
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

ENERGY CONSUMPTION TRADE-OFFS IN POWER CONSTRAINED
NETWORKS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Cı́ntia Borges Margi

June 2006

The Dissertation of Cı́ntia Borges Margi
is approved:

Professor Katia Obraczka, Chair

Professor Roberto Manduchi

Professor Scott A. Brandt

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c© by

Cı́ntia Borges Margi

2006

Table of Contents

List of Figures vi

List of Tables viii

Abstract xii

Acknowledgments xv

Dedication xvi

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Problem Statement . 6
1.3 Contributions . 7
1.4 Publications . 8
1.5 Thesis Outline . 9

2 An Energy Model for Communications 10
2.1 Introduction . 10
2.2 Related Work . 13

2.2.1 Energy models and energy consumption in Network Interfaces 13
2.2.2 Network simulators . 17
2.2.3 Power-aware MAC protocols . 19
2.2.4 Multi-hop ad-hoc networks routing protocols 20

2.3 Energy consumption instrumentation . 21
2.3.1 Description . 22
2.3.2 Implementation . 23

2.4 Validation . 25
2.4.1 Instrumented versus original GloMoSim/QualNet 25
2.4.2 Analytical versus simulation results 27
2.4.3 S-MAC testbed versus simulation . 32

2.5 Protocol comparison . 34

iii

2.5.1 MAC Protocols . 34
2.5.2 Routing Protocols . 36

2.6 Evaluation of an analytical model to predict energy consumption in single-hop
IEEE 802.11 ad hoc networks . 38
2.6.1 Energy-Aware Model . 38
2.6.2 Model Validation and Performance Analysis 45

2.7 Conclusions . 50

3 Energy Consumption Characterization of Wireless Platforms 52
3.1 Introduction . 52
3.2 Characterizing System Level Energy Consumption in Mobile Computing Plat-

forms . 55
3.2.1 Background . 56
3.2.2 Energy Consumption Benchmark . 57
3.2.3 Measurements . 58
3.2.4 Case Study: Dell Latitude C600 . 59
3.2.5 Discussion . 67

3.3 Characterizing Energy Consumption in a Visual Sensor Network Testbed . . . 68
3.3.1 The Meerkats Testbed . 69
3.3.2 Methodology . 75
3.3.3 Steady-state Results . 79
3.3.4 Transients Results . 81

3.4 In-system Energy Consumption Monitoring 87
3.4.1 DS2438 Battery Monitor . 87
3.4.2 Kernel Modules and Interface . 90
3.4.3 Battery Monitoring Performance Validation 91

3.5 Related Work . 96
3.6 Conclusions . 100

4 Duty Cycle Modeling by Task Composition 102
4.1 Introduction . 103
4.2 The Model . 107
4.3 Elementary Tasks . 107
4.4 Duty Cycle Energy Consumption Analysis . 113

4.4.1 Measurement Setup . 115
4.4.2 Deterministic Duty Cycles . 115
4.4.3 Conditional Duty Cycles . 120

4.5 Discussion . 126
4.5.1 Duration Issues . 127
4.5.2 Adjusting the Model . 130
4.5.3 Another Approach . 135
4.5.4 Lessons Learned . 137

4.6 Related Work . 139

iv

4.7 Conclusions . 140

5 Visual Sensor Node Lifetime Experiments and Prediction 142
5.1 Introduction . 142
5.2 Node Lifetime Experiments . 143

5.2.1 Deterministic Duty Cycles . 145
5.2.2 Conditional Duty Cycles . 146
5.2.3 Battery Experiments . 150

5.3 Lifetime Prediction for Deterministic Duty Cycles 153
5.4 Lifetime Prediction for Conditional Duty Cycles 156
5.5 Applying Duty Cycle Prediction to the Meerkats Testbed 158

5.5.1 Duty Cycle Feasibility . 160
5.5.2 Meerkats node lifetime prediction . 162

5.6 Conclusions . 167

6 Conclusions 169
6.1 Future Directions . 172

Bibliography 174

v

List of Figures

2.1 State diagram for radio modes . 22
2.2 (a) Three-node topology and (b) Five-node topology used in validation. 26
2.3 Measured energy consumption for S-MAC. Results reproduced from [84]. . . . 33
2.4 Simulations results for S-MAC energy consumption using instrumented Glo-

MoSim / QualNet. 34
2.5 Simulation results for S-MAC and 802.11 using instrumented GloMoSim. . . . 35
2.6 Simulation results for AODV and DSR using instrumented GloMoSim. 37
2.7 Per-node average energy consumption versus network size for a 1472-byte pay-

load. 47
2.8 Per-node average energy consumption versus network size for a 20-byte payload. 48
2.9 Energy efficiency per bit versus network size for 20-byte and 1472-byte payloads. 50
2.10 Energy consumption from the analytical model for different power settings. . . 51

3.1 Discharge Rate for Dell C600 with Linux Debian: (a) baseline, (b) processing
task (c) disk write, (d) disk read, (e) network transmission, (f) network reception 61

3.2 Battery discharge rate for Dell C600 with Linux Debian and display on: (a)
baseline, (b) processing . 64

3.3 Battery Discharge Rate for (a) Combo 1, (b) Combo 2 and (c) Combo 3, all on
Dell C600. 66

3.4 Visual sensing node in the Meerkats testbed 70
3.5 Meerkats software organization . 72
3.6 Measurements setup . 77
3.7 Steady-state current draw in the Meerkats node 81
3.8 Transients from complete system to suspend wireless card, suspend webcam,

and switch board to sleep state; then, wake up board, reload webcam, resume
wireless card and start tx. 82

3.9 Tasks involved when acquiring an image. 83
3.10 Charge consumed by transitions from idle to sleep and back to idle of the Pro-

cessing/Sensing Core. 86
3.11 Battery monitor connection diagram. Voltage across the shunt resistor is mea-

sured by Vsens+ and Vsens−. Current can be determined using V = I ×R. . . . 88

vi

3.12 Current (in Amperes) measured with DMM with and without batread running,
and batread results. The results apply to the Processing/Sensing/Communication
Core). 93

3.13 Current being drained by Processing Core when FFT is being executed. 94
3.14 Current being drained by Processing Core when batread is monitoring the sys-

tem at 1 Hertz and FFT is being executed. 94

4.1 Elementary task sequences of duty cycle (a). 116
4.2 Elementary task sequences of duty cycle (b). 117
4.3 Elementary task sequences of duty cycle (c). 118
4.4 Temporal profile of current drawn in one cycle of duty cycle (b). 119
4.5 Elementary task sequences of duty cycle (d). 122
4.6 Elementary task sequences of duty cycle (e). 123
4.7 Elementary task sequences of duty cycle (f). 124
4.8 Temporal profile of current drawn during a cycle of duty cycle type (d) when

no event is detected. 124

5.1 Voltage profile for discharge of a Lithium-Ion battery. 151
5.2 The predicted lifetime (in seconds) for a Meerkats’ node running conditional

duty cycles. 166
5.3 The break-even point for conditional duty cycles (d) and (e). 167

vii

List of Tables

2.1 Total energy consumption in original versus instrumented GloMoSim/QualNet. 26
2.2 Packets transmitted and received per node for 802.11. 28
2.3 Analytical model: time spent in each relevant state for 802.11. 28
2.4 Simulation: time spent in each relevant state for 802.11. 29
2.5 Packets transmitted and received per node for S-MAC. 30
2.6 Analytical model: time spent in each relevant state for S-MAC. 31
2.7 Simulation: time spent in each relevant state for S-MAC. 31
2.8 Time spent in each state for 1sec message inter-arrival time. 36
2.9 Time spent in each state for 1sec message inter-arrival time. 37
2.10 Simulation parameters . 46

3.1 Mean discharge rate for each task on Dell C600 60
3.2 Mean discharge rate for basic tasks with display on on Dell C600 with Linux

Debian . 65
3.3 Mean discharge rate for combination of tasks on Dell C600 running Linux Debian 67
3.4 Average current (over five runs) in milli-Amperes and standard deviation drawn

by the Meerkats’ node. 80
3.5 Transition durations in milli-seconds (average and standard deviation calculated

over twenty different runs). 84
3.6 Time to execute software associated with transitions. 85
3.7 Charge in milli-Coulombs (average and standard deviation calculated over twenty

runs) required for transitions. 86
3.8 Current (in milli-Amperes) obtained with batread. 91
3.9 Current, in milli-Amperes, measured with DMM while batread was running

(average and standard deviation calculated over five runs). 92
3.10 Charge (in milli-Coulombs) obtained with DMM and batmon. 95

4.1 Incremental charge drawn (in milli-Coulombs) and duration (in milli-seconds)
for the elementary tasks considered. Average values and standard deviations
were computed over twenty runs. 110

viii

4.2 Incremental charge drawn (in milli-Coulombs) and duration (in seconds) for
different combinations of image acquisition and transmission related elemen-
tary tasks. 112

4.3 Predicted and measured (averaged over twenty tests) charge drawn during the
cycle are shown in the table below, along with the relative prediction errors. . . 116

4.4 Predicted and measured (averaged over twenty tests) cycle durations are shown
in the table below, along with the relative prediction errors. 117

4.5 Predicted and measured (averaged over twenty tests) charge drawn during the
cycle are shown in the table below, along with the relative prediction errors.
Note that the event detection branches in duty cycles (d) and (e) are the same,
and thus values are omitted in this table. 125

4.6 Predicted and measured (averaged over twenty tests) cycle durations are shown
in the table below, along with the relative prediction errors. Note that the event
detection branches in duty cycles (d) and (e) are the same, and thus values are
omitted in this table. 125

4.7 OS and measured duration (in milli-seconds) for the elementary tasks consid-
ered. Average values and standard deviations were computed over twenty runs. 128

4.8 Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction with wireless card and webcam activation corrected times are shown
in the table below, along with the relative errors (Ed) for the original and ad-
justed predictions. Note that the event detection branches in duty cycles (d) and
(e) are the same, and thus values are omitted in this table. 132

4.9 Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction with sleep period corrected times are shown in the table below, along
with the relative errors (Ed) for the original and adjusted predictions. 132

4.10 Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction with idle period corrected times are shown in the table below, along
with the relative errors (Ed) for the original and adjusted predictions. Note that
the event detection branches in duty cycles (d) and (e) are the same, and thus
values are omitted in this table. 133

4.11 Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction affected by the wireless card and webcam activation as well as the
sleep and idle periods simultaneously are shown in the table below, along with
the relative errors (Ed) for the original and adjusted predictions. Note that the
event detection branches in duty cycles (d) and (e) are the same, and thus values
are omitted in this table. 134

4.12 Duty cycle charge: measurements (averaged over twenty tests) and adjusted
prediction affected by the wireless card and webcam activation as well as the
sleep and idle periods simultaneously are shown in the table below, along with
the relative errors (Ed) for the original and adjusted predictions. Note that the
event detection branches in duty cycles (d) and (e) are the same, and thus values
are omitted in this table. 134

ix

4.13 Duty cycle durations: measurements (averaged over twenty tests) and OS-time
based prediction are shown in the table below, along with the relative errors
(Ed) for the original and OS-time predictions. Note that the event detection
branches in duty cycles (d) and (e) are the same, and thus values are omitted in
this table. 136

4.14 Duty cycle charge: measurements (averaged over twenty tests) and OS-time
based prediction are shown in the table below, along with the relative errors
(Ed) for the original and OS-time predictions. Note that the event detection
branches in duty cycles (d) and (e) are the same, and thus values are omitted in
this table. 136

4.15 Summary of relative errors (Ed) for the original, adjusted and OS-time predic-
tions for duty cycle duration. Note that the event detection branches in duty
cycles (d) and (e) are the same, and thus values are omitted in this table. 138

4.16 Summary of relative errors (Ed) for the original, adjusted and OS-time predic-
tions for duty cycle charge. Note that the event detection branches in duty cycles
(d) and (e) are the same, and thus values are omitted in this table. 138

5.1 The average duration of the experiment for deterministic duty cycles. We ex-
ecuted 10 runs of each experiment, and results presented are the average and
standard deviation. 145

5.2 The average charge used by the experiment for deterministic duty cycles, as well
as the charge obtained through batmon DCA register and their relative error. We
executed 10 runs of each experiment, and results presented are the average and
standard deviation. 146

5.3 The average duration of the experiment for conditional duty cycles. We ex-
ecuted 10 runs of each experiment, and results presented are the average and
standard deviation over all 10 trials. 147

5.4 The average charge used by the experiment for conditional duty cycles, as well
as the charge obtained through batmon DCA register and their relative error.
We executed 10 runs of each experiment, and results presented are the average
and standard deviation over all 10 trials. 147

5.5 The average number of total cycles during the experiment duration, as well
as the number of cycles with and without events detected for conditional duty
cycles. We executed 10 runs of each experiment, and results presented are the
average and standard deviation over all 10 trials. 148

5.6 The number of total cycles during the experiment duration, as well as the num-
ber of cycles with and without events detected for all runs of duty cycle (d). . . 149

5.7 The number of total cycles during the experiment duration, as well as the num-
ber of cycles with and without events detected for all runs of duty cycle (e). . . 149

5.8 The number of total cycles during the experiment duration, as well as the num-
ber of cycles with and without events detected for all runs of duty cycle (f). . . 150

5.9 The average measured duration and charge, as well as the charge obtained
through batmon DCA register for the battery experiments for duty cycle (d). . . 151

x

5.10 The power calculated based on charge measurements and obtained through bat-
mon DCA register for the battery experiments for duty cycle (d), as well as their
relative error. 152

5.11 The average number of total cycles during the experiment duration, as well as
the number of cycles with and without events detected for duty cycle (d) running
on a battery powered visual sensor node. 152

5.12 The charge used by one duty cycle and its duration obtained through measure-
ments, as well as the predicted number of cycles and lifetime for deterministic
duty cycles based on duty cycle measurements, and the relative error comparing
the prediction and the measurements. 155

5.13 The charge used by one duty cycle and its duration obtained by task compo-
sition, as well as the predicted number of cycles and lifetime for deterministic
duty cycles based on duty cycle original prediction, and the relative error com-
paring the prediction and the measurements. 155

5.14 The charge used by one duty cycle and its duration obtained through adjusted
task composition, as well as the predicted number of cycles and lifetime for de-
terministic duty cycles based on duty cycle adjusted prediction, and the relative
error comparing the prediction and the measurements. 156

5.15 The predicted number of cycles and lifetime for conditional duty cycles based
on duty cycle measurements, as well as the relative error comparing the predic-
tion and the measurements. 157

5.16 The predicted number of cycles and lifetime for conditional duty cycles based
on duty cycle original prediction, as well as the relative error comparing the
prediction and the measurements. 157

5.17 The predicted number of cycles and lifetime for conditional duty cycles based
on duty cycle adjusted prediction, as well as the relative error comparing the
prediction and the measurements. 158

5.18 The sum of the duration of the elementary tasks involved in a given duty cycle,
and the idle/sleep period allowed for a given duty cycle duration. Note that duty
cycle (d) and (e) when an event is detected are the same, and thus only one is
shown here. 161

5.19 The charge associated with the duty cycles for given duration. Note that duty
cycle (d) and (e) when an event is detected are the same, and thus only one is
shown here. 162

5.20 The predicted lifetime for a Meerkats’ node running deterministic duty cycles
for a given duration. 163

5.21 The predicted lifetime (in seconds) for a Meerkats’ node running conditional
duty cycle (d) for different durations and probabilities of detecting an event. . . 164

5.22 The predicted lifetime (in seconds) for a Meerkats’ node running conditional
duty cycle (e) for different durations and probabilities of detecting an event. . . 164

5.23 The predicted lifetime (in seconds) for a Meerkats’ node running conditional
duty cycle (f) for different durations and probabilities of detecting an event. . . 165

xi

Abstract

Energy Consumption Trade-offs in Power Constrained Networks

by

Cı́ntia Borges Margi

Wireless Sensor Networks are a valuable technology to support many applications

in different areas, such as: environmental and habitat monitoring, surveillance, indoor climate

control, structural monitoring, mapping, disaster management, and so on. Participating nodes

in these networks are inherently resource constrained, since they have limited processing ca-

pabilities, storage, communications speed and bandwidth, and mainly they have very limited

power supply. Most of current research on sensor network protocols focus on applications that

requires low sampling rate and low bandwidth, such as applications that make use of sensors

like humidity or temperature. Also, the main assumption is that communications cost dominate

in Sensor Networks. But this is not the case for all types of sensor networks. One of the most

complex scenarios is a Visual Sensor Networks (VSN), which include cameras as sensing de-

vices. This kind of sensor networks has different processing and network requirements. These

requirements are associated with the application of the visual sensor network performance (e.g.

image/video acquisition frequency, processing and transmission), but they have a huge impact

on the node lifetime.

The main goal of this work is to understand the energy consumption trade-offs be-

tween computation and communication in power constrained networks in general, and in visual

sensor networks, in particular. In order to do so, we need to evaluate and model: energy spent

to process data by sensors (e.g., how much energy vision algorithms require, etc.), as well as

energy required for communications.

The first step is to develop an accurate model for energy consumption due to com-

munications. Such energy model must be as close to reality as possible, taking into account

all radio states, i.e., energy spent not only while transmitting and receiving a packet, but also

while in idle, overhearing, or sleep modes. We have developed such a model and used it to in-

strument the QualNet and GloMoSim network simulators. We have used QualNet/GloMoSim

instrumented with our model to compare energy consumption of power-aware MAC protocols,

multi-hop ad-hoc wireless networks routing protocols, and to evaluate an analytical model of

energy consumption in single-hop IEEE 802.11 ad-hoc networks.

Next, we look at a model that also includes processing and sensing tasks, besides com-

munication. Since we were targeting power constrained networks, we had to look into a typical

platform for wireless mobile applications: a laptop. This step provided a good opportunity to

define our methodology, which determines the energy consumption of basic tasks.

From this point on, we focused on Visual Sensor Networks. We designed and imple-

mented a wireless camera network testbed, Meerkats, which is based on the Stargate platform.

We followed the same methodology developed for the laptops’ testbed to characterize the en-

ergy consumption of the Meerkats’ node. Along this work, we also extended and validate the

on-board battery monitoring capability on the Stargate.

Following this step, we tailored the tasks to the ones representative of activities carried

out by wireless camera networks targeting surveillance applications. Given this set of tasks

(which we call elementary tasks), a quantitative power consumption and temporal analysis of

set of duty cycles that apply to the Meerkats testbed was done.

Then we used what we learned from the duty cycle analysis along with a set of ex-

periments on the Meerkats testbed to understand how a framework for lifetime prediction can

be build. We proposed a simple deterministic lifetime prediction model based on task compo-

sition, which we validate using the experiments executed on the Meerkats testbed. Finally, we

consider a set of possible duty cycles given requirements for the Meerkats testbed and analyze

how they affect the node lifetime.

Acknowledgments

First and foremost I would like to thank my advisor Katia Obrazcka, for her guidance,

encouragement and support. I also would like to thank Roberto Manduchi for his efforts to

develop the Meerkats testbed and guidance in the work we did together.

