to directed diffusion imple-
mentors, we can only speculate how FLIP could help this
diffusion implementation. FLIP definitely offers a lot more
functionality than diffusion’s current static headers. FLIP
could be used as the underlying protocol interconnecting
sensors among themselves and to other devices such as data
gatherers.

Table 2. Special situations packet size
IPv4 IPv6 FLIP

6bit data 21 (2666%) 41 (5333%) 1 (33%)
14bit data 22 (1142%) 42 (2286%) 2 (14%)

Table 2 shows a comparison between FLIP and IP for
some sample scenarios. The first column describes what is
being transmitted. This is obviously modeled after the FLIP
ESP packets. It is aimed at showing the inefficiencies of IP
in these situations. The number in parentheses is the header
overhead (compared to the size of the data).

Consider directed diffusion, whose original header is 22
bytes long. If IPv4 was used to implement directed diffu-
sion, it would incur an overhead of 9 bytes, and would have
to carry packet number information in the payload. In the
case of IPv6, the overhead would increase to 29 bytes. If
FLIP was to be used, the overhead would be only 2 bytes.

We anticipate that the benefits of using FLIP will be ev-
ident in scenarios where varying-capability devices need to
be interconnected. For instance, in a sensor network using
FLIP as the interconnection protocol, sensors can save con-
siderable resources (especially power) by using FLIP’s ESP,
yet they can still communicate with more sophisticated de-
vices, such as data gatherers.

6. Related Work

Communication protocols for wireless networks have
been an active research area with efforts like Packet Ra-
dio [18], GloMo [2] and the IETF’s Mobile Ad-hoc Net-
works (manet) working group [6]. Recently, some research
has turned to embedded systems and sensor networks. To
our knowledge, FLIP is the only initiative to develop a pro-
tocol to interconnect heterogeneous devices. Almeroth et



al. [10] introduced the main concepts behind FLIP.
The SCADDS [15] project has done research in sensor

networks, developing the Directed Diffusion [1] architec-
ture. The Dynamic Sensor Networks [16] is also in the area
trying to take advantage of GPS. The WINS [5] project de-
scribes a basic sensor network environment. Piconet [3] has
deals with a low-range radio network.

Also related to this research is network header compres-
sion. Work has been done before [9, 12, 11, 4] and normally
focuses on TCP/IP and improving performance.

7. Conclusion and Future Work

This paper described the design and implementation of
FLIP, a network protocol whose goal is to accommodate
varying capability devices. FLIP uses customizable head-
ers to satisfy, with minimal overhead, the requirements of
a wide-range of applications and devices. We implemented
FLIP under Linux and used the BSD socket abstraction to
make FLIP available to application programmers.

We conducted a preliminary evaluation of FLIP compar-
ing its overhead and functionality with IP (IPv4 and IPv6)
having an small overhead (1 and 3 bytes respectively) for
normal IP situations. We showed that the overhead of the
header could be greatly reduced in situations that demand
less functions than those offered by conventional IP, spe-
cially with small payloads. We also evaluated FLIP in the
context of sensor network environments, where a small in-
crement in the overhead can provide a protocol with com-
plete flexibility.

This work on FLIP helped us identify several directions
we plan to explore. First, we plan to complete the design
of FLIP, including (1) FLIP’s complete header specification
and (2) design and specification of other components of the
FLIP layer, such as routing, and transport layer functional-
ity (e.g., reliable/ordered delivery).

In completing FLIP’s design, we plan to address the
needs of current and future applications. The current meta-
header bitmap has been defined to provide IP-like function-
ality in an efficient way, minimizing unneeded fields. The
current design also tries to minimize protocol overhead in
the case of very simple devices such as sensors. The ques-
tion is then what will be the requirements of applications to
come? FLIP’s inherent flexibility will allow it to evolve and
adjust to applications’ needs. Issues that we will need to in-
vestigate include: what is the adequate bitmap size and what
is the role of header field ordering on FLIP’s efficiency.

Embedded device technology evolution will also influ-
ence FLIP. If future devices are reasonably powerful in
terms of processing and storage capabilities, the FLIP stack
itself will not need to be heavily optimized in terms of pro-
cessing overhead. Optimizing transmission overhead (in or-
der to conserve energy) will likely be the main goal.

Another direction we plan to explore is how FLIP can be
integrated with different MAC protocols. We believe that
exposing the MAC and physical layers will greatly increase
FLIP’s efficiency. For instance, if the underlying MAC pro-
tocol provides integrity check, we may not need to verify
packet integrity at the FLIP layer.

References

[1] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In 6th International Conference on Mo-
bile Computing and Networking (MobiCom). ACM, August
2000.

[2] DARPA. http://www.darpa.mil/ito/solicitations/glomo/ glo-
mobrief.html, February 1995.

[3] F. Benner, D. Clarke, J. Evans, A. Hopper, A. Jones and
D. Leask. Piconet: Embedded mobile networking. IEEE
Personal Communications, 4(5):8–15, October 1997.

[4] G. Mamais, M. Markaki, M. H. Sherif and G. Stassinopou-
los. Evaluation of the casner-jacobson algorithm for com-
pressing the RTP/UDP/IP headers. In ICSS98, June 1998.

[5] G. Pottie and W. Kaiser. Wireless integrated network sen-
sors. Communications of the ACM, 43, Issue 5, May 2000.

[6] IETF. http://www.ietf.org/html.charters/manet-charter.html,
July 2000.

[7] J. B. Postel. Internet Protocol, RFC-791, September 1981.
[8] J. Elson and D. Estrin. An address-free architecture for dy-

namic sensor networks. Technical Report 00-724, Computer
Science Department USC, January 2000.

[9] J. Lilley, J. Yang, H. Balakrishnan and S. Seshan. A unified
header compression framework for low-bandwidth links.
In 6th International Conference on Mobile Computing and
Networking (MobiCom). ACM, August 2000.

[10] K. Almeroth, K. Obraczka and D. De Lucia. A lightweigth
protocol for interconnecting heterogeneous devices in dy-
namic environments. In International Conference on Multi-
media Computing and Systems (ICMCS). IEEE, June 1999.

[11] M. Degermark, B. Nordgren, S. Pink. IP header compres-
sion, RFC-2507, February 1999.

[12] M. Degermark, M. Engan, B. Norgreen and S. Pink. Low-
loss TCP/IP header compression for wireless networks. In
International Conference on Mobile Computing and Net-
working (MobiCom). ACM, November 1996.

[13] S. E. Deering and R. Hinden. Internet Protocol, version 6
(IPv6) specification, RFC-1883, December 1995.

[14] Sensoria Corporation. http://www.sensoria.com/, August
2000.

[15] USC/ISI. http://www.isi.edu/scadds/, May 2000.
[16] USC/ISI, UCLA, Virginia Tech. Dynamic sensor networks

(dsn), http://www.east.isi.edu/div10/dsn/, August 2000.
[17] V. Hayes. IEEE standard for wireless LAN medium access

control and physical layer specifications. Technical Report
802.11-1997, IEEE, June 1997.

[18] Packet radio topics in professional journals,
http://www.tapr.org/tapr/html/biblio.html, August 2000.