I would also like to thank Carol Mullane and Jodi Rieger for their support and in-

valuable advice throughout these five years at UCSC. Also I would like to acknowledge the

contribution from David Meek and Dave Van Unen from BELS, and Cyrus Bazeghi and Steve

Petersen. I would also like to thank my colleagues and friends at the Meerkats project, and the

INRG and CCRG labs. A special thanks to Marco, Marcelo and Renato, and their wives, who

became my family here.

I would like to further thank Wilson Ruggiero, from University of São Paulo in Brazil,

for encouraging me to pursue my PhD in USA, and Glenn Langdon who encouraged me to come

to Santa Cruz.

I cannot forget to thank my parents, Michel and Cidália, and my siblings, Flávia,

Daniel and Raquel, who always supported me, even though their were thousands of miles from

here. I also have to thank Erica, Ana Beatriz, Vivian, Regina and Leandro, in Brazil, and Aline,

Linda and Ana Lucia, in Santa Cruz, for their friendship.

Last but not the least, this work would not have been possible without the support

from CNPq/Brazil, from whom I received the fellowship that allowed me to come to UCSC

and supported me here from August 2001 until August 2005. This work was also supported by

NASA, under contract NNA04CK89A.

xv

To my parents, Michel and Cidália.

xvi

Chapter 1

Introduction

1.1 Motivation and Background

Wireless Sensor Networks are a valuable technology to support countless applications

in different areas, such as: environmental and habitat monitoring, surveillance, indoor climate

control, structural monitoring, medical diagnostics, mapping, disaster management, and so on.

They can be defined as special type of multi-hop ad-hoc networks (MANETs), since they share

a number of common characteristics. MANETs are wireless networks also known as ”networks

without a network” since they do not use any fixed infrastructure. Participating nodes in these

networks are typically battery operated, and thus have access to a limited amount of energy.

Besides being power constrained, network nodes often have exhibit additional constrains, e.g.,

they typically have a limited processing, storage and communications capabilities [19].

Another interesting consideration about sensor networks is that, in several applica-

tions, once the network is deployed, it is left unattended for their whole operational lifetime.

1

Thus designing energy-aware communication protocols is critical for MANETs in general, and

for sensor networks in particular. Also, the sensing and processing tasks the node will execute

must be accounted for in the energy consumption. Thus, understanding energy consumption

due to processing and communications tasks provides knowledge to define the appropriate duty

cycle for nodes. The use of duty cycles is a common power conservation approach in sensor net-

work deployments [46,80]. This approach allows the sensor network node to alternate between

active, idle and low-power periods, thus saving energy.

Research on network protocols for sensor networks has been attracting considerable

attention from the networking research community. However, most efforts to-date focus on

developing energy-aware protocols. Notable examples of recently proposed MAC protocols in-

clude: S-MAC [84], TRAMA [61] and TMAC [81]. There are also protocols for data collection,

like diffusion [34] and SPIN [40]; data aggregation [71]; topology control [14], clustering [28],

and so on. In general, one of the main goals driving the design of these protocols is to optimize

network communications, in order to save energy and thus extend network lifetime.

Besides the communications aspects, one must also look into the computation re-

quired by sensing and data processing. Most of current research on sensor network protocols

focus on applications that require low sampling rate and low bandwidth, such as applications

that make use of sensors like humidity or temperature. The main assumption in these scenarios

is that communications cost dominate in sensor networks. But what happens when more so-

phisticated sensors are used, like accelerometers or magnetometers? Doherty et al. [20] present

three different applications, namely environmental monitoring, earthquake detection and track-

ing, each of which has a different component that dominates energy cost. In the environmental

2

monitoring scenario, the goal is to monitor environmental conditions in an office building, and

sensors include temperature, humidity and light control. Since sensor sampling rate is low and

nodes are within one hop of sink, communications dominate the energy consumption. In the

earthquake detection scenario, the frequency of oscillation at several locations throughout a

structure is monitored. To do so, 3 axis accelerometers and 3 axis magnetometers are used, and

a typical sensor sampling rate is 100 Hz. In this scenario energy costs of sensing and com-

munication are equivalent. The last scenario presented is the tracking scenario, where vehicles

are sensed and tracked in a desert in a military setting, using magnetometers, microphones and

accelerometers. Several nodes will behave only as data-forwarders. For the sensor nodes in this

scenario, sensing tasks consume more energy than communications.

Visual sensor networks (VSNs) are another example of systems employing more com-

plex sensors. i.e., cameras. This kind of sensor networks have very different requirements when

compared to sensor networks consisting of scalar sensors, such as humidity and temperature.

VSNs’ specific requirements include: (1) ability to handle flows with different priorities; (2)

ability to manage resources such as bandwidth and power; (3) ensure guaranteed delay and

delay jitter for inter-camera communication; (4) ability to route with high priority visual data

streams from cameras detecting interesting events to the final user; (5) cameras may cooper-

ate, exchanging information with specific QoS requirements; (6) knowledge of current state of

network (bandwidth, energy available on neighbors, etc); (7) and self-organization and self-

management.

Furthermore, using cameras as sensors implies that sensing (i.e., image acquisition)

and processing (i.e., image compression and analysis) are CPU-intensive tasks. Additionally,

3

computer vision algorithms might be applied to minimize the amount of data to be transfered,

or to add intelligence to the node. An intelligent visual sensor node would be able to make deci-

sions about when to track an object, when to hand off the object to a neighbor camera node in a

better position, and when and what type of data to send to the end user at sink nodes. Depending

on the amount of energy remaining on the node itself and on the network resources available,

that node might decide to send a raw video stream (or sequence of images), a compressed video

stream (or sequence of image), or some high-level representation of the object been tracked

(e.g., a byte with an object descriptor).

As we mentioned before, the use of duty cycles is a common power conservation ap-

proach in sensor network deployments. Often times, the node duty cycle is defined beforehand.

For example, in [20] node tasks are determined based on available power. Similarly, in [46] the

duty cycle of the nodes is defined based on the available energy and the expected sensor network

lifetime. In this paper, Mainwaring et al. describe the system requirements for habitat monitor-

ing and its deployment on the Great Duck Island. The expected sensor network lifetime is nine

months, which would include the seasonal changes of plants and animals to be monitored. Then

considering the energy available per day and the cost of all operations to be performed (sensors,

data transmission, maintenance tasks, and OS), the daily set of operations was determined, and

therefore its duty cycle.

Another approach is the one where the end user at the sink node will determine the

tasks a given node will execute, and thus its duty cycle. In TinyDB [45], the end user determines

the type and frequency of data that will be sensed through a SQL-like interface. It also provides

protocols that allow filtering, aggregation and routing of the data to the sink. Levis et al [42]

4

make use of Application Specific Virtual Machines(ASVM) to achieve node re-tasking. This

centralized approach is more flexible than a pre-determined duty cycle, but depends on the end

user to optimize data collection, besides incurring in network traffic overhead.

If using intelligent sensor nodes, a third approach may be used: the node itself will

determine its duty cycle, considering the application requirements (minimum and maximum

sampling rate, type of data to collect, etc), remaining energy, network status, and neighbor in-

formation. In order to implement this approach, nodes would need to obtain more information

about current battery usage, network state, and future tasks to be done. With all this information

available, sensor nodes could make their decisions on when to send data, when to turn them-

selves off, or when to collect data, and so on. To address this problem, we understand that

an energy model that takes into account communications, processing and sensing is necessary.

Such model can be used by protocols designers and sensor network designers. It can also be

used by a framework that would make decisions about sensor node activity.

Another aspect that needs to be addressed is the sensor node hardware platform. As

mentioned before, in most of current work on sensor networks protocols and architectures, com-

munication is considered the main source of energy consumption and Motes [82] are used as

the sensing devices. Motes are a good platform for sensors that do not require much processing,

such as temperature, humidity, light, or even accelerometers and magnetometers. Another ad-

vantage of the Motes platform is that its hardware is simple enough that the energy consumption

can be calculated by considering each of its components, like Doherty et al. explains in [20].

But when the sensor network platform has a more complex hardware, such as a Stargate [17], a

hand-held or a laptop, the energy consumption due to processing can not be easily calculated.

5

From our knowledge, work done on modeling energy consumption for processing is task spe-

cific. For example, Barr and Asanovic [5] used the Skiff platform, which is based on the iPAQ

hardware, to perform measurements of energy consumption in wireless Ethernet card, Stron-

gARM CPU, DRAM and Flash memory, under different compression algorithms. Also, Flinn

and Satyanarayanan [24] measured energy consumption while profiling system activity, so that

energy consumption sources could be identified, and if not in use, turned off. They also look at

data compression to optimize energy consumption.

1.2 Problem Statement

The main focus of this work is to understand the trade-offs between computation and

communication in power-constrained networks, and mainly in visual sensor networks. Since

we are targeting applications running multiple nodes that collaborate, it is important to look at

the energy consumption trade-offs not only from the perspective of an individual node, but also

consider how the tasks being executed on a particular node will affect the overall network.

In the case of the Meerkats project, this work is the basis to develop a resource man-

ager, which will use different parameters (such as event detection rate, amount of charge avail-

able on the battery, information received from neighboring nodes, etc.) to determine the se-

quence of tasks to be executed on a given node.

6

1.3 Contributions

Our main contributions which are further elaborated in the remainder of this thesis

are as follows:

• An energy model for communications, which was implemented under GloMoSim and

QualNet network simulators (code already contributed to the maintainers, and also the

GloMoSim code was made available on the webpage http://www.soe.ucsc.edu/

∼cintia/energy-glomo.html).

• Characterization of the energy consumption of two different wireless platforms, namely

a laptop and the Stargate [17].

• Extension and validation of the on-board battery monitoring capability on the Stargate,

which was contributed to the Stargate community and is available at http://www.

soe.ucsc.edu/∼cintia/batmon.html.

• Duty cycle prediction based on elementary tasks composition for a visual sensor network.

• A simple lifetime prediction model based on elementary task composition and experi-

ments on lifetime of a visual sensor network for different duty cycles.

• Analysis of the Meerkats node lifetime under different duty cycles and trade-offs.

7

1.4 Publications

• Cintia B. Margi and Katia Obraczka, ”Instrumenting Network Simulators for Evaluat-

ing Energy Consumption in Power-Aware Ad-Hoc Network Protocols”. In Proceedings

12th Annual Meeting of the IEEE/ACM International Symposium on Modeling, Analy-

sis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Volen-

dam, Netherlands, October 5-7, 2004.

• Marcelo M. Carvalho, Cintia B. Margi, Katia Obraczka, and J.J. Garcia-Luna-Aceves,

”Modeling Energy Consumption in Single-Hop IEEE 802.11 Ad Hoc Networks”. In Pro-

ceedings IEEE ICCCN 2004, Chicago, IL, October 11-13, 2004. This paper is candidate

for best paper award.

• Marcelo M. Carvalho, Cintia B. Margi, Katia Obraczka, and J.J. Garcia-Luna-Aceves,

”On the Energy Efficiency of IEEE 802.11 DCF in Single-Hop Ad Hoc Networks”. Under

submission, January 2006.

• Cintia B. Margi, Katia Obraczka, Roberto Manduchi; ”Characterizing System Level En-

ergy Consumption in Mobile Computing Platforms”. In Proceedings of the IEEE Wire-

lessCom 2005, June 13-16, 2005.

• Cintia B. Margi, Vladislav Petkov, Katia Obraczka, Roberto Manduchi; ”Characterizing

Energy Consumption in a Visual Sensor Network Testbed”. In Proceedings of the 2nd

International IEEE/Create-Net Conference on Testbeds and Research Infrastructures for

the Development of Networks and Communities (TridentCom 2006), March 1-3, 2006.

8

• Cintia B. Margi, Roberto Manduchi, Katia Obraczka; ”Energy Consumption Trade-offs

in Visual Sensor Networks”. In Proceedings of 24th Brazilian Symposium on Computer

Networks (SBRC 2006), May 29 - June 02, 2006.

• X. Lu, C. Margi, G. Stanek, G. Zhang, R. Manduchi, K. Obraczka; ”Energy-Performance

Tradeoffs in a Wireless Camera Network”. Under submission (EURASIP JES), May

2006.

• Cintia B. Margi, Katia Obraczka, Roberto Manduchi; ”Energy Consumption Trade-offs

and Lifetime Prediction in Visual Sensor Networks”. Under preparation, June 2006.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents the work done

on energy model for wireless communications. Chapter 3 presents the energy measurements

for laptops and Stargate platform, as well as the extension and validation of the on-board bat-

tery monitoring capability on the Stargate. Chapter 4 describes the duty cycle modeling by task

composition, as well as a discussion on such approach. Chapter 5 presents the experiments on

the visual sensor node lifetime, as well as a prediction model based on elementary task com-

position. Chapter 6 concludes the thesis summarizing the main ideas presented, and pointing

future directions.

9

Chapter 2

An Energy Model for Communications

This chapter presents the work done on network simulators instrumentation for eval-

uating energy consumption in power-aware ad-hoc network protocols [49], and its use to eval-

uate an analytical model to predict energy consumption in single-hop IEEE 802.11 ad hoc net-

works [13].

It is worth to point out that the code implemented for the network simulators Glo-

MoSim and QualNet was already contributed to the maintainers, and also that the GloMoSim

code was made available on the webpage http://www.soe.ucsc.edu/∼cintia/energy-glomo.

html.

2.1 Introduction

Wireless ad-hoc networks are also known as ”networks without a network” since

they do not use any fixed infrastructure. Participating nodes in these networks are typically

battery operated, and thus have access to a limited amount of energy. Frequently, once nodes

10

are deployed, their batteries cannot be easily re-charged. Sensor network nodes are a typical

example as some of them have very limited battery life; moreover, once deployed, a sensor

network may be left unattended for its entire operational lifetime. This is due to the fact that

sensor networks may be deployed in wide, remote, unaccessible areas.

The energy-constrained nature of ad hoc networks in general, and sensor networks in

particular, calls for protocols that have energy efficiency as a primary design goal. Research

on power-aware protocols has been very active and spans multiple layers of the protocol stack.

As a result, several energy-efficient medium-access control (MAC)- and routing protocols have

been proposed.

In order to evaluate and compare power-aware protocols in terms of their energy effi-

ciency as well as assess the effectiveness of cross-layer mechanisms to achieve energy savings,

accurately accounting of the energy consumed by data communication activities is crucial. Such

accounting must be as close to reality as possible, taking into consideration all radio states, i.e.,

energy spent not only while transmitting and receiving a packet, but also while in idle, over-

hearing, or sleep modes. Frequently, the evaluation of network protocols is carried out using

network simulators such as ns-2 [36], GloMoSim [87], and QualNet [66]. As explained in

detail in Section 2.2, the models used by these simulators to account for energy consumption by

data communication activities are not accurate. More specifically, the models employed either

do not consider all radio states or do not take into account the different energy levels they con-

sume. Furthermore, most current simulators do not automatically measure energy consumption,

leaving it up to the protocol designer to explicitly write code to account for it. And, clearly, de-

pending on the layer of the protocol stack, energy consumption accounting can become quite

11

cumbersome and inaccurate. Not to mention the duplication of effort as code to accomplish the

same task is written several times for the same simulation platform.

The contribution of this work is two-fold. First, it describes our work on instrument-

ing network simulators to enable them to adequately and accurately account for the energy

consumed by ad hoc network protocols’ communication-related tasks. This is accomplished

by explicitly accounting for low-power radio modes and considering the different energy costs

associated with each possible radio state, i.e, transmitting, receiving, overhearing, idle, sensing,

and sleeping. Second, our energy consumption instrumentation also allows the energy account-

ing to be done automatically by the simulator irrespective of what layer of the stack the protocol

designer is working. For example, in [13], the analytical model presented for energy consump-

tion in IEEE 802.11 single-hop wireless networks is compared to the accounting provided by

QualNet with our energy consumption instrumentation. The results match quite closely differ-

ing by at most 15%.

We then validate our energy consumption model by comparing (1) simulation results

using the GloMoSim/QualNet [66] simulation platform with and without our instrumentation

for the IEEE 802.11 DCF [18], (2) analytical results for both 802.11 and S-MAC [84] (a power-

aware MAC designed for sensor networks), and (3) simulation results reproducing testbed ex-

periments obtained for the S-MAC protocol [84]. Finally, we showcase the ability of a network

simulation platform instrumented with our energy consumption model to evaluate power-aware

protocols by comparing S-MAC against 802.11. We also evaluate the energy consumption of

AODV [56] and DSR [38]. Although we implement our energy consumption instrumentation

on the GloMoSim/QualNet platform, it can easily be ported to any existing network simulators

12

(e.g., ns-2 [36]).

The remainder of this chapter is organized as follows. Section 2.2 reviews related

work. In Section 2.3, we describe our energy consumption instrumentation. Our experimental

methodology and model validation results are presented in Section 2.4. Results comparing

MAC protocols, namely S-MAC and 802.11, and routing protocols, namely AODV and DSR,

are presented in Section 2.5 and results from the evaluation of the analytical model for energy

consumption in IEEE 802.11 single-hop wireless networks [13] is presented in 2.6. Section 2.7

concludes the chapter.

2.2 Related Work

This section addresses energy models available, related research done on energy con-

sumption in Network Interfaces, energy models in current available network simulators, and

MAC power-aware protocols.

2.2.1 Energy models and energy consumption in Network Interfaces

In [77] the power consumption of some network interface cards (NICs) was measured

when used by different end-user devices. They also report on transport- and application-level

strategies to reduce energy consumption by NICs. Later, [23] reported detailed energy con-

sumption measurements of some commercially-available IEEE 802.11 NICs operating in ad

hoc mode. Energy consumption models using linear equations were also introduced. For ex-

ample, Equation (2.1) models data transmission and reception, where the coefficients m and b

13

depend on the type of communication, i.e., broadcast, unicast, or packet discarded, and were

determined empirically.

E = m ∗ size + b (2.1)

Along the same lines, [22] assessed the impact of transmission rate, transmit power,

and packet size on energy consumption in a typical wireless network interface. In most previous

measurements, however, the focus was on the characterization of energy consumption during

the many modes of operation of a NIC (transmit, receive, idle, etc.), under extremely simple

scenarios, e.g., only two nodes operating in ad hoc mode, with one node acting as the sender

and the other as the receiver.

In [7], a power consumption model for sensor networks consisting of three compo-

nents (1)sensor-, (2)computation-, and (3)communication cores is proposed. The sensor core,

which assumes that the energy used to sense a bit is constant, defines power consumption as

presented in Equation (2.2), where r is the bit-rate and a typical value for α3 is 50 nJ/bit. Power

consumed in the computation core is attributed to data aggregation and is defined in Equa-

tion (2.3), where α4 can vary from a few pJ/bit to 10 nJ/bit, and ηagg is the number of streams

being aggregated. Finally, the communication model has two portions: transmission and re-

ception. Power consumption due to reception is proportional to r, the bit rate, as shown in in

Equation (2.4), where α12 is 135 nJ/bit. Power spent on transmission, shown in Equation (2.5),

also depends on the bit rate r, as well as the distance between nodes (d(n1, n2)) and path loss

index n. However, no validation of the energy model is presented in this work. Moreover,

energy spent in data processing is attributed to data aggregation and does not account for local

14

processing (e.g., data compression).

Psense = α3 ∗ r (2.2)

Pcomp = ηagg ∗ α4 ∗ r (2.3)

Prx = α12 ∗ r (2.4)

Ptx(n1, n2) = (α11 + α2 ∗ d(n1, n2)n ∗ r) (2.5)

An energy-aware simulation model, which considers a network consisting of multiple

nodes, where each node is composed by a local request queue, a microprocessor, an external

request queue, another processor, a service queue and a service provider is describe in [78].

All components are random variables. The total energy consumption on a node is the sum of

the energy spent by node components, energy consumption for transmitting a data packet, and

energy consumption for receiving a data packet. Although the model considers energy spent

with processing and buffering requests, the radio model is quite simple and does not include a

low-power radio mode, which is crucial for development of power-aware protocols.

A simple energy model is introduced in [30] to evaluate power-aware protocols in

the LEACH project [29]. LEACH (Low-energy Adaptive Clustering Hierarchy) is a clustering-

based protocol that uses randomized rotation of cluster-heads to evenly distribute the energy

load among the sensors in the network. In the energy model, the energy spent on transmission

is given by the energy dissipated by the radio electronics and the power amplifier, while the

energy spent by the receiver is given by the the energy dissipated by the radio electronics.

Since the energy necessary to amplify the signal depends on its attenuation, and the attenuation

depends on the distance, the energy dissipated by the radio electronics is proportional to d2 for

15

short distances and to d4 otherwise. Using this same energy model, [21] examine the energy

consumption in a wireless sensor network with two distinguished organizations: single layer

versus clustered.

In [43], energy consumption in ad-hoc mobile terminals is modeled using the Ad-

vanced Configuration Power Interface [31], or ACPI, an open standard that allows computer

systems to implement motherboard configuration and power management functions. ACPI was

used to measure energy consumption due to transmission/reception. The resulting energy con-

sumption model includes two states: high consumption state, where the host receives and

transmits, and low consumption state, where the node receives or is in idle. While this ap-

proach to model battery discharge empirically is based on values that laptop power management

would see in real systems, it is platform-dependent.

A comparison of transmitter’s energy consumption of TCP Reno, Newreno and SACK

using a laptop testbed under different network conditions (e.g.,variable round trip times, random

loss, bursty loss, packet reordering, etc.) is presented in [69]. The results shows that SACK

consumes the least total energy, but if the energy cost for idle states is much lower than receiving

state, it performs poorly.

A sensor networks testbed of PicoNodes [62] is used to evaluate energy consumption

on different radio states and different traffic types.

Developers of power-aware protocols often implement their own energy models (e.g.,

[61], [39]) at the layer of the protocol stack they are working on. An alternative is to use what

is available in current network simulators or add extensions to obtain the desired results. Thus

results from different efforts cannot be compared directly. For example, [83] does an evaluation

16

of topology control protocols using ns-2 and the parameters for the radio are from [77].

2.2.2 Network simulators

2.2.2.1 GloMoSim and QualNet

In QualNet 3.6 [66], the energy consumption model for communication is imple-

mented in the physical layer. The simulator currently includes six different physical layer mod-

els: 802.11a, 802.11b, abstract, GSM, FCSC prototype, and link16.

The current radio model only defines four states: idle, sensing, receiving (RX) and

transmitting (TX); there is no state corresponding to the low-power energy mode where the radio

cannot transmit or receive (usually referred as ”sleep” state). For energy consumption purposes,

QualNet considers that the radio is either in TX or RX states (in ad hoc network mode). If the

radio is in RX, it spends 900 mW. The power consumption for transmitting signals is calculated

as shown in Equation (2.6).

(TxPowerCoef ∗ txPower + TxPowerOffset) ∗ txDuration (2.6)

The values of TxPowerCoeff and TxPowerOffset are statically defined based

on the WaveLAN specifications, and are assigned the values of 16/sec, and 900mW (the same

value as consumed in RX mode). txPower is proportional to the distance the signal is supposed

to travel. For each frame transmitted, the energy spent is calculated and added to the energy

consumption statistics variable. Once the simulation ends, total simulation time is multiplied

by the cost of being in RX mode and added to the energy consumption statistics.

Clearly, QualNet’s current energy model is not realistic enough as it does not distin-

17

guish between RX, overhearing and idle states. Furthermore, it does not include a low-power,

sleep state. Another drawback of QualNet is that there is no energy consumption information

during simulation time. The amount of energy consumed is only available at the end of a sim-

ulation run. For the purpose of evaluating energy consumption, this is not a real issue, but

if the goal is to simulate nodes failing when running out of battery and/or have energy-aware

protocols looking at energy information to make certain decisions, this model is not adequate.

GloMoSim [87], QualNet’s precursor provides an energy model that is very similar

to QualNet’s.

2.2.2.2 ns-2

The energy model supported by ns-2 [36] includes four states: idle, sleep, receiving

(RX) and transmitting (TX). Every node starts with an initial energy level and consumes energy

as it transmits and receives data. Periodically, nodes update the amount of energy spent in idle

state.

Energy consumption for TX, RX, and idle states have default values of Ptconsume =

0.660, Prconsume = 0.395 and Piconsume = 0.0, respectively. However, to our knowledge,

there is no mention of the energy consumption in sleep state. While in sleep state, ns-2 keeps

an accounting of the time spent in this state. There is a note in the documentation that says

that “time in the sleep mode should be used as credit to idle time energy consumption”, which

implies that Psconsume = 0.0.

Some of the weaknesses of the current energy model employed by ns-2 include the

lack of calculation of the energy consumed in sleep state which does not allow a fair comparison

18

between protocols that explicitly use this mode for power savings. A minor drawback is that,

if the user does not set the value of Piconsume, the total energy consumption will reflect only

what was spent in RX and TX.

2.2.3 Power-aware MAC protocols

In this work, we use two MAC protocols, namely IEEE 802.11 DCF [18] and S-

MAC [84], to validate and showcase the proposed instrumentation. We describe their main

features below.

The IEEE 802.11 DCF [18] is a contention-based protocol based on carrier sensing

with collision avoidance (CSMA/CA). IEEE 802.11 performs both physical and virtual carrier

sensing. Virtual carrier sensing is achieved by sending information about duration of each frame

in the headers which is used by stations as an indication of how long the channel will be busy.

After this time is elapsed, stations can sense the channel again. In order to solve the ”hidden

terminal” problem and avoid data frame collisions, the RTS-CTS handshake is used. Two power

management mechanisms are supported: active and power-saving (PS).

The Sensor MAC protocol [84], or S-MAC, was developed with power savings as

one of its design goals. It also falls into the contention-based protocol category but achieves

energy efficiency by making use of low-power radio mode. Nodes alternate between periodic

sleep and listen periods. Listen periods are split into synchronization and data periods. During

synchronization periods, nodes broadcast their sleeping schedule, and, based on the information

received from neighbors, they adjust their schedule so that they all sleep at the same time. Dur-

ing data periods, a node with data to send will contend for the medium (RTS-CTS exchange).

19

If the node acquires the medium or if it has data to receive, it will not sleep in the next period

and the data will be exchanged. After that, if there is still enough time in the sleep period, the

node goes to sleep. If a node does not have data to transmit or receive, it will sleep.

There has been considerable research activity in power-aware MAC protocols. Be-

sides S-MAC, another notable example is the T-MAC [81] protocol, a contention-based MAC

for wireless sensor networks which uses an active/sleep duty cycle. TRAMA [61] is an exam-

ple of a power-aware scheduled-based (time-slotted) MAC Protocol. It establishes transmission

schedules in a way that it is self adaptive to changes in traffic, node state, or connectivity.

2.2.4 Multi-hop ad-hoc networks routing protocols

Two well-known multi-hop ad-hoc networks (MANETs) routing protocols are DSR

and AODV. Next, we summarize their main features.

Dynamic Source Routing (or DSR) [38] is a source routing protocol, i.e. each packet

must carry its route to the destination. In order to discover a route to a given destination, a source

S floods a route request (RREQ). Then each node forwarding the route request will append its

own identifier. When the destination D receives the first route request, it sends a route reply

(RREP) to S, obtaining the route by reversing the route appended to the route request received.

Note that the route reply contains the route to S. Node S will then receive the route reply and

use the route to send data to D. Again, the data packets will contain in their headers the route

to D, which will be used by forwarding nodes to make routing decisions. Since DSR needs to

add the route in the packet header, data packets will have their sizes increased.

Ad-hoc On-Demand Distance Vector Routing (or AODV) [56] is an on demand rout-

20

ing protocol, which maintains routing tables at nodes and thus packets do not have to carry their

route to the destination. When a node S needs a route to a node D, it will transmit a route

request. Nodes forwarding the route requests add an entry in their routing tables pointing to the

source of the route request. When the destination D receives the route request, it will answer

with a route reply, using the path set up when the route request was forwarded. AODV does not

increase the header size like DSR does, but AODV needs to time stamp entries in the routing

table to avoid them becoming stale.

2.3 Energy consumption instrumentation

The main goal of our instrumentation is to provide a ”common ground” through which

the effectiveness of different power aware techniques, at a specific layer of the protocol stack

or across different layers, can be evaluated. Our model is simple and uses an approach similar

to [11]. However, our instrumentation does account for time and energy consumed in all radio

states, including low-power sleep mode.

Due to the shortcomings of the energy models available in existing simulation plat-

forms (see Section 2.2 for details), developers of power-aware protocols often implement their

own energy models (e.g., [61], [39]), usually at the layer of the protocol stack they are devel-

oping at. Another benefit of the proposed instrumentation is that, since it is implemented at the

physical layer, it can be used by any protocol layer.

21

Idle

requested by
MAC layer MAC layer

has data to send

Transmission finished

Signal detected

No signal detected

Sleep TX

RX

State change

Figure 2.1: State diagram for radio modes

2.3.1 Description

The proposed energy model considers all possible radio operation modes, namely:

• Transmitting, i.e., radio is transmitting data;

• Receiving, i.e., radio is effectively receiving data;

• Overhearing, i.e., radio is receiving data that is not destined to the node1;

• Idle, i.e., radio is ready to receive or transmit;

• Sensing, i.e., radio has detected some signal, but is not able to receive it;

• Sleeping, i.e., radio is in low power, and this is not able to receive or transmit.

Note that sensing and overhearing states are a special case of the receiving state.

Figure 2.1 shows the state diagram, which depicts the main radio states and how state transitions

occur.
1For deciding whether the radio is receiving or overhearing, the energy model needs information from the MAC

layer regarding whether the node is the recipient of the frame.

22

The power dissipated by the radio can be calculated using Equation 2.7, where V and

i are the voltage and current specific to the radio being used and are typically available from the

radio data sheet. The time the radio spends in a certain state depends on the packet size and the

transmission rate and is given by Equation (2.8).

P = V ∗ i (2.7)

t = PacketSize/TransmissionRate (2.8)

Thus, for each state, energy consumption is calculated as presented in Equation (2.9),

where αy represents the power dissipated by the radio while in state y, and ty represents the

time spent in state y. State y can be transmission, reception, idle, sleep or sensing. Note that the

values of αy are radio-specific.

Ey = αy ∗ ty (2.9)

2.3.2 Implementation

The energy model was implemented at the radio/physical layer of both GloMoSim

and QualNet. The implementation includes: (1) the necessary physical layer infrastructure to

account for all possible radio modes (as specified above), and (2) an interface between the

physical- and MAC layers to control the radio modes (e.g., switch radio on/off, overhearing

versus reception, etc.).

The physical layer support for the energy consumption instrumentation includes: (1)

the addition of the SLEEP state, (2) addition of a data structure for the energy model, (3) and im-

plementation of energy consumption accounting functions. The radio/physical implementations

23

were modified such that these functions are called every time a radio state change occurs.

Since the radio layer now supports the ”sleep” state, it is necessary to provide func-

tions for the MAC layer to set the radio state to and from sleep mode. Functions GlomoEner-

gyRadioWakeUp and GlomoEnergyRadioGoToSleep provide this functionality. Another aspect

where the need of interaction between MAC- and physical layers become clear is in order to

identify if a received packet was in fact received or overheard (i.e., the destination for the packet

is not the current node). The energy model assumes that all packets received are overheard, and

thus the function GlomoEnergyUpdateEnergyRx should be used every time a received packet is

destined to the node. If this function is not used, all energy due to receiving will be accounted

as overhearing.

Each time the radio changes state, energy consumption information is updated. In

order to support power-aware protocols, current energy spent information in a node can be ob-

tained by using the function GlomoGetCurrentEnergySpent. For example, a power-aware

routing protocol may want to examine the current energy information at nodes to compute paths

that only include nodes whose energy are above a certain threshold.

Through a configuration file, the user defines the energy consumption parameters

(e.g., αy in Equation (2.9)). Statistics provided by the energy model include: total energy

consumption, energy consumption per state, time spent in each state (including or not a “warm

up” period).

24

2.4 Validation

We validate the energy consumption instrumentation analytically and through simula-

tions. For the latter, we compare QualNet/GloMoSim instrumented with our model against the

original QualNet/GloMoSim. The protocol used is IEEE 802.11 DCF, which uses transmitting,

receiving and idle modes. Since the idle state typically consumes the same energy as receiving,

we can directly compare our model to GloMoSim/QualNet’s which only considers transmitting

and receiving states.

The other validation step is to compare analytically the results obtained when a simple

topology is used. We performed this step for both IEEE 802.11 DCF and S-MAC. Finally, we

validate the model by reproducing experiments conducted on a testbed implementation of S-

MAC [84] and comparing the results from the testbed with our simulations.

All simulation results presented are averaged over 10 runs with different seeds.

2.4.1 Instrumented versus original GloMoSim/QualNet

In this experiment, the goal is to validate our model by comparing the energy con-

sumed by IEEE 802.11 DCF using original GloMoSim/QualNet against results obtained using

GloMoSim/QualNet with our instrumentation.

We used the default values for all parameters in the configuration file, i.e., the trans-

mission rate is set at 11 Mbps, and the power consumption is 900 mW for both receiving/idle

and transmitting states. The transmission range for each node is 100m (receiver threshold is

-75dB).

25

(b)

Node 1

Node 0 Node 2
Node 2

Node 3

Node 4Node 1

Node 0

(a)

Figure 2.2: (a) Three-node topology and (b) Five-node topology used in validation.

Table 2.1: Total energy consumption in original versus instrumented GloMoSim/QualNet.

Original Instrumented
Node 0 224999.46 224999.46
Node 1 224998.74 224998.74
Node 2 224999.28 224999.28

The scenario used is a string topology with 3 nodes (two-hop topology), as shown in

Figure 2.2(a). All nodes are stationary and routes are static. CBR traffic is generated from node

0 to 2 40 times with 5 second interval; the data size is 200 bytes. A simulation run lasts 250

seconds.

Table 2.1 shows the total energy consumed by each node for both original- and instru-

mented GloMoSim/QualNet. Note that IEEE 802.11 DCF only uses transmitting, receiving and

idle modes, where consumption in idle state is typically the same as in receiving. Therefore,

we can directly compare our model to GloMoSim/QualNet’s, which only considers transmitting

and receiving states. Thus, for this particular case, the values obtained are exactly the same.

26

2.4.2 Analytical versus simulation results

For this validation step, we use the specifications for the TR1000 [63] radio, which

is designed for short-range wireless data communication, supports transmission rates of up to

115.2 Kbps, and has the sleep state built in. Power consumption is 13.5 mW, 24.75 mW and 15

µW in receiving/idle, transmitting, and sleeping states, respectively. The transmission range for

each node is set to 100m (receiver threshold is -75dB). Data rate is 19.2 Kbps. Packet sizes are

20 bytes for RTS, 14 bytes for CTS and ACK, 380 bytes for DATA, and 24 bytes for SYNC.

The topology used is composed of five nodes as shown in Figure 2.2(b). Nodes 0 and

1 are sources, 3 and 4 are sinks, and 2 must route all the traffic in this two-hop network. The

five-node topology was chosen in order to provide a scenario, which includes the possibility

of collisions, overhearing and sensing. Static routes were set, so there is no influence from

routing protocols. The experiment simulates 3 seconds of real time, which is the time needed

to transmit one packet from sources to destinations.

2.4.2.1 802.11

Considering that each source is going to transmit one data packet, Table 2.2 shows

the transmitted and received (and overheard) packets per node when 802.11 is used.

Based on the information on Table 2.2, data rate and packet size, we can calculate the

time each node spent in each state, shown in Table 2.3. Note that the time corresponding to

receiving state is split between receiving and overhearing. The time the radio is not transmitting

or receiving is spent in idle state. Also IEEE802.11 doesn’t support sleep state and thus no time

should be spent in it, and thus it is omitted in the table.

27

Table 2.2: Packets transmitted and received per node for 802.11.

Node Transmitted Received Overhears
0 RTS+DATA CTS+ACK (CTS+ACK) +

2*(RTS+DATA)
1 RTS+DATA CTS + ACK (CTS+ACK)

+ 2*(RTS+DATA)
2 2*(CTS+ACK) 2*(CTS+ACK)

2*(RTS+DATA) 2*(RTS+DATA)
3 CTS+ACK RTS+DATA (RTS+DATA) +

2*(CTS + ACK)
4 CTS+ACK RTS+DATA (RTS+DATA)

2*(CTS + ACK)

Table 2.3: Analytical model: time spent in each relevant state for 802.11.

Node TX RX Overhearing Idle
0 0.166 0.011 0.344 2.479
1 0.166 0.011 0.344 2.479
2 0.356 0.369 0.000 2.275
3 0.011 0.166 0.189 2.634
4 0.011 0.166 0.189 2.634

28

Table 2.4: Simulation: time spent in each relevant state for 802.11.

Node TX RX Over- Sensing Idle Sensing
hearing + Idle

0 0.1787 0.0121 0.3695 0.2028 2.2369 2.4397
1 0.1787 0.0121 0.3695 0.2028 2.2369 2.4397
2 0.3816 0.3815 0.0000 0.0000 2.2369 2.2369
3 0.0121 0.1787 0.2028 0.3695 2.2369 2.6064
4 0.0121 0.1787 0.2028 0.3695 2.2369 2.6064

To obtain the corresponding simulation results, we use QualNet and send one packet

from each source node to the corresponding sink node according to the topology in Figure 2.2(b)

with 802.11 as the underlying MAC protocol. Table 2.4 presents time spent in each state, i.e.,

TX, RX, overhearing, sensing, and idle.

The small difference between analytical and simulation results for TX, RX and over-

hearing is due radio synchronization and internal delays intrinsic to the simulation. For each

packet to be transmitted, the simulator will add the synchronization time and delays to the trans-

mission time, and thus it propagates to all results. The time spent in sensing is caused by nodes

nearby, but not in range (radio is not able to lock the signal). For example, in the topology of

Figure 2.2(b), node 0’s sensing time is given by the sum of the transmission times of nodes 1, 3

and 4. Because the sensing range depends on the radio properties (e.g., transmission power of

the neighbors, radio sensitivity for the receiving node, distance between nodes, etc), we decided

not to consider this state in the analytical model. Thus when comparing simulation results to

the analytical results, sensing time should be added to idle time, resulting in values presented in

the last column of Table 2.4.

29

Table 2.5: Packets transmitted and received per node for S-MAC.

Node Transmitted Received Overhears
0 RTS+DATA CTS+ACK CTS +

+ SYNC + SYNC 2*(RTS+DATA)
1 RTS+DATA CTS + ACK CTS +

+ SYNC + SYNC 2*(RTS+DATA)
2 2*(CTS+ACK) + 2*(CTS+ACK) +

2*(RTS+DATA) 2*(RTS+DATA)
+ SYNC + 4*SYNC

3 CTS+ACK RTS+DATA (RTS+DATA)
+ SYNC + SYNC + 2*CTS

4 CTS+ACK RTS+DATA (RTS+DATA)
+ SYNC + SYNC + 2*CTS

2.4.2.2 S-MAC

Next, we repeat the same exercise using S-MAC as the underlying MAC protocol. By

using S-MAC, other factors must be taken into account. Besides the time spent in transmitting

and receiving data, it is necessary to account also for the transmission of SYNC frames2. S-

MAC makes use of low-power sleep state by switching nodes to sleep if a CTS, DATA, or ACK

from another node is received. Table 2.5 summarizes the packets exchange for S-MAC.

Considering packets exchange in Table 2.5, data rate and packet size, we can calculate

the time each node spent in each state, shown in Table 2.6. Note that the time corresponding to

receiving state is split between receiving and overhearing. In order to compute the time spent

in idle state, we calculate how many listen periods fit within the 3-second simulation runs; from

that, we subtract the time spent transmitting and receiving SYNCs, RTSs and CTSs. Similarly,

we can estimate the time spent in sleep state by calculating how many sleep periods fit within
2Nodes periodically exchange SYNC frames in order to identify their one-hop neighbors and define their

schedule.

30

Table 2.6: Analytical model: time spent in each relevant state for S-MAC.

Node TX RX Overhearing Idle Sleep
0 0.1748 0.0217 0.3342 0.6335 1.8359
1 0.1748 0.0217 0.3342 0.6335 1.8359
2 0.3617 0.3917 0.0000 0.5685 1.6781
3 0.0217 0.1742 0.1758 0.6335 1.9948
4 0.0217 0.1742 0.1758 0.6335 1.9948

Table 2.7: Simulation: time spent in each relevant state for S-MAC.

Node TX RX Overhearing Sensing Idle Sleep
0 0.1842 0.0508 0.3381 0.0620 0.4592 1.9057
1 0.1811 0.0508 0.3381 0.0650 0.4592 1.9057
2 0.3974 0.4147 0.0000 0.0000 0.4592 1.7287
3 0.0262 0.2108 0.1695 0.0514 0.4592 2.0828
4 0.0242 0.2108 0.1685 0.0545 0.4592 2.0828

a simulation run, and from that subtract the time spent transmitting and receiving DATA and

ACKs. Note that ideally no DATA should be overheard, because the data portion of the listen

period is long enough to accommodate RTS and CTS packets.

To get simulation results, we again use QualNet to send one packet from each source

node to the corresponding sink node in the topology of Figure 2.2(b) using S-MAC as the

underlying MAC. Simulations run for 3 seconds after the warm-up period 3. Table 2.7 presents

time spent in each state as tracked by the energy model.

Similarly to the results obtained for 802.11, we observe a difference (10% on aver-

age) between analytical and simulation results due to radio synchronization and internal delays

intrinsic to the simulator. Note that the calculation for sensing time in S-MAC is not as simple

as for IEEE 802.11, since S-MAC has a sleep state. But still in order to compare analytical and
3S-MAC needs a 20 to 30-second warm-up period for initial neighbor synchronization

31

simulation results, sensing and idle time should be added: 0.5212 for node 0, 0.5242 for node

1, 0.4592 for node 2, 0.5106 for node 3 and 0.5137 for node 4.

2.4.3 S-MAC testbed versus simulation

We also validate the proposed energy model by comparing results obtained from an

implementation of S-MAC on a real sensor network testbed [84] against simulations that tried

to reproduce the testbed experiments. Since details of the testbed experiment were not available,

an absolute comparison is not possible. Our goal is thus to obtain a qualitative evaluation of

the model. Once again, we used the TR1000 [63] radio parameters as described above. The

same five-node topology is used and is shown in Figure 2.2(b). Nodes 0 and 1 are sources, 3

and 4 are sinks, and 2 must route all the traffic in this two-hop network. CBR traffic with packet

size of 380 bytes is sent throughout the whole simulation period. Simulation time varies with

inter-arrival period in order to keep the number of packets transmitted constant for all scenarios.

The graph in Figure 2.4 shows the average energy consumed for source and interme-

diate nodes for each different packet inter-arrival time. When compared to the energy consump-

tion graphs from S-MAC paper [84] (Figures 8 and 10), reproduced in Figures 2.3(a) and 2.3(b),

we observe similar behavior for all nodes. The intermediate node spends more energy because

it needs to forward data and thus cannot sleep as much as the other nodes. Also, the energy con-

sumption increases because the simulation time (or the data collection time in [84]) increases

with the inter-arrival period.

32

(a) Energy consumption in the source node.

(b) Energy consumption in the intermediate node.

Figure 2.3: Measured energy consumption for S-MAC. Results reproduced from [84].

33

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n
(m

J)

Message inter-arrival period (sec)

Node 0
Node 1
Node 2

Figure 2.4: Simulations results for S-MAC energy consumption using instrumented GloMoSim
/ QualNet.

2.5 Protocol comparison

The goal of these experiments is to showcase how our instrumentation can help eval-

uate power-aware protocols, irrespective of their position in the protocol stack. In the first

example, we evaluate power-aware MAC protocol, namely S-MAC. In the second example, we

evaluate two well-known routing protocols for multi-hop ad-hoc networks (MANETs), namely

AODV [56] and DSR [38]. We show that, through the use of an adequate energy instrumenta-

tion, it is possible to get insight into where energy is spent and how energy efficiency can be

improved.

2.5.1 MAC Protocols

In this specific example, we evaluate power-aware MAC protocol, namely S-MAC.

For these experiments, we employ a scenario including fifty nodes uniformly distributed over

34

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
m

J)

Message inter-arrival period (sec)

IEEE802.11
SMAC

Figure 2.5: Simulation results for S-MAC and 802.11 using instrumented GloMoSim.

1000x1000m2. The parameters in the configuration file were again set according to the TR1000 [63]

radio specifications. A CBR application with 10 sources and 10 sinks sending 380-byte packets

was used. AODV [56] was used as the routing protocol.

The graph in Figure 2.5 shows the average energy consumed per node for different

packet inter-arrival times. Note that the different inter-arrival periods do not seem to affect the

average time spent in each state because results are averaged over all nodes in the area (which

might include nodes that do not transmit or receive at all).

Besides providing the overall energy consumption, our instrumentation allows a bet-

ter understanding of which radio states are predominant and thus how energy savings can be

achieved. Table 2.8 shows the time spent in each radio state (TX, RX, idle, sleep, sensing and

overhearing) for message inter-arrival period of 1sec. These results demonstrate that the ability

to use low-power sleep state yields considerable energy savings.

35

Table 2.8: Time spent in each state for 1sec message inter-arrival time.

Protocol TX RX Overhearing Sensing Idle Sleep
802.11 0.92 0.68 0.01 10.09 137.20 0.0
S-MAC 0.94 0.63 0.03 22.49 29.71 68.38

Since the instrumentation not only gives the time, but also the energy consumed in

each radio state, it provides a better understanding of the protocols under consideration. For

instance, in [61], the energy savings are attributed to the length of the sleep time.

2.5.2 Routing Protocols

In order to show the ability of the instrumentation to account for energy consumption

irrespective of the stack layer we want to evaluate, we compare energy consumption for two

MANET routing protocols: AODV [56] and DSR [38].

For these experiments, we employ a scenario including fifty nodes uniformly dis-

tributed over 500x500m2. The parameters in the configuration file were set according to the

WaveLAN radio [23], and thus the power consumption is 900mW for both receiving and idle

mode, and 1400mW for transmitting mode. The transmission rate is 11Mpbs. A CBR applica-

tion with 10 sources and 10 sinks sending 380-byte packets was used. Simulation runs for 150

seconds.

The graph in Figure 2.6 shows the average energy consumed per node for different

packet inter-arrival times. Since the simulation had the same duration for all different inter-

arrival times, the scenarios with smaller inter-arrival times were able to deliver more data pack-

ets, thus spending more time in transmission mode, and therefore had larger average energy

36

 134730

 134735

 134740

 134745

 134750

 134755

 134760

 134765

 134770

 0 2 4 6 8 10

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Message inter-arrival period (sec)

AODV
DSR

Figure 2.6: Simulation results for AODV and DSR using instrumented GloMoSim.

Table 2.9: Time spent in each state for 1sec message inter-arrival time.

Protocol TX RX Overhearing Sensing Idle Sleep
AODV 0.0491 0.0463 0.2214 1.8519 147.5320 0.0000
DSR 0.0779 0.0737 0.3643 2.9891 146.1956 0.0000

consumption.

In order to understand why DSR consumes slightly more energy per node than AODV,

it is useful to look at the time spent in each state. Table 2.9 shows the time spent in each state for

inter-arrival time of one second. In this case, DSR spends about 60% more time in transmission,

receiving, overhearing and sensing states than AODV. This is due to the fact that DSR packets

are longer, since they carry source routes.

37

2.6 Evaluation of an analytical model to predict energy consump-

tion in single-hop IEEE 802.11 ad hoc networks

This work [13] done in collaboration with Marcelo Carvalho and J.J. Garcia-Luna-

Aceves presents advances in two fundamental aspects of energy- aware protocols: it introduces

an analytical model to predict energy consumption in single-hop IEEE 802.11 ad hoc networks

(under ideal channel conditions), and it validates this model with discrete-event simulations us-

ing QualNet v3.6 [66] with our energy model instrumentation. In particular, we are interested

in addressing the following questions: (1) How accurate is the analytical model compared to

discrete-event simulations? (2) What is the relative energy consumption among the MAC oper-

ational modes (e.g., transmit, receive, idle, etc) when nodes are actively contending for channel

access (under saturation)? (3) What is the efficiency (Joule/Bit) incurred at each node for a

specific network size? (4) How does the efficiency behave as the network size increases? (5)

What is the impact of payload size on energy consumption, as the number of nodes increases?

2.6.1 Energy-Aware Model

Carvalho et. al. [12] introduce an analytical model to characterize the service time of

a node in a saturated IEEE 802.11 ad-hoc network under ideal channel conditions (e.g., ignor-

ing capture effects, hidden terminals, modulation and encoding schemes, etc.). Then, in [13],

authors extend the model to include a more realistic approach regarding the IEEE 802.11 binary

exponential backoff algorithm, and present an energy consumption model, which is based on

the service time characterization.

38

Next, we summarize the service time of a node in a saturated IEEE 802.11 ad-hoc

network under ideal channel conditions considering a finite backoff operation, and then present

the energy consumption model.

2.6.1.1 Service Time Model

According to Carvalho et. al. [13], the average service time can be decomposed in

two parts: the time a node spends in backoff, and the time it takes to actually transmit the frame,

as a result of a successful handshake with its intended receiver. The average service time (T) is

given by

T = TB + T s, (2.10)

where Ts is the average time to successfully transmit a packet at the end of the back-

off operation (dependent on the packet size). Authors assume that nodes communicate through

the four-way handshake mechanism supported by the standard (the so-called “RTS/CTS” hand-

shake) [32]. In this case, the time intervals ts and tc are given by

ts = RTS + SIFS + δ + CTS + SIFS + δ + H +E{P}+ SIFS + δ + ACK + DIFS + δ (2.11)

tc = RTS + DIFS + δ (2.12)

where RTS, CTS, and ACK are the times to transmit each of the control frames, SIFS

and DIFS are the standard-defined time intervals corresponding to the short interframe space

and the distributed interframe space, δ is the propagation delay, H is the time to transmit the

packet header, and E{P} is the time to transmit the average payload size. The value of T s in

Equation (2.10) is simply ts − DIFS.

39

The average backoff time TB is given by:

TB =
αWmin

2
β1 − α

2
β2 + β3 tc (2.13)

where

β1 = A1+A2+A3

1−(1−q)M (2.14)

A1 = 2q{1−[2(1−q)]m}
2q−1 − 1 + (1− q)m (2.15)

A2 =
(
2m+1 − 1

)
(1− q)m

[
1− (1− q)M−m

]
(2.16)

A3 =
2m{(1−q)m+1−(1−q)M [1+q(M−m−1)]}

q (2.17)

β2 = 1−(1−q)M (1+qM)
q[1−(1−q)M]

(2.18)

β3 = (1−q)−(1−q)M [1+q(M−1)]
q[1−(1−q)M]

(2.19)

where Wmin is the minimum contention window size specified for the backoff opera-

tion, m is the standard-defined maximum power used to set up the maximum contention window

size, (i.e., Wmax = 2mWmin), α = σpi + tcpc + tsps, (where pi = P{Ei}, pc = P{Ec}, and

tc is given by Equation (2.12). Because we are dealing with a saturated network under ideal

channel conditions, the computation of the channel state probabilities pi, ps, and pc follow the

derivations in [12].

2.6.1.2 Energy Consumption Model

To account for the energy consumption under saturation conditions, we need to con-

sider the many events that take place while a node is trying to transmit its own data frame. For

this purpose, let us first look at Equation (2.13), which describes the average time a node spends

40

in backoff. As described in [13], decrementing a node’s backoff time counter depends on the

node’s perception of the channel state. As we have pointed out, there are three main channel

states (or “events” during backoff): successful transmission, collision, and idle channel states.

Notice that, these “states” do not correspond to the “modes of operation” of a network interface.

In the successful transmission channel state, the node in backoff experiences a suc-

cessful transmission happening over the channel. This transmission, however, can either refer to

a successful transmission between any two nodes in the network, or to a successful transmission

having the node itself as the target receiver. In the former case, the node in backoff overhears

an RTS and updates its network allocation vector (NAV) accordingly [32], freezing its backoff

time counter for the duration of someone’s else four-way handshake (or two-way handshake if

the basic access mode is used). Notice that, in this case, the node in backoff first overhears

the RTS and then stays idle for the duration of the advertised transfer, as recorded in the NAV.

In the latter case, i.e., when the node itself is the recipient of the transfer, it has to receive the

RTS and DATA frames from the sender, and transmit the corresponding CTS and ACK frames

back to the sender. Meanwhile, power is also consumed during the time intervals corresponding

to SIFS’s, DIFS’s, and propagation delays δ, during which the node stays idle or senses the

channel4.

In the collision channel state, similar events can take place from the standpoint of the

node in backoff, i.e., the node is either overhearing or being the target of a transmission. Here,

however, the node in backoff is overhearing an unsuccessful transmission or is being the target
4In reality, some power is also consumed when the network interface switches from one mode to another as, for

instance, from the receive mode to the transmit mode (or idle mode). In this work, we disregard the power costs of
switching from one mode to another.

41

of a failed handshake. As before, energy is consumed while in overhearing and receiving modes,

respectively. Nodes also consume power during the DIFS interval as the node waits before

resuming its own backoff operation, after overhearing/receiving a failed handshake. Finally,

during the idle channel state, the node in backoff basically senses the channel and decrements

its backoff time counter each time no activity is detected for the duration of a time slot [32], [12].

All these three states correspond to times when the node is in backoff, perceiving the

channel activity, and before attempting its own handshake, i.e., during the course of a backoff

stage, as mentioned in [13]. The node attempts to establish a handshake with its intended

receiver only at the end of a backoff stage. Each time the handshake fails, the node backs

off again and repeats the process, until it finally succeeds in establishing the handshake and

before it reaches the maximum number of allowed retransmissions, in which case, it drops its

current data frame. In each of its handshake attempts, the node waits for a cts timeout period

before deciding that its RTS was not successful. In our analytical model (Equation (2.13)), this

collision resolution period is indicated by tc, which, as described in Equation (2.12), includes

the time to transmit the RTS frame. Therefore, from Equation (2.12), DIFS + δ seconds are

spent in sensing the channel, waiting for the CTS frame that is never received.

During a successful four-way handshake with the node’s intended receiver, the NIC

switches through a number of modes of operation. During the four-way handshake time interval

T s (i.e., ts−DIFS), the node transmits an RTS and a DATA frame (expressed in Equation (2.11)

by the header H and payload P), receives the CTS and ACK back from the receiver, and stays

idle during the time intervals corresponding to SIFSs and propagation delays δ. According to

experimental results reported by Feeney et. al. [23], the costs of overhearing a frame, staying

42

idle, or sensing the channel are only marginally different from the cost of actually receiving a

frame (in the IEEE 802.11 network interfaces evaluated). Note that these costs are not provided

by manufacturers in data sheets. They were all measured in experiments. For this reason, many

network simulators assume (implicitly or explicitly) the same power level for the idle, overhear,

sense, and receive modes [66]. Consequently, because we want to compare our analytical model

with simulation results, we follow this same assumption and consider two power levels only:

passive, or Ppas, for the cases when the NIC is in any of the four aforementioned modes, and

active, or Pact, for the mode in which the NIC is actually transmitting something. Given these

considerations, all we need to do is to account for the time intervals in which the network

interface stays either in the “passive” or “active” modes.

From our previous remarks, a node will be in “passive” mode during backoff except

for the case when it is the target receiver of a handshake request, in which case it has to transmit

CTS and ACK frames back to the sender. If we denote by T back
pas the time a node is in passive

mode during its backoff, we have, from Equation (2.13),

T back
pas =

α(Wminβ1 − β2)
2

. (2.20)

At the end of a backoff stage, the node attempts to perform a handshake with its in-

tended receiver. Before succeeding in doing that, however, the node will spend β3tc seconds, on

average, in collision resolutions due to unsuccessful attempts (as shown in Equation (2.13)). In

each collision resolution time interval tc, the node spends DIFS + δ seconds in “passive” mode.

Hence, if T col res
pas denotes the average time spent in passive mode during collision resolutions

and, likewise, T col res
act the average time spent on “active” mode during collision resolution, we

43

have that

T col res
pas = β3(DIFS + δ) and T col res

act = β3RTS. (2.21)

When the node succeeds in performing a handshake, it will spend T 4 way
pas seconds in

passive mode during the four-way handshake. From Equation (2.11), this time interval corre-

sponds to

T 4 way
pas = CTS + ACK + 3× SIFS + 4δ, (2.22)

whereas in transmission the node will spend

T 4 way
act = RTS + H + E{P}. (2.23)

Finally, we need to take into account the case when the node is the target receiver of a

handshake request during its backoff, in which case it needs to transmit CTS and ACK frames

back to the sender. In a single-hop ad-hoc network under ideal channel conditions, no capture

or hidden terminal problems happen. Therefore, it is always assumed that all frame collisions

are due to RTS collisions at the intended receiver. This means that, under such assumptions, no

CTS or ACK frame is ever transmitted unsuccessfully. Therefore, the recipient of a handshake

request only transmits a single CTS and a single ACK frame for each data transmission request,

i.e., only those frames corresponding to the completion of a successful handshake. Furthermore,

assuming a balanced and fair distribution of load in the network 5, if Ttotal denotes the total

observation time, then, on average, Ttotal/T data frames will be received by any node during

the time interval Ttotal. From the remarks, for each data frame transmitted successfully, there
5This assumption is realistic in ad hoc network scenarios such as n-way conferencing, and sensor network moni-

toring. Motivated by applications that may produce non-uniform traffic distributions, one of our directions of future
work is to extend our model accordingly.

44

is one and only one CTS and ACK frame sent by the intended receiver. Therefore, the average

time T back
act a node spends transmitting CTS and ACK frames back to other nodes (while the

node itself is in backoff) is given by

T back
act = N(CTS + ACK), (2.24)

where N = Ttotal/T is the average number of data frames transmitted over the interval Ttotal.

Hence, if Epassive and Eactive denote the energy consumptions in the passive and active modes,

respectively, during the observation time Ttotal, then, from above,

Epassive= NPpas

(
T back

pas + T col res
pas + T 4 way

pas

)
, (2.25)

Eactive= NPact

(
T back

act N
−1 + T col res

act + T 4 way
act

)
, (2.26)

where the N
−1 accounts for the N already included in T back

act . Finally, the total energy con-

sumption Etotal is simply

Etotal = Epassive + Eactive. (2.27)

2.6.2 Model Validation and Performance Analysis

We validate our energy-aware model through packet-level simulations using the Qual-

Net v3.6 simulator [66] with improved energy consumption instrumentation [49]. We then use

the model to account for energy consumption of saturated IEEE 802.11 single-hop ad hoc net-

works in a variety of ad hoc scenarios with different network- and payload sizes. Results cor-

respond to the average of 10 runs with different seeds and different transmission start times

(necessary to reduce IEEE802.11 unfairness). Table 2.10 summarizes the simulation parame-

45

Table 2.10: Simulation parameters

Parameter Value
Area 50 × 50 m
Number of nodes 10, 20, 30, 40, 50
Node placement random
Node mobility none
Simulation time 300 sec
Bandwidth 1 Mbps
TX-POWER 10 dBm
RX-POWER -82.045 dBm
Path loss model free-space
Fading model none
Phy model phy-IEEE802.11
RX model SNR-based
PHY-RX-SNR-THRESHOLD 10.0
Routing protocol static
Traffic CBR
Payload size 20 and 1472 bytes
Packet interval 0.024 sec
Power consumption in TX 1650 mW
Power consumption in RX 1400 mW

ters used. It is important to note that simulation parameters were chosen in order to provide a

simulation environment as close as possible to the assumptions made in our model.

Figures 2.7 and 2.8 show the average energy consumption per node (in Joules) for the

active and passive modes, as well as their sum (i.e., the total energy consumption) for different

network sizes. Figure 2.7 plots results for the 1472-byte payload, whereas Figure 2.8 shows

the results for a payload of 20-bytes. As we can observe, the analytical model predicts quite

well the simulation results. Because the analytical model is more conservative in terms of

throughput [12], it leads to slightly smaller energy consumption values for the active mode and,

consequently, slightly bigger values for the passive mode, compared to simulations. It is worth

46

10 20 30 40 50
0

100

200

300

400

500

Number of Nodes

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Total Energy − Model
Total Energy − Simulation
Passive − Model
Passive − Simulation
Active − Model
Active − Simulation

Figure 2.7: Per-node average energy consumption versus network size for a 1472-byte payload.

mentioning that, when compared to the model, QualNet simulations use more “realistic” PHY-

layer parameters, as shown in Table 2.10. Despite this fact, the analytical model proved to be

a good abstraction of the simulated scenarios, supporting our earlier assumptions of restricting

collisions to RTS frames only (for fully-connected networks).

Regarding individual contributions of the operational modes to overall energy con-

sumption, the passive mode is responsible for the largest fraction of the total energy consumed.

For the network sizes investigated, the passive mode consumes more than 88% of the total en-

ergy drained (for the chosen parameters). This result is a direct consequence of the fact that,

under saturation and high contention, nodes spend most of their time backing off and listening

to the channel, instead of actually transmitting data. For all network sizes investigated, the aver-

age total energy consumption is about 420 J, leading to an average power consumption of 1.4 W

for the 300 s period, i.e., equivalent to the nominal power setting for the passive modes (energy

47

10 20 30 40 50
0

100

200

300

400

500

Number of Nodes

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Total Energy − Model
Total Energy − Simulation
Passive − Model
Passive − Simulation
Active − Model
Active − Simulation

Figure 2.8: Per-node average energy consumption versus network size for a 20-byte payload.

consumption in RX) as shown in Table 2.10. This is consistent with the observation that passive

modes are responsible for most of the energy dissipated. As the number of nodes increases,

the power consumption in passive mode increases from 1.25 W up to 1.37 W. In other words,

although the nominal value for the transmit (active) mode is 250 mW higher than the value for

the receive (passive) mode, its impact is practically insignificant as far as the MAC operation in

saturation conditions is concerned. This result opposes the findings in [23] and [22] which, un-

der the perspective of a two-node scenario (sender/receiver) without contention, transmit mode

is the largest overall energy consumer.

In cases where power-saving methods cannot be employed for some reason (like the

IEEE 802.11 power saving (PS) mode [32], not available at some NICs), this result suggests that

one can design energy-efficient WLAN devices by focusing on the optimization of circuits that

are mainly active during passive modes of operation (see [58] for a simplified block diagram of

48

a WLAN device). In fact, in typical WLAN devices, the RF power amplifier is a key compo-

nent that, alone, demands most of the nominal power consumption, and it is used only in the

transmit mode [22], [58]. According to our results, this is exactly the component that will affect

performance the least, as far as energy consumption under channel contention is concerned.

Another interesting observation from Figures 2.7 and 2.8 is that the energy spent on

both 20- and 1472-byte transfers are equivalent in all modes of operation. In other words, from

the standpoint of energy-efficiency, it is better to transmit bigger payloads than smaller pay-

loads, because the net energy consumption is the same. This last result can be better illustrated

by the energy efficiency to transmit useful data, Eeff given by

Eeff =
Total Power Consumption

Goodput
J/s

Bit/s
. (2.28)

Figure 2.9 shows the behavior of Eeff for the cases of 20- and 1472-byte data payloads

as the number of nodes increases. Surprisingly, the energy cost appears to have an almost linear

increase with network size. Moreover, the energy cost to transmit a 20-byte data payload grows

at a rate that is about one order of magnitude higher than the cost to transmit a 1472-byte

payload. For the 1472-byte scenario, the energy cost grows at a rate of approximately 0.002

mJ/Bit, whereas in the 20-byte scenario, the energy cost grows at 0.02 mJ/ Bit.

The usefulness of an analytical model such as the one we provide here is the ability

to provide quick answers without resorting to simulations. As an example, we use it to analyze

the energy consumption of commercially-available NICs, namely the Lucent WaveLAN card

transmitting at both 1 Mbps (TX = 1650 mW and RX = 1400 mW) and 11 Mbps (TX = 1400

mW and RX = 900 mW), and the Cisco Aironet PC4800 at 1 Mbps (TX = 2200 mW and RX

49

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of Nodes

E
ef

f (
m

J/
B

it)

20 bytes − Simulation
20 bytes − Model
1472 bytes − Simulation
1472 bytes − Model

Figure 2.9: Energy efficiency per bit versus network size for 20-byte and 1472-byte payloads.

= 1350 mW) [22]. Figure 2.10 shows that, as expected, the power setting that provides the

smallest energy consumption is exactly the one with the smallest power level in passive mode,

i.e, the 11-Mbps WaveLAN. Another interesting result is the little impact that transmit power

has on overall results. All three settings showed similar performance in active mode, despite

their relative nominal power differences.

2.7 Conclusions

This chapter presented our work on instrumenting network simulators to enable them

to adequately and accurately account for the energy consumed by ad hoc network protocols’

communication-related tasks. This is accomplished by explicitly accounting for all possible ra-

dio states, i.e, transmitting, receiving, overhearing, idle, sensing, and sleeping, and considering

50

10 20 30 40 50
0

100

200

300

400

500

Number of Nodes

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)
Wavelan 11Mbps − Total
Wavelan 1 Mbps − Total
Aironet − Total
Wavelan 11Mbps − Passive
Wavelan 1 Mbps − Passive
Aironet − Passive
Wavelan 11Mbps − Active
Wavelan 1 Mbps − Active
Aironet − Active

Figure 2.10: Energy consumption from the analytical model for different power settings.

the different energy costs associated with each of them. Another contribution of our energy

consumption instrumentation is to allow the energy accounting to be done automatically by the

simulator irrespective of what layer of the stack the protocol designer is working.

The instrumentation energy model is validated analytically and through simulations

using two MAC protocols, i.e., IEEE 802.11 DCF and S-MAC. We also showcase our instru-

mentation’s ability to evaluate energy consumption of protocols by comparing S-MAC against

802.11, and AODV against DSR. Then work simulation results obtained using instrumented

QualNet with our energy consumption accounting are used to validate the analytical model

proposed to evaluate energy consumption in IEEE 802.11 single-hop wireless networks.

51

Chapter 3

Energy Consumption Characterization of

Wireless Platforms

This chapter presents the work done on characterization of the energy consumption

of different wireless platforms, namely a laptop (a typical example of a mobile computing plat-

form) [50], and the Meerkats node [51] (example of a visual sensor network node), as well as

the work done to extend and validate the on-board battery monitoring on the Stargate.

3.1 Introduction

Due to a combination of technology advances in fields such as wireless communica-

tions and circuit integration, the last ten years have witnessed a proliferation of mobile com-

puting platforms. Examples of such platforms, which vary widely in terms of capability and

functionality, include laptops (e.g., notebooks, tablets, etc.), pocket PCs, personal digital assis-

tants (PDAs), cell phones, wireless single-board computers, sensor nodes, etc. Following the

52

general trend in the consumer electronics market, the cost of these devices has been steadily

decreasing while their capacity (i.e., processing, storage, communication) has been steadily in-

creasing. However, the fact that they are typically powered by non-continuous energy sources

imposes serious limitations to these devices’ utility from the end user’s point-of-view.

As a result, energy consumption in mobile computing platforms has been an area of

intense research spanning many fields such as computer architecture, operating systems, com-

puter networks, and application design. In the computer architecture community, energy char-

acterization is usually performed at the instruction level. Proposed power savings mechanisms

include shutting off parts of the processor not currently being used, designing machine-level

instructions that trade generality for power efficiency, etc. At the operating systems level, ex-

ample of power management strategies include disk spin-down, periodic system hibernation,

etc. Power-efficient network protocols have also been attracting considerable attention from the

networking research community and include a variety of techniques such as hibernation of idle

nodes, controlling transmission power and/or direction, routing based on remaining energy in

nodes, etc.

This work takes a different approach to energy consumption characterization and fo-

cuses on characterizing energy consumed by ”basic” application-level tasks. Characterizing

energy consumption at the task level allows us to (1) predict whether the energy currently avail-

able is sufficient to execute a given application, and (2) perform application-level power man-

agement. For example, in a distributed computation, given the task at hand and how much

energy there is left, a machine’s task manager decides whether the task can be executed locally

or needs to be shipped elsewhere. In order to make that decision, the task manager, given the

53

machine’s current energy budget, considers the amount of energy the execution of the task will

consume versus the amount of energy consumed by sending the necessary information over the

network to another machine.

Given the technologies advances on mobile platforms and wireless networks, the Sen-

sor Network area has had a lot of attention from the research community. But the use of high–

level sensors (e.g., cameras) in battery–operated networks has received relatively little attention

so far. Unlike simpler sensors, cameras produce large loads of data, which require consid-

erable processing for analysis (in order to extract semantic information) and/or compression.

In addition, sensing itself can be highly power consuming. In “traditional” camera-based net-

works (e.g., for surveillance), nodes are wired and plugged to continuous power sources; thus,

power and bandwidth are not a concern. However, in wireless camera networks, both band-

width and power are premium resources. They must be efficiently managed to maximize the

system’s operational lifetime. Therefore, one of the main challenges posed by wireless visual

sensor networks is the constant tension between power conservation and performance (e.g.,

event detection probability in surveillance applications). These considerations make the energy

consumption characterization of a visual sensor node a necessary step to achieve better power

management schemes.

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 describe

the energy consumption characterization in a mobile computing platform (laptop) and on a

visual sensor network node, respectively. Then we present the effects of the in-system energy

consumption monitoring tool available on the Stargate in Section 3.4. Related work is presented

in Section 3.5, while Section 3.6 concludes the chapter.

54

3.2 Characterizing System Level Energy Consumption in Mobile

Computing Platforms

In this Section, our focus is on mobile computing platforms, e.g. laptops. Applica-

tions executed by multi-purpose mobile devices like laptops can be as general as “fixed com-

puting” applications and typically consist of basic tasks such as processing, input/output (disk,

display, etc.), communication (transmission and reception over the network), or a combination

thereof. Consider reading e-mail: it includes communication with the email server and thus

network transmission and reception, processing information received, and storing it on disk.

We identify a set of basic tasks representative of mobile computing workloads. Based

on these tasks, we define a set of benchmarks that consider each task in isolation or task com-

bination. To observe the battery discharge behavior as a benchmark executes, we employ the

Advanced Configuration and Power Interface (ACPI) [31] to monitor the battery’s discharge

rate. A brief description of the ACPI is presented in Section 3.2.1.

As case studies, we use the benchmark set to characterize the energy consumption

of a mobile computing platform (the Dell Latitude C600) under different operating systems,

namely Debian [75] and Mandrake [47] Linux. We used the Dell Latitude C600 because it was

easily available to us (we have several of them in our lab).

In summary, the main contribution of this work is a task-level energy consumption

characterization benchmark that accounts for basic tasks such as processing, disk access (in-

cluding read and write access), terminal usage, and communication (transmission and recep-

tion). Such characterization is critical to power management decisions.

55

The remainder of this section is organized as follows. Section 3.2.1 provides an

overview of the ACPI standard. Sections 3.2.2 and 3.2.3 describes the proposed energy con-

sumption benchmark and our experimental methodology. Section 3.2.4 presents results from

our case studies, while Section 3.2.5 discusses benchmark set results application.

3.2.1 Background

The Advanced Configuration and Power Interface (ACPI) is an open standard devel-

oped by a consortium involving Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba [31].

It is a standard that defines power and configuration management interfaces between an operat-

ing system and the BIOS [8].

The ACPI provides both static information about the battery such as model number,

serial number, design voltage, etc., as well as current battery status, e.g., whether the battery

is charging or discharging, current voltage, discharge rate, estimate of the remaining battery

capacity, etc. In Linux, the ACPI name space is mapped to the /proc file-system. For example,

in Debian, the ACPI name space is mapped to /proc/acpi/ ; and battery related information is in

/proc/acpi/battery.

The ACPI updates battery information (both static and dynamic) every time the cor-

responding file (i.e., /proc/acpi/battery/info or /proc/acpi/battery/state) is read 1. Therefore the

frequency these information is updated depends on the application doing the battery monitoring.
1Simon Fowler, maintainer of wmacpi [25], provided this information.

56

3.2.2 Energy Consumption Benchmark

As previously discussed, our goal is to characterize energy consumption macroscop-

ically at the task level (instead of, for example, at the machine instruction level). To this end,

we define a set of ”basic” application-level tasks that are representative of typical mobile com-

puting workloads. In the case of laptops, basic tasks include: processing, input/output (disk,

display, etc.), and network communication (transmission and reception). Since the focus of this

work is mobile nodes, we consider wireless network interfaces. Often, applications consist of a

combination of such tasks.

For our benchmarks, we define four main task categories, namely baseline, processing

intensive, storage intensive, and communication intensive. We also consider the effect of the

display by turning it off and on when executing some of the benchmark tasks.

• Baseline: The baseline benchmark captures the energy consumption behavior of the mo-

bile when no user activity is taking place, i.e., only basic operating system tasks are

running. This benchmark characterizes energy consumption when the system is idle and

also serves as a reference for all other benchmarks. We disable the wireless network

interface to isolate the effects of this device on energy consumption.

• Processing-intensive: To characterize processing-intensive tasks, we use the FFT bench-

mark [1], which is part of SPEC’s CPU2000 [74], an industry-standardized CPU-intensive

benchmark suite. FFT, short for fast Fourier transform, is an efficient algorithm to com-

pute the discrete Fourier transform (DFT) and its inverse.

• Storage-intensive: We chose the IOzone [55] file-system benchmark to characterize en-

57

ergy consumed by tasks that are disk intensive. IOzone can be configured to perform a

variety of disk access operations.

We run IOzone in two different modes, one which performs only read accesses and an-

other that only writes to disk. In both cases, it accesses a 3GB file. We use an option

which purges the disk cache before each file operation. The write tests includes writes of

new files and re-writes of existing files, and the read tests reads and re-reads a file.

• Communication-intensive: We characterize communication-intensive tasks by using

Iperf [79], a tool designed to measure TCP available bandwidth.

Network transmission is implemented using Iperf in client mode, while the reception task

uses Iperf in server mode. In both cases, Iperf is configured to generate UDP traffic

at 10Mbs for all the experiment duration. A 10Mbs rate was chosen because this is

maximum nominal capacity of the wireless card.

• Display: When we needed to turn the display off, we used the xset [65] utility. xset can

be run from the command line and allows the setting of several user preference options

for the display, including an option that turns the video card and LCD display off.

3.2.3 Measurements

While the tasks run, we observe the battery discharge behavior through measurements

provided by the ACPI. In particular, we monitor the battery discharge rate. As mentioned in

Section 3.2.1, we can obtain this information by sampling /proc/acpi/battery/state. We run the

sampling script which periodic reads the current values of the battery discharge rate, while the

58

benchmark is executing.

When deciding which sampling rate to use, accuracy is an important consideration.

However, making sure that the measurements do not interfere with the observations is also

critical. In other words, we want to sample as frequently as possible without being intrusive.

Preliminary experiments showed that a sampling rate of deci-seconds is not intrusive.

3.2.4 Case Study: Dell Latitude C600

We use our benchmark set to characterize energy consumption in the Dell Latitude

C600 which has a 750 Mhz Pentium III (Coppermine) processor with 256K cache, 256 MB

RAM, and 20Gb hard-disk. Its is powered by a Li-ion battery, with eight cells, design voltage

of 14.8 VDC and nominal capacity of 59.0 Wh. As the network interface, we use the Cisco

Aironet 350. As the operating system, we use two of the most widely used versions of the Linux

operating system, namely Debian [75] (Debian kernel 2.6.1) and Mandrake [47] (Mandrake 10.1

kernel 2.6.8).

In the remainder of this section, we present energy consumption results for this plat-

form when executing the basic benchmarks described in Section 3.2.2 as well as some combi-

nations thereof.

3.2.4.1 Basic Tasks

We execute all six tasks described in Section 3.2.2: baseline, processing (FFT), disk

writes (IOzone write), disk reads (IOzone reads), network transmission (Iperf client) and recep-

tion (Iperf server). We run both operating systems using their default configuration. The script

59

Table 3.1: Mean discharge rate for each task on Dell C600

Operating System Debian Mandrake
Task Mean and St. Deviation Mean and St. Deviation
Baseline 10.586 W, 4.285 10.525 W, 4.904
Processing 25.111 W, 1.155 24.836 W, 1.189
Disk Write 19.588 W, 5.218 22.429 W, 4.838
Disk Read 16.233 W, 5.124 21.849 W, 4.747
TX 18.315 W, 4.295 18.301 W, 4.549
RX 16.041 W, 4.236 16.350 W, 4.201

that monitors the battery discharge rate runs at a one second sampling rate.

The discharge rate time series are shown in Figure 3.1. We summarize these results in

Table 3.1 which tabulates average discharge rate and the corresponding standard deviation for

all tasks under both Debian and Mandrake 2.

From Table 3.1, we note that, for both operating systems, the most energy hungry

task is FFT (i.e., intensive CPU activity), followed by disk writes. This is somewhat surprising

as we expected disk write intensive tasks to be more expensive than processing intensive tasks

in terms of energy consumption. For Debian, network transmission is the next task in energy

consumption descending order, followed by disk reads and network reception, both of which

have about the same energy cost. For Mandrake, the order is slightly different and has disk reads

as the third most expensive task followed by network transmission and then network reception.

We should note that we used two laptops, one with Debian and one with Mandrake.

They have exactly the same configuration except for their hard disks. Even though both hard

disks are manufactured by Hitachi, they have different specifications (e.g., number of heads)
2Since the discharge rate curves for all six tasks on Mandrake exhibit very similar behavior to the corresponding

curves obtained for Debian, we omit the Mandrake curves.

60

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Baseline

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Processing

Time
(s)

Battery Discharge Rate
(mW)

(a) (b)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Disk write

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Disk read

Time
(s)

Battery Discharge Rate
(mW)

(c) (d)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Network Transmission

Time
(s)

Battery Discharge Rate
(mW)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

10111

12222

14333

16444

18556

20667

22778

24889

27000

Network Reception

Time
(s)

Battery Discharge Rate
(mW)

(e) (f)

Figure 3.1: Discharge Rate for Dell C600 with Linux Debian: (a) baseline, (b) processing task
(c) disk write, (d) disk read, (e) network transmission, (f) network reception

61

and firmware revisions. The configuration parameters are the same for both disks, and they

use the same file system (EXT3). However, there is one considerable difference between the

disks: the disk on the Mandrake laptop achieves much higher throughput than the one in the

Debian laptop. We executed a simple test using IOzone in both platforms, and it took about

seven minutes (real time) in the Mandrake laptop, while it took about 10 minutes (real time) in

the Debian laptop to write 3GB. This indicates that the difference in the mean discharge rate for

both experiments could be due the fact that the Mandrake laptop can transfer more data, i.e. do

more writes and reads per experiment.

Next, we do some back-of-the-envelope calculations to validate the discharge rate

results.

According to Intel’s 750 Mhz Pentium III Coppermine data-sheet, the voltage and

current for the processor core is Icccore = 15A and V cccore = 1.65V and for the processor in

sleep state is Iccsleep = 2.5A and V ccsleep = 5V . If we calculate the power from these two

values, we obtain Pcccore = 24.75W and Pccsleep = 12.5W . If we compare Pccsleep and

average discharge rate for baseline experiment, we notice that Pccsleep is about 20% higher. As

for Pcccore and average discharge rate for the FFT experiment, Pcccore is about 4% lower.

During the network transmission experiment, 6.7GB were transmitted at an average

bandwidth of 5.7Mb/s. In the network reception experiment, 12.1GB were received at an aver-

age bandwidth of 6.6Mb/s. Note that the network reception experiment runs for a longer time

than network transmission one because it has lower discharge rate (and thus take longer to reach

the cutoff voltage). Since we are using UDP as the transport layer protocol, packet size is 1472

bytes. Since the two laptops are the only two wireless nodes in the lab and they are close to

62

each other, we can assume that in the transmission experiment the time spent in the transmission

state (e.g., when compared to the time spent sensing the medium, backing off, performing the

802.11 [18] handshake) dominates. Similarly, for the reception experiment, the time spent in

receiving dominates.

A similar validation for the disk experiments is not as straightforward since other

factors such as disk seek times, default power management techniques as well as the effect of

disk caches need to be accounted for.

3.2.4.2 Effect of the Display

In all previous experiments, we had the display off. However, it is a well-known fact

that the display is a major source of energy consumption. In this set of experiments, we monitor

the energy consumption for some of the basic tasks while the display is on. In particular, we

show results for baseline and processing. We ran these experiments on the Debian laptop.

The discharge rate for the baseline experiment is shown in Figure 3.2 (a). We notice

that during part of the experiment the bottom of the discharge rate decreases to about 9 W,

and this is because the display was turned off and then the discharge rate is about the same

we obtained for the baseline task. Thus we observe that the display consumes about as much

energy as a disk read or a network reception task.

Figure 3.2 (b) shows the discharge rate for the processing experiment. Again we

observe that the discharge rate decreases to about 24W, which is the mean discharge rate for the

basic processing task. This happens because at this point the display was turned off.

Table 3.2 shows the mean discharge rate and standard deviation for the basic tasks

63

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

12400

16800

21200

25600

30000

lcd baseline

Time
(s)

Battery Discharge Rate
(mW)

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
8000

12500

17000

21500

26000

30500

35000

lcd Processing

Time
(s)

Battery Discharge Rate
(mW)

(b)

Figure 3.2: Battery discharge rate for Dell C600 with Linux Debian and display on: (a) baseline,
(b) processing

64

Table 3.2: Mean discharge rate for basic tasks with display on on Dell C600 with Linux Debian
Task Mean St. Deviation
Baseline 14.516 W 6.129
Processing 28.648 W 2.147

with display on. When comparing this table with Table 3.1, we notice, as expected, an increase

in the mean discharge rate, since the display increases the energy consumption.

3.2.4.3 Combining Tasks

When we were in the process of choosing the tasks for our energy consumption bench-

mark, we conjectured that a generic user task consists of a combination of idle, processing, disk

access and network communication. In this section, we aim at evaluating the energy consump-

tion and the battery discharge behavior for different combinations of basic tasks. For instance,

we choose the following combinations:

• Combo 1: processing (1.2s real time) and disk access: write (10MB of data, 2.8s real

time) and read (10MB, 0.4s real time);

• Combo 2: processing (1.2s real time) and network transmission (10M o data, 2.3s real

time);

• Combo 3: processing (1.2s real time), network transmission (10M o data, 2.3s real time)

and disk reads (10MB, 0.4s real time).

We ran these benchmarks on the same platform, i.e. Dell C600 running Linux Debian.

Figure 3.3 presents the battery discharge rate curves for each of the composite tasks,

i.e. Combo 1, Combo 2 and Combo 3.

65

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 1

Time
(s)

Battery Discharge Rate
(mW)

(a)

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 2

Time
(s)

Battery Discharge Rate
(mW)

(b)

0 2200 4400 6600 8800 11000
8000

12400

16800

21200

25600

30000

Combo 3

Time
(s)

Battery Discharge Rate
(mW)

(c)

Figure 3.3: Battery Discharge Rate for (a) Combo 1, (b) Combo 2 and (c) Combo 3, all on Dell
C600.

66

Table 3.3: Mean discharge rate for combination of tasks on Dell C600 running Linux Debian

Task Mean St. Deviation
Combo 1 22.455 W 4.343
Combo 2 19.511 W 6.754
Combo 3 17.486 W 4.392

The mean discharge rate and the standard deviation for each task are presented in

Table 3.3. The mean discharge rate for Combo 1 is less than the basic processing task (Table

3.1, second row), but it is more that the disk access (Table 3.1, third and fourth rows), which is

the dominating task, i.e. the task that takes longer to execute within the combo. For Combo 2,

the mean discharge rate is higher than the discharge rate for network transmission (Table 3.1,

fifth row), while for Combo 3 it is about the same as the discharge rate for disk writes (Table 3.1,

third row). From this results we note that the dominating task influences the most the discharge

rate.

3.2.5 Discussion

Our premise in this work is that task-level energy consumption information is key

to achieving adequate power-aware task distribution in wireless distributed computing environ-

ments. Consider, for instance, the case of emergency rescue operations needed after a major

(e.g., natural) disaster which destroyed (completely or partially) basic infrastructure such as the

power grid and data communication network. Emergency rescue crews would then use their

mobile wireless devices to perform all needed computation to assess damage, find survivors,

etc. For example, in collapsed buildings, the rescue crew can use information from seismic

67

sensors embedded in the building to perform structural assessment in order to find portions of

the building that have (or not) been affected, what is the probability they will collapse (if they

haven’t yet), and when that will occur. This computation should be distributed among all (or

some) of the participating networked nodes to load balance the computational load and the en-

ergy spent. To do so effectively, information on the current energy budget of the nodes as well

as the amount of energy consumed by ”basic” tasks must be employed. By looking at the typ-

ical mix of ”basic” tasks to be executed, the ”task distribution manager” will be able to assess

whether some node can take part on the computation and what is the operational lifetime of the

network.

Next we apply a similar methodology and benchmark to another mobile platforms:

the Meerkat’s visual sensor node, which is based on the Crossbow Stargate.

3.3 Characterizing Energy Consumption in a Visual Sensor Net-

work Testbed

We have conducted a thorough energy consumption characterization of the Meerkats

testbed [9], which is based on the Crossbow Stargate platform [17]. We follow the same ap-

proach presented in Section 3.2, i.e. it is based on assessing energy consumption of activities

representative of the target application (e.g., perimeter surveillance) using a benchmark that

runs (individual and combinations of) “basic” tasks such as processing, flash memory access,

image acquisition, and communication over the network. In our characterization, we consider

the various hardware states the system switches through as it executes these benchmarks, e.g.,

68

different radio modes (sleep, idle, transmission, reception), and webcam modes (off, on, and

acquiring image). We report both steady-state and transient (i.e., when switching states) en-

ergy consumption behavior. Besides results obtained from direct measurement using a digital

multimeter, we also present results obtained using the Stargate’s on-board energy consumption

measuring capabilities.

The remainder of the section is organized as follows. Section 3.3.1 describes the

Meerkats testbed, while Section 3.3.2 describes the methodology used on the energy consump-

tion characterization, including the benchmark and measurement setup used. Results for steady-

state and transition costs (delay and additional charge) are presented in Sections 3.3.3 and 3.3.4

respectively.

3.3.1 The Meerkats Testbed

This section describes the current Meerkats visual sensor network testbed. It presents

a detailed description of the Meerkats node’s hardware and software organization.

The Meerkats project is developed in collaboration with Professor Roberto Manduchi,

and Graduate Students Xiaoye Lu and Gefan Zhang.

3.3.1.1 Hardware Organization

The Meerkats node (shown in Figure 3.4) is based on the Crossbow’s Stargate [17]

platform, which has an XScale PXA255 CPU (400 MHz) with 32MB flash memory and 64MB

SDRAM. PCMCIA and Compact Flash connectors are available on the main board. The Star-

gate also has a daughter board with Ethernet, USB and serial connectors. We equipped each

69

Figure 3.4: Visual sensing node in the Meerkats testbed

Stargate with an Orinoco Gold 802.11b PCMCIA wireless card and a Logitech QuickCam Pro

4000 webcam connected through the USB. The QuickCam can capture video with resolution of

up to 640x480 pixels.

The Stargate can be powered through a 5V DC adapter or through a battery. Both

the main– and daughter boards have battery input, but only the daughter board has a DC input.

Since we are using the USB connector located on the daughter board, we need to power the

Stargate through the daughter board with 5V. To achieve this, we use a customized 7.4 Volt,

1000mAh, 2 cell Lithium-Ion (Li-Ion) battery (the white rectangle shown in Figure 3.4), manu-

factured by Energy Sales, Inc and an external DC-DC (with efficiency of about 80%) switching

regulator. The operating system is Stargate version 7.3 which is an embedded Linux system

(kernel 2.4.19).

The choice of Crossbow’s Stargate [17] as the Meerkat’s node main component was

based on a number of considerations. First, given that our focus was to devise effective resource

70

management policies for visual sensor networks, it made sense to use of-the-shelf components.

Choosing a platform that runs an open source operating system was also important in developing

an open source system. And, since we selected a webcam as the visual sensor, we needed a

board with a USB connector. As previously discussed, we also needed a platform that provided

reasonable processing and storage capabilities.

Currently, the Meerkats testbed is composed of eight visual sensor nodes, and one

laptop (Dell Inspiron 4000 with PIII CPU running Linux (kernel 2.4.20) and equipped with an

Orinoco Gold 802.11b wireless card) acting as the information sink.

An important feature provided by the Stargate is its battery monitoring capability.

This is achieved through a specialized chip (DS2438) on the main board. Two kernel modules,

namely onewire and batmon, provide access to the battery monitor chip and retrieve information

on the battery’s current state.

3.3.1.2 Software Organization

The Meerkats’ visual sensor node current software organization, shown in Figure 3.5,

consists of three main components, namely the Resource Manager, Visual Processing, and Com-

munication modules.

Resource Manager

The Resource Manager is the main thread of control running on the Meerkats node.

It controls the activation of the webcam and wireless network card in order to perform image

acquisition/processing and communication-related tasks (e.g., transmit an image), respectively,

as needed.

71

Communication

Node Hardware
Meerkats’ Visual Sensor

r
e
g
a
n
a
M

e
c
r
u

Processing
Visual

R
e
s
o

Figure 3.5: Meerkats software organization

For energy conservation, the Resource Manager has the Meerkats sensor node oper-

ating on a duty cycle basis, i.e., the node periodically wakes up, performs some task as needed,

and goes back to either “idle” or “sleep” mode. The sleep mode has the lowest power con-

sumption, but switching the node to and from sleep mode requires a non-negligible amount of

time. This corresponds to the sum of the time it takes to physically switch the operating mode

of the CPU, and to activate/deactivate the necessary peripherals. The node is in “idle” mode

when it is not performing visual acquisition, processing, or transmission, and when it is not

activate/deactivate the necessary peripherals. Note that the node “idle” mode may or may not

correspond to the processor “idle” mode [35]: the operating system determines whether/when

to perform this switch, in a way that is transparent to the user. A node’s idle mode has in fact

a number of variations, depending on which system components (webcam or wireless card) are

activated (more details in Section 3.3.2).

72

Visual Processing

The Visual Processing module [44] performs all vision-related tasks, including image

acquisition, compression, and processing. It is invoked by the Resource Manager after the

webcam has been activated. Upon completion, Visual Processing returns control to the Resource

Manager with a parameter flagging whether an event has been detected. The goal is to detect

events, in the form of image areas that are different from the background. If an event is detected,

the relevant portion of the image is compressed and transmitted to the sink.

The visual processing involved in this experiment is quite simple. A background color

image is stored (in a RAM file) and compared to the newly acquired image. When the difference

in any color channel at a certain pixel between a new image and the corresponding background is

larger than a pre-set threshold, the pixel is labeled as “foreground”. The choice of the threshold

is rather critical; mechanisms that choose a threshold based on the local color channel variance

(or more complex schemes) have been proposed [76], but are computationally demanding, so

we opted for a fixed threshold instead. We do, however, update those pixels in the background

image that are not labeled as “foreground”. The update consists in computing a convex linear

combination of the color values of the pixel in the background and in the newly acquire image.

This applies only for the pixels that were not labeled as “foreground”. After all pixels have

been labeled, we run a “blob detector”, that is, we identify the connected components of the

foreground map. Components that are too small (less than 300 pixels) are rejected from the

map. This phase is very important, as it efficiently removes false positive due to noise. We use

a fast implementation of a classical blob filter [27]. Finally, if there are remaining blobs with

area larger than the threshold, a sub-image is identified by selecting the smallest rectangle that

73

contains all of the remaining blobs. This sub-image is then JPEG–compressed for transmission.

Communication

The third component of the Meerkats software architecture is the Communication

module 3 which is responsible for all communication-related tasks between a Meerkats node

and the information sink, as well as communication among Meerkats nodes themselves.

The information sink runs a server program that listens for connection requests from

sensor nodes, opens a connection, receives image files and renders images on the sink’s console.

This program is multi-threaded: one main thread listens for connection requests while individ-

ual requests are handled by separate threads. In other words, the server is always listening for

requests and when a new request is received, the server will invoke a new thread to handle that

request and establish the connection with the requesting sensor node. The corresponding image

file will be transmitted over this connection. Once the server receives the whole image, it will

be displayed on screen.

Currently, the server’s screen is divided into four windows, which means that im-

ages from four different sensor nodes can be shown simultaneously. Images from a particular

Meerkats node will use the same window, and the most recently received image will be dis-

played. Older images are saved on the server’s hard disk.

The client program running on the sensor node initiates a connection with the server

program running on the information sink whenever it needs to transmit an image. Note that

images are sent one at a time. The current version of the client and server programs use TCP as

the transport protocol for image transmission.
3The Communication module was developed by Meerkats project member Gefan Zhang.

74

Meerkats is a multi-hop wireless sensor network, and thus its nodes need to run a

routing protocol in order to send data over the network. We picked the Dynamic Source Rout-

ing (DSR) protocol [38], an on-demand routing mechanism especially designed for multi-hop

wireless ad-hoc networks. The version of DSR run on Meerkats nodes was ported from the

DSR kernel module available for the PocketPC Linux [73] to run on Linux kernel 2.4.20.

3.3.2 Methodology

The basis for our energy consumption characterization study of the Meerkats testbed

is to define a benchmark representative of typical activities performed by wireless visual sen-

sor networks. Such activities include acquiring, processing, and transmitting images. We then

decompose these activities into “basic” tasks such as processing, input/output (flash memory,

webcam), and communication (transmission and reception over the network). Running bench-

marks consisting of these individual tasks and a combination thereof takes the system through

different hardware states, i.e. different radio modes (sleep, idle, rx, tx) and webcam modes

(off, on and acquiring images). To better characterize these different states, let us review the

Meerkats node’s major hardware subsystems, namely:

• Processing core: consists of the processor itself, memory (RAM and flash), and associ-

ated hardware;

• Sensing core: includes the sensing devices, i.e. the webcam, together with the USB

interface;

• Communication core: consists of the wireless communication card, and associated

75

PCMCIA modules.

These different components can be in different states. For instance, the processor can

be sleeping, idle, active (processing), writing data or reading data; the sensor can be sleeping,

idle, or active (i.e., acquiring image/video); while the radio can be sleeping, idle, receiving or

transmitting. However, instead of exploring the whole state space, i.e., ALL state combinations,

we only consider the physically possible ones. For example, it does not make sense to have the

processor sleeping and radio and/or sensors idle or active, since the latter need to be controlled

by the processor.

Switching the Meerkats node through its state space requires executing specific sys-

tem calls which activate/deactivate the system components. More specifically, to put the pro-

cessor in sleep mode, one must execute the utility sys suspend, providing as parameter the sleep

interval. The node automatically wakes-up when the timer set with the sleep interval expires.

It should be noted that, in the Stargate platform, when the timer for the sys suspend command

expires and the node “wakes up”, the wireless card goes to idle no matter what its previous

state was. This is not the case for the webcam because of the way the sys suspend script is

implemented. cardctl suspend deactivates the wireless card, while cardctl resume activates it.

The mechanism we use to deactivate the webcam is to remove the corresponding modules (rm-

mod usb-ohci-sa1111) from the kernel, while activating the webcam requires inserting back the

corresponding modules (insmod usb-ohci-sa1111).

In our experiments, we observed that, after loading the webcam modules, we still have

to wait for some time (one second turned out to be sufficient) until the camera is ready to acquire

76

HP E3631A
Power Supply

Stargate

HP 34401A
Multimeter

+ +

−

−

GPIB cable

Figure 3.6: Measurements setup

images. We thus had to explicit add that wait time to the node’s duty cycle when appropriate.

Similarly, we also have to add a wait time of one second after activating the wireless card.

Although the task to activated the component was finished, the hardware itself was not ready to

be used.

It should be noted that, in the Stargate platform, when the timer for the sys suspend

command expires and the node ”wakes up”, the wireless card goes to idle no matter what its

previous state was. This is not the case for the webcam because of the way the sys suspend

script is implemented. In our measurements, we unplugged the wireless card as well as the

webcam to obtain the different combinations of hardware subsystems.

3.3.2.1 Measurement Setup

For our direct measurements, we use the HP E3631A power supply configured to

provide 5.4V to power the Stargate. The HP34401A digital multimeter (DMM) is used to

measure the current flow as the different hardware subsystems become active/inactive while

the different benchmarks are executed. Figure 3.6 shows a block diagram describing to our

measurement setup.

77

As shown in Figure 3.6, a GPIB cable is used to connect the HP 34401A DMM to a

computer to collect and record measurement samples. The computer is running a custom vi on

LabVIEW [33], which will save the DMM readings with a time-stamp in a two column text file.

The DMM was configured to provide a reading rate of 60 Hz. This setup allows us to measure

steady-state currents (via time integration) as well as transients.

3.3.2.2 Energy Consumption Characterization Benchmark

As previously discussed, we define an energy consumption characterization bench-

mark consisting of a set of basic operations that are representative of activities performed by

visual sensor nodes. Similarly to what we defined in Section 3.2.2, our benchmark consists of

five main task categories, namely: idle, processing intensive, storage intensive, communication

intensive and visual sensing. The descriptions of these tasks follow.

• Idle: The idle– or baseline benchmark captures the energy consumption behavior of the

node when only basic operating system tasks are running. This benchmark characterizes

energy consumption when the system is idle and also serves as baseline for all other tasks.

• Processing-intensive: The characterization of processing-intensive tasks is performed

using the FFT benchmark [1], which is part of SPEC’s CPU2000 [74], an industry-

standardized CPU-intensive benchmark suite.

• Storage-intensive: The storage media available on the Stargates is flash memory. In

order to understand its energy consumption behavior, we use a program that reads and

writes files with random data.

78

• Communication-intensive: To characterize the energy consumed by communication-

related tasks, we use a set of UDP client/server programs. The client program transmits

a certain amount of random bytes (provided as a argument) to the server. To obtain the

energy cost of transmission, we run the client program on the Stargate being monitored.

Then we monitor the Stargate running the server program to obtain the energy cost of

reception.

• Visual sensing: Power consumed by the webcam is characterized using the videotime

program available on the Stargate 7.3, to acquire a sequence of frames.

3.3.3 Steady-state Results

This section reports steady-state energy consumption behavior for the Meerkats visual

sensing node. Steady-state is characterized by task execution: processing, acquiring image,

communication, etc.

Using the setup described in Section 3.3.2.1, we executed each of the benchmarks de-

scribed in Section 3.3.2.2 activating different combinations of Meerkats node components (i.e.,

processor core, processor/sensor core, processor/radio core, and processor/radio/sensor core).

Table 3.4 shows average current (over five runs) in milli-Amperes drawn from the Meerkats

node when running the different benchmarks with different combinations of active hardware

subsystems. Standard deviations are also presented.

These measurements highlight a number of interesting observations. For instance,

the considerable difference in power consumption when comparing results from the “sleep”

and “idle” benchmarks. It is also interesting to note that communication-related tasks (i.e., RX

79

Table 3.4: Average current (over five runs) in milli-Amperes and standard deviation drawn by
the Meerkats’ node.

Task Processing Proc./Sensing Proc./Communication Proc./Sensing/
Core Core Core Communication Core

idle 139± 1.57 324± 2.33 300± 2.92 487± 2.51
FFT 291± 1.21 474± 9.70 457± 1.23 642± 9.20
read 248± 2.12 434± 5.58 414± 2.89 604± 1.94
write 248± 1.33 436± 6.90 413± 1.05 604± 2.16
image - 341± 24.17 - 515± 2.04
TX - - 383± 0.92 559± 8.39
RX - - 361± 2.72 537± 9.10
sleep 3± 0.04 3± 0.02 10± 0.26 9± 0.11

and TX) are less expensive than intensive processing and flash access when the radio modules

are loaded. Additionally: the processing-intensive benchmark results in the highest current re-

quirement; flash reads and writes cost about the same; and TX is only about 5% more expensive

than RX.

The relatively small difference between RX and TX modes has been observed before,

e.g., in [23] which reported the power consumption of a WaveLAN wireless card at 2 Mbps.

The reported difference, however, considerably higher than the difference we see here. This is

partially due to the fact that the difference reported in [23] was computed based on the current

drained by the wireless card only. In our measurements, we consider the overall system, which

also includes the processing associated with communication.

Figure 3.7 plots the results shown in Table 3.4, highlighting other interesting results.

For instance, we observe that the webcam adds about 185mA to Processing Core, while the

wireless card adds about 165mA to Processing Core; i.e., the additional current consumed by

activating a system component is constant over all tasks.

80

Figure 3.7: Steady-state current draw in the Meerkats node

3.3.4 Transients Results

This section reports transient energy consumption behavior for the Meerkats visual

sensing node. Transients are captured when state changes occur, e.g., node goes to sleep and

wakes up, or webcam is deactivated.

To characterize transient power consumption behavior when the Meerkats node switches

between operational states, we added and removed the corresponding operating system mod-

ules/drivers controlling each subsystem (e.g., webcam, network card) being activated/deactivated.

In some cases, switching states involves powering on/off electronic components (USB/webcam,

network card). This typically causes short transients with possibly high currents. The length of

a transient depends both on the electrical characteristics of the subsystem being powered on/off

81

Figure 3.8: Transients from complete system to suspend wireless card, suspend webcam, and
switch board to sleep state; then, wake up board, reload webcam, resume wireless card and start
tx.

and the processing/response time of the operating system when executing the task(s) required

to switch states. The graph in Figure 3.8 gives an example of power consumption transients for

the Meerkats node. This particular run starts with the node fully operational, i.e., with both the

network card and webcam activated. The first transient corresponds to deactivating the network

card followed by deactivating the webcam, and switching the board to sleep mode. Then, at time

6.5 sec, the board wakes up, and the webcam and network card are reactivated, respectively.

Another example of power consumption transients for the Meerkats node is shown in

Figure 3.9. This particular example considers that the Meerkats node is in idle mode with only

the board active, and that some application running on the node requests an image to be taken.

This request will require turning the camera on, taking the picture, writing to flash, and then

turning the camera off.

82

Figure 3.9: Tasks involved when acquiring an image.

It is clear from Figures 3.8 and 3.9 that transients are not at all negligible in the

Stargate (and likely in other sensor network platforms). For accuracy, energy characterization

for these platforms must account for both the additional power consumed by transients as well

as the associated delay.

Using our measurements, we are able to calculate the delay and the additional energy

consumption due state transitions. The transitions considered are:

• Activate/deactivate webcam: a script that removes/reloads related kernel modules is

used;

• Activate/deactivate wireless card: this is achieved using the command line utility card-

ctl suspend/resume;

• Put node to sleep: the script sys suspend performs the necessary tasks to put the proces-

83

Table 3.5: Transition durations in milli-seconds (average and standard deviation calculated over
twenty different runs).

Task Processing Proc./Sensing Proc./Comm. Proc./Sensing/
Core Core Core Comm. Core

Resume webcam - 1301± 27 - 1308± 10
Suspend webcam - 356± 11 - 363± 12
Resume wireless card - - 2316± 329 2251± 10
Suspend wireless card - - 374± 80 350± 11
Go to sleep 389± 33 398± 12 358± 9 491± 23
Wake up 455± 57 1292± 9 2798± 10 3739± 13

sor and the whole board in sleep mode for a given amount of time;

• Wake up node: the node wakes up to service an interrupt. The default for the Meerkats

node is to wake up when the time interval given as a parameter to the sys suspend script

expires.

Transient delay is defined as the interval between the time the corresponding com-

mand to activate/deactivate a specific device is issued and the time current consumption be-

comes stationary, i.e., when all operations associated with the transient have been completed.

Table 3.5 presents the delay associated with each transition considered.

As previously pointed out, transients are not at all negligible neither in terms of power

consumed nor in terms of delay incurred. For instance, as shown in Table 3.5, resuming wireless

card activities takes about 2.3 seconds, while resuming the webcam takes about 1.3 seconds.

Suspending the webcam takes about 350 milli-seconds, which is about the same for the webcam.

We also notice that when the node wakes up with the radio core on, the process will take longer

since the node must first have the board operational, and then power the PCMCIA hardware

so that the wireless card can become operational. This is also true when the sensor core is on.

84

Table 3.6: Time to execute software associated with transitions.

Program Time (s)
Resume webcam 0.34
Suspend webcam 0.16
Resume wireless card 1.97
Suspend wireless card 0.13

Clearly, this has direct impact on node duty-cycling.

In order to verify the delays reported in Table 3.5, we use the operating system utility

time to obtain the time necessary to execute the programs that trigger the transitions. Table 3.6

shows these results which are consistently smaller than the corresponding results in Table 3.5.

This confirms that the times reported in Table 3.5 correspond to the times it takes for the oper-

ating system to execute the corresponding software modules (as reported in Table 3.6) plus the

time for the corresponding hardware sub-system to become active/inactive.

The amount of charge consumed by a transition can be obtained by integrating over

time the difference in current between the ideal and actual transient behavior. For example, Fig-

ure 3.10 shows a transition from idle to sleep and then again to idle for the Processing/Sensing

Core. The gray area in the figure represents the amount of additional charge consumed due to

transitory current fluctuations.

Table 3.7 summarizes the charge needed for the state transitions mentioned above.

The results presented are averaged over twenty different runs. Some of the results are notewor-

thy. For instance, for the Processing/Sensing Core sub-system, resuming the webcam consumes

about the same charge as going to sleep, although the delay is about three times larger. Another

interesting result is that there is no correlation between delay and charge, e.g., transitions with

85

Figure 3.10: Charge consumed by transitions from idle to sleep and back to idle of the Process-
ing/Sensing Core.

the same delay may need different charge. For instance, switching to sleep mode for the Pro-

cessing Core takes 389 milli-seconds and requires 75 milli-Coulombs on average, while for

the Processing/Sensing Core it takes 398 milli-seconds and requires 111 milli-Coulombs on

average.

The results presented in Tables 3.5 and 3.7 show that both the hardware and software

Table 3.7: Charge in milli-Coulombs (average and standard deviation calculated over twenty
runs) required for transitions.

Task Processing Proc./Sensing Proc./Comm. Proc./Sensing/
Core Core Core Comm. Core

Resume webcam - 126± 5 - 127± 2
Suspend webcam - 79± 6 - 73± 3
Resume wireless card - - 104± 18 110± 2
Suspend wireless card - - 54± 19 50± 3
Go to sleep 75± 12 111± 11 89± 3 175± 6
Wake up 86± 9 279± 3 496± 3 878± 6

86

involved in the transition play a significant role in determining the delay and charge of each

transition.

We should again emphasize that delay and additional amount of charge due to transi-

tions are an important consideration when scheduling duty cycles for visual sensing nodes. For

example, in some cases, it may be more energy efficient to keep radio and webcam modules

loaded rather than loading and unloading them very frequently.

3.4 In-system Energy Consumption Monitoring

As we mentioned before, an important feature provided by the Stargate is its built-in

battery monitoring capability. This is achieved through a specialized chip, the DS2438, located

on the main board. In this section, we describe how on-board battery monitoring works on the

Stargate, how we extended it, and the power consumption measurements we obtain using it.

This work done in collaboration with Vladislav Petkov [57], and was already con-

tributed to the Stargate community. It is available at http://www.soe.ucsc.edu/∼cintia/

batmon.html.

3.4.1 DS2438 Battery Monitor

Crossbow’s Stargate smart battery monitoring capability, using the DS2438 chip, is

normally found permanently mated to a rechargeable battery in a battery pack. The features

of the DS2438 used by the Stargate are the ability to measure battery voltage and current and

its current accumulators. With this information, battery consumption and battery life can be

87

Figure 3.11: Battery monitor connection diagram. Voltage across the shunt resistor is measured
by Vsens+ and Vsens−. Current can be determined using V = I ×R.

monitored and system behavior adjusted accordingly.

Measuring current is achieved by measuring the voltage at the ends of a low-value

shunt resistor, as shown in Figure 3.11. The DS2438 chip [67] takes current measurements at a

rate of 36.41 times per second. These measurements are stored in the chip’s RAM and can be

acquired through the one-wire interface (DQ pin). The readings are stored in units of 0.2441mV

(1/4096) and the maximum voltage difference between the Vsens pins is 300mV.

The Stargate is equipped with a 5mΩ shunt resistor. Since voltage readings are stored

in units of 0.2441mV, this would allow a granularity of 48.82mA (obtained using V = R × i)

for the current readings. Additionally, the DS2438 chip can introduce an error of±2 LSb (least

significant bits), which could result in as much as ±97.64mA of error. Considering the current

range for the activities we define as representative of visual sensor network activities (see Ta-

ble 3.4), it is clear that the granularity of 48.82mA does not allow accurate readings. Thus we

replaced the existing 5mΩ shunt resistor with a 270mΩ one. By doing this, we achieve a gran-

88

ularity of 0.904mA with ±1.808mA error. The equation necessary to obtain the instantaneous

current reading is shown in Equation 3.1.

I = CurrentRegister/(4096 ∗Rshunt) (3.1)

The DS2438 has three different current accumulators: the discharge current accu-

mulator(DCA), the charge current accumulator(CCA) and the integrated current accumula-

tor(ICA). When used in a battery pack, the DS2438 keeps track of charging and discharging

current. Whereas the CCA and DCA registers are only affected by charging and discharging

current respectively, the ICA is affected by current in both directions and therefore serves as a

sort of fuel gauge. Since there is no support for charging batteries on the Stargate, the DS2438

does not see any charging current, which means that the ICA and CCA registers hold no useful

information in this system, and only the DCA can be used. The equation for calculating the

amount of charge that has flowed out of the battery is shown in Equation 3.2.

Charge(mAh) =
DCAreg × 1000

(64×Rsens)
(3.2)

Note that this charge value is relative to the very first moment that the DS2438 mea-

sured current flowing through the sense resistor. The DCA register never decrements, so in

order to use it correctly, it’s value at some defined starting time must be subtracted from its

present value to figure out the charge that has flowed out since then. The granularity of the

DCA register is 1000
(64×0.27Ω) = 57.87mAh.

89

3.4.2 Kernel Modules and Interface

As described in Section 3.3.1, the Meerkats node runs a Linux-based operating sys-

tem, namely the Stargate 7.3 operating system which provides two kernel modules that interface

with the battery monitoring hardware, namely: the onewire and batmon modules 4. onewire

implements the one-wire protocol used to communicate with the DS2438 chip, and provides

wrapper functions for reading from and writing to the DS2348 through the one-wire data bus.

batmon is a higher level module, that uses the functions made available by onewire to read the

voltage from the chip and make it available for reading in user-space through a device (i.e.,

/dev/platx/batmon).

The original batmon provides only voltage readings, therefore we had to modify it

to obtain current readings as well. The function get battery status() in the batmon module,

which previously only returned the battery voltage, was modified to return the current across

the shunt resistor, as well as the three different current accumulators: the discharge current

accumulator(DCA), the charge current accumulator(CCA) and the integrated current accumu-

lator(ICA). The output from get battery status() contains the raw value of the registers (hex-

adecimal notation).

Another issue with the current measurement is that the DS2438 chip has an offset

register (intended to cancel small offset errors in the current ADC), which is added to the cur-

rent register after every reading is taken. The offset register needs to be calibrated to avoid

introducing errors 5.
4Both modules were implemented by Trevor Pering
5According to the DS2438 data-sheet [67], a calibration is done before shipment, but the system should be

calibrated altogether.

90

Table 3.8: Current (in milli-Amperes) obtained with batread.

Task Processing Proc./Sensing Proc./Communication Proc./Sensing/
Core Core Core Communication Core

idle 143.5 331.4 304.4 495.7
FFT 250.9 434.2 454.0 633.4
read 220.3 441.3 419.5 611.7
write 223.5 415.6 392.8 599.5
image - 352.2 - 509.8
tx - - 421.3 592.8
rx - - 324.4 526.0

3.4.3 Battery Monitoring Performance Validation

In this section we show the results for the validation of the instantaneous current

readings, as well as for the discharge current accumulator(DCA).

Instantaneous Current

In order to validate the current readings provided by batread, we use the same setup

described in Section 3.3.2.1 and followed the same methodology described in Section 3.3.2 to

conduct direct current measurements, while using batread to record the current being drained by

the system every second. batread is a simple program that polls /dev/platx/batmon and records

the current reading. As parameters it uses the number of samples, the interval (in seconds) be-

tween them, and the output filename. It is implemented as loop that sleeps in between readings

(to minimize interference with the system’s energy consumption).

Table 3.8 presents the results obtained by batread, while Table 3.9 presents the current

measured by the multimeter. We do not present results for sleep in Table 3.8 since the system

will not be able to keep track of the current readings if the processor is sleeping.

Comparing the results in Tables 3.9 and 3.8, we can quantify the interference of on-

91

Table 3.9: Current, in milli-Amperes, measured with DMM while batread was running (average
and standard deviation calculated over five runs).

Task Processing Proc./Sensing Proc./Communication Proc./Sensing/
Core Core Core Communication Core

idle 134± 3 317± 1 294± 1 479± 1
FFT 287± 1 476± 1 455± 1 642± 1
read 249± 1 440± 1 417± 1 600± 5
write 246± 1 436± 1 413± 0 599± 1
image - 358± 3 - 513± 3
tx - - 390± 1 564± 10
rx - - 369± 1 545± 11
sleep 3± 0 3± 0 9± 0.1 10± 0.1

board battery monitoring. For example, for tasks that are more power-demanding (e.g., FFT),

the average current readings obtained from batread are smaller than the corresponding DMM

readings. This is expected since the processor needs to switch between tasks (e.g., FFT and

batread) to execute the in-system current measurements and because batread is less power-

demanding, the average current consumed is lower that when just FFT runs. For less power-

consuming tasks, the interference may happen in the opposite direction, i.e., the current readings

by batread may be higher.

Figure 3.12 summarizes the results from Tables 3.9, 3.8 and 3.4 for the Process-

ing/Sensing/ Communication Core subsystem.

We also have to keep in mind that the DS2438 chip has an error of±2 LSb (±1.808mA

in the current Meerkats node configuration). Another issue is the rate at which batread is record-

ing current readings, which is one reading every second. When compared to the multimeter

reading frequency (60 Hz), this is very low and therefore may cause loss of information. On the

other hand, the higher the reading rate for batread, the more interference it will cause.

92

Figure 3.12: Current (in Amperes) measured with DMM with and without batread running, and
batread results. The results apply to the Processing/Sensing/Communication Core).

Figures 3.13 and 3.14 illustrates the effect of Stargate’s in-system energy consumption

monitoring interference with respect to readings of current drawn.

In-system energy consumption monitoring is important in order to track battery dis-

charge and be able to make decisions influencing the trade-off between power conservation (and

thus operation lifetime of the system) and performance. Although in-system monitoring inter-

feres slightly with energy consumption, we were still able to cross-validate on-board monitoring

measurements against DMM readings.

Discharge Current Accumulator

In order to validate the discharge current accumulator (DCA) readings provided by

batmon, we use the setup described in Section 3.3.2.1. We use a program that reads the DCA

register value from /dev/platx/batmon and converts it to values in milli-Ampère-hour. This

program is used first to determine the DCA reading associated with the battery fully charged.

93

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

C
ur

re
nt

 (
A

)

Time (sec)

Figure 3.13: Current being drained by Processing Core when FFT is being executed.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

C
ur

re
nt

 (
A

)

Time (sec)

Figure 3.14: Current being drained by Processing Core when batread is monitoring the system
at 1 Hertz and FFT is being executed.

94

Table 3.10: Charge (in milli-Coulombs) obtained with DMM and batmon.

Task DMM batmon DCA Relative Error
duty cycle (a) - run 1 3679.7 3956.4 7.0%
duty cycle (a) - run 2 3695.1 3960.0 6.7%
duty cycle (a) - run 3 3723.3 3956.4 5.9%
duty cycle (a) - run 4 3434.7 3747.6 8.3%
duty cycle (a) - run 6 3729.5 3960.0 5.8%
duty cycle (a) - run 7 3419.4 3747.6 8.8%
duty cycle (a) - run 8 3457.4 3747.6 7.7%
duty cycle (a) - run 9 3441.4 3751.2 8.3%
duty cycle (a) - run 10 3682.7 3956.4 6.9%
duty cycle (a) - run 11 3411.5 3330.0 -2.4%
duty cycle (a) - run 12 3722.5 3330.0 -11.8%
duty cycle (a) - run 13 3708.8 3747.6 1.0%
duty cycle (a) - run 14 3706.2 3960.0 6.4%
duty cycle (a) - run 15 3702.1 3542.4 -4.5%
average: 3608.2 3763.8 4.1%
standard deviation: 136.7 224.2

Then this program is used periodically to determine the amount of charge used, and once it

reaches 1000mAh the system is shutdown. To mimic the use of the Stargate as a visual sensor

node, we created a duty cycle 6 and executed it continuously.

Table 3.10 presents the results obtained by batmon as well as the results obtained by

integrating the current readings from the DMM for fifteen runs of the same duty cycle. Note that

the results in Table 3.10 are in milli-Coulombs, which is the direct result of the time-integrating

the measurements obtained with the DMM. batmon results were converted from milli-Ampère-

hour to milli-Coulombs for comparison purposes.

The overall relative error between DMM time-integration and batmon DCA is 4.1%,

although it ranges from -11.8% up to 8.8%. As we already mentioned, in our testbed, the
6In Chapter 4 we will discuss the use of duty cycles in a visual sensor network and its relevant tasks. For this

experiment, we used duty cycle (a), described in Section 4.4.

95

granularity of the DCA register is 57.87mAh. This coupled with the fact that we checked for

the battery every 100 cycles accounts for the variation among the fifteen runs.

3.5 Related Work

In this section, we summarize related work in areas that are more relevant to our

work, including energy consumption measurements for network interfaces and mobile devices,

system’s power management, storage energy consumption issues, etc.

Stem et al [77] measures the power consumption of some network interface cards

(NICs) when used by different end-user devices. Authors also report on transport- and application-

level strategies to reduce energy consumption by NICs. Later, Feeney et al [23] reported detailed

energy consumption measurements of some commercially-available IEEE 802.11 NICs operat-

ing in ad hoc mode. Along the same lines, Erbert et al [22] assessed the impact of transmission

rate, transmit power, and packet size on energy consumption in a typical wireless network in-

terface.

In [43], energy consumption in ad hoc mobile terminals is modeled using the Ad-

vanced Configuration Power Interface [31], or ACPI. ACPI was used to measure energy con-

sumption due to transmission/reception. The resulting energy consumption model includes two

states: high consumption state, where the host receives and transmits, and low consumption

state, where the node receives or is in idle. While this approach to model battery discharge

empirically is based on values that laptop power management would see in real systems, it is

platform-dependent.

96

In order to understand the issues on energy consumption of storage on mobile devices,

Zheng et al [88] evaluated three different storage alternatives: a compact flash, a micro-drive

and a wireless LAN card (which would be used to access a remote storage). By considering

these different devices, their different power management schemes were studied, as well as

the energy cost of their states were measured. Also the read/write latency and bandwidth was

measured. Authors considered two types of files systems: update-in-place and log-structured.

Results show that the energy consumption behavior depends on the device power management

scheme, on the distribution of idleness in the workload, and on the file system strategies.

Dempsey [86] extends the Disk-Sim simulator to provide a simulation environment

that also includes an energy consumption. Dempsey considers the power consumed for several

different disk tasks, such as seek, rotation, read, write and stand-by.

Displays are a major consumer of energy. Iyer et al [37] discuss the use of energy-

adaptive displays sub-systems. Authors use OLED displays and propose a software optimiza-

tion called dark windows. Dark windows allows the windowing environment to change colors

and brightness of areas that are not of interest to the user. According to a characterization of

display usage done by authors, users use about 60% of the screen available. Thus, by changing

the colors and brightness of areas not in the window of focus, energy can be saved.

Energy efficiency in mobile devices ranging from phones, laptops or hand-held de-

vices is critical. Monticelli [54] presents an scheme using adaptive voltage scaling to control

power management on 3G phones, and suggests that this same approach could be used in RF

circuits. Yin et al [85] describe an power-aware prefetch scheme, which dynamically adjusts

the number of prefetches based on the current energy level. Another approach to save energy

97

on mobile devices is the remote power control of wireless interface cards [2], where a remote

server uses its knowledge of the workload to perform traffic reshaping. Another approach is

µSleep [10], which puts the processor in sleep mode for short periods (less than a second), and

reduces energy consumption by up to 60%.

Balakrishnan et al. [4] propose a power management software architecture developed

at user level using a standard power interface (ACPI - Advanced Configuration and Power In-

terface [31]) that provides information about current hardware state (e.g. estimated battery

lifetime, temperature, etc.). This architecture is implemented and tested for disk spin down and

thermal management.

Anand et al [3] developed a middle-ware for Linux on iPAQs in order to allow better

power management. The power management implemented consider what is the state of all

devices to be used (in this platform, wireless card and micro-drive), and hints given by the

application when it requested data access and the device was not available. It also provides

a user interface that allows one to control the priorities in terms of performance and power

conservation. By taking these factors into account, authors show that it is possible to increase

performance and decrease energy consumption.

PowerScope [24] is a tool that combines hardware instrumentation to measure current

level and software support to perform statistical sampling of system activity, allowing energy

profiling of process and procedures, which can then be optimized to reduce energy consumption.

Barr and Asanovic [5] present an interesting scheme considering the trade-offs be-

tween data transmission and compression. They used the Skiff platform7 to perform measure-
7The Skiff platform is based on the iPAQ hardware, but it has a differentiated circuitry to allow easy power

consumption measurement.

98

ments of energy consumption in wireless Ethernet card, StrongARM CPU, DRAM and Flash

memory, under different compression algorithms. Since the energy cost of compressing data in

each part of the hardware is know, as well as the cost to transmit data, authors propose a scheme

where they compress data to be transmitted in case this procedure will allow energy savings.

The Panoptes sensor hardware [15] is similar to the Stargate hardware, but has higher

power requirements. When we compare the power requirements of both platforms, we observe

that the Stargate provides energy savings of up to 25%.

Another widely used platform in sensor networks are the Berkeley Motes [82]. A

detailed accounting of the energy consumed by the Motes is presented in [68]. A detailed

power profile of the Consus platform, a personal data repository, is presented in [59]. The work

reports energy consumption for basic tasks such as sleep, idle, processing, and communication

over IEEE 802.11 and Bluetooth radios.

More recently, some research efforts have focused on developing visual sensing nodes.

For example, Cyclops [60] is a low-power, small sensing node composed of a micro-controller,

complex programmable logic device, external SRAM, external Flash and an CMOS imager.

SensEye [41] is a multi-tier video surveillance network, which makes use of several different

visual nodes including: Cyclops [60], CMUcam [16], Crossbow Stargate and webcam, and a

high-end camera.

We should point out that our approach is completely orthogonal, and thus comple-

mentary, to efforts that focus on designing low power platforms. A noteworthy example is

Cyclops [60], a low-power vision sensor node consisting of a CMOS camera, processor, and

memory, all integrated on the same board. In the experiments reported in [60], the Cyclops

99

sensor board was connected to a MICA2 Mote [82]. However, as previously discussed, in their

current instantiation, Cyclops would not have sufficient capability (in terms of processing power

and storage capacity) to run the types of vision algorithms that we implement on the Meerkats

node.

3.6 Conclusions

Application-level power management, which is critical when wireless computing

platforms are employed, can only be performed based on energy consumption information.

In this chapter, we presented a task-level energy consumption characterization benchmark that

accounts for basic tasks being executed by a laptop (a typical example of a mobile computing

platform), and the Meerkats node (example of a visual sensor network node).

We also presented the extensions we implemented to obtain current and discharge

current accumulator readings using the Stargate’s on-board energy consumption measuring ca-

pabilities. On-board energy consumption monitoring is important in order to track battery dis-

charge and be able to make decisions influencing the trade-off between power conservation

(and thus operation lifetime of the system) and performance. We showed that on-board moni-

toring interferes slightly with energy consumption but were still able to cross-validate on-board

monitoring measurements against DMM readings.

In the next chapter, we use the characterization presented here to provide a quanti-

tative power consumption and temporal analysis of a set of basic tasks as well as duty cycles

representative of activities carried by the Meerkat’s testbed, a wireless camera network targeting

100

surveillance applications.

101

Chapter 4

Duty Cycle Modeling by Task Composition

This chapter presents a thorough energy consumption characterization of a set of el-

ementary tasks that characterize Visual Sensor Networks system’s typical activities. Such el-

ementary tasks include image acquisition and compression; image acquisition and processing

(using a background subtraction algorithm), and possibly compression of sub-image; and net-

work transmission of different image sizes. These tasks are defined at a coarse enough granular-

ity to enable different resource management policies by simple task concatenation. We validate

our hypothesis that the energy consumed in a duty cycle, as well as its execution time require-

ments, can be estimated by simply adding up the relevant quantities for each elementary task

involved [48]. We also discuss the issues associated with the task concatenation approach to

determine a duty cycle, and how its accuracy is affected.

102

4.1 Introduction

Continuous and pervasive monitoring of events over wide areas often necessitates a

large number of networked, wireless sensors. There is widespread agreement within the sensor

network community that multi-tier deployments, comprising both low– and high-level sensors,

such as cameras, have great potential for a wide-range of current and upcoming applications.

Visual sensors can cover larger fields of view and extract more substantial information about

the scene than other simpler sensors such as temperature, humidity, and pressure [41].

Sensor networks are typically energy constrained and hard to access once deployed,

hence, self–organization and energy management are two fundamental factors determining their

performance and lifetime. Accordingly, new mechanisms for network discovery and informa-

tion flow management have been proposed [29, 34, 72]. Since the vast majority of networks

studied to date employ very simple sensors (providing few bits per measurement and consum-

ing little power) and consequently, the bulk of energy consumption is due to communication-

related tasks, most research in power conservation for sensor networks has addressed solely

communication issues. Examples include power-aware protocols at the MAC layer, data ag-

gregation mechanisms, and strategies for predictive activation/transmission, topology control,

power-aware routing, etc. Another common power conservation approach in sensor network

deployments is the use of duty cycles [46, 80], which alternate nodes between active and idle,

low–power periods.

Most studies to date have typically considered the energy cost of sensing and data

processing negligible when compared to communication–related tasks. This assumption, how-

103

ever, may not hold for higher-level sensors, such as cameras ([5]) which produce large loads of

data, requiring considerable processing for analysis (in order to extract semantic information)

and/or compression. In addition, sensing itself can be highly power consuming. Analyzing and

compressing visual data reduces communication cost but requires more processing, and in some

cases may increase net energy consumption. It is clear that traditional node and system-wide

control strategies are not applicable to visual sensing networks.

We argue that a thorough energy consumption characterization is critical for designing

effective resource management policies for wireless camera networks. In order to analyze and

model power consumption over long periods of time, and therefore predict the lifetime of a

node and change the control policy accordingly, it is useful to consider a number of elementary

tasks whose scheduling and execution are controlled by a resource manager [6]. Each task

has an associated power consumption cost and execution time, both of which could be random

variables. Stochastic models can then be employed for predicting the statistics of the time series

of tasks, and therefore the expected energy consumed over a period of time [53].

We conducted a thorough quantitative power consumption and temporal analysis of

a set of basic tasks as well as duty cycles representative of activities carried out by wireless

camera networks targeting surveillance applications. We focus on the wireless camera network

testbed we have been building, dubbed Meerkats (described in Section 3.3.1).

Our hypothesis is that by defining and characterizing a set of elementary tasks repre-

sentative of visual sensor network activities at a coarse enough granularity, we are able to model

different resource management policies by simple task concatenation. For example, one of the

tasks considered is image acquisition and compression. Another task is loading the software

104

modules that are necessary for the wireless card to operate, while yet another one is keeping the

CPU in sleep mode for a certain period of time. Using per-task energy consumption informa-

tion, the system would then be able to make decisions such as whether it can increase the image

acquisition rate (and thus increase the probability of detecting events), or it should decrease the

image acquisition rate.

Furthermore, given that the basic control policy of a Meerkats node is based on regular

duty cycles synchronous across all nodes in the network, in this work we also validate the

hypothesis that energy consumption for a given duty cycle can be obtained by the composition

of the energy consumed by the corresponding individual tasks. An example of a duty cycle is as

follows. The webcam in the node takes snapshots at regular times, and, if it detects something of

interest, transmits the data using the node’s wireless card to another node or to a sink. Clearly,

the image acquisition period and the policy that is used to decide whether to transmit an image

or not affect the miss rate, i.e., the probability that moving object in the scene went undetected,

either because no snapshot was taken of it, or because the image was not transmitted. Power

consumption depends on the same parameters: a higher frame and transmission rate drains more

current, on average, from the battery.

In fact, the implementation of a duty cycle is a more complex problem than may

look at first sight. A number of operational possibilities must be evaluated, each with different

characteristics of power consumption and execution time. Consider, as a simple example, the

state of the node between two subsequent snapshots. In order to reduce power usage, the CPU

should be put to sleep for all the time it is not used. However, putting the system to sleep

requires first unloading the software modules used for controlling the webcam and the wireless

105

card, saving the context, setting the interruption to wake up the processor and powering off

hardware components. When the system wakes up, these modules need to be reloaded and

context restored. If the period between two consecutive image acquisition is too short, there

may not be enough time to perform all these operations, and the system would have to be kept

in idle mode instead. As another example, consider the case of a camera node in a crowded

environment. It will likely detect a new event (e.g., a moving person) in most of the images that

it takes. Depending on the power cost of the computation that is necessary for event detection,

it may be the case that the node is better off transmitting each image without first analyzing it,

rather then spending energy by first processing it.

To validate our hypothesis that the energy consumed in a duty cycle, as well as its

execution time requirements, can be estimated by simply adding up the relevant quantities for

each elementary task involved, we compare direct measurements (given by a digital multime-

ter) against predictions based on the concatenation of the corresponding elementary tasks. We

present results for a number of duty cycle variations.

This chapter is organized as follows. Section 4.2 summarizes the duty cycle model

proposed. The elementary tasks a Meerkats node execute are described in Section 4.3, while the

duty cycle analysis is presented in Section 4.4. Section 4.5 discusses the problems that affect

duty cycle prediction accuracy. Related work is described in Section 4.6, while conclusions are

presented in Section 4.7.

106

4.2 The Model

As tasks delimiters, we assume that at the beginning and at the end of a task, the node

is in idle mode (with or without hardware components activated). We also assume that two tasks

are never executed concurrently.

Our hypothesis states that it is possible to obtain the duty cycle charge (and duration)

by simply adding up the charge (and the duration) of each single task in the sequence. So, given

a set of tasks Ti with average charge q(Ti) and duration d(Ti), the charge consumed by a duty

cycle j (Qdc−j) composed by n tasks can be calculated as shown in Equation 4.1. Similarly, the

duration of duty cycle j (Ddc−j) is obtained according to Equation 4.2.

Qdc−j =
n∑

i=1

q(Ti) (4.1)

Ddc−j =
n∑

i=1

d(Ti) (4.2)

If we assume that tasks are independent, then a given duty cycle j can be described

by a probability density function (pdf) with µ = Cdc−j . The variance σ2 of the pdf is given by

the sum of the variances of the tasks (σ2(Ti)) that compose the duty cycle.

4.3 Elementary Tasks

In this section we define a set of elementary tasks that a Meerkats node executes as

part of a duty cycle. The goal is to characterize each task by the amount of energy it consumes,

and by the amount of time it takes for its execution. The granularity of each task should be

107

coarse enough that task composition and scheduling is kept reasonably simple, yet fine-grained

enough to allow for meaningful modeling.

In order to analyze the energy characteristics of each task, it is important to also

consider the current state of the node. As discussed earlier, the Meerkats node consists of three

basic hardware components, namely the processor core, the sensing core (i.e., the USB and the

webcam), and the communication subsystem (or radio core comprised of the PCMCIA wireless

card). Thus the possible states of a Meerkats node are:

• Sleep consumes the lowest power. The processor core is in sleep mode and all hardware

components are deactivated. Note that this state is the equivalent of the sleep state for

processing/sensing /communication core defined in Section 3.3.2. The current drawn by

the node in this state is about 9 mA (from Table 3.4).

• In idle no specific task is performed, besides background OS (Operating System) pro-

cesses. As pointed out earlier, the processing core may or may not be in its “idle”

mode; this is controlled by the operating system. The current drawn is 139 mA when

no additional hardware component is activated (i.e. corresponding to the processing core

in Section 3.3.2), with the wireless card (communication core) and the webcam (sens-

ing core) components drawing additional 161 mA and 185 mA respectively if active.

We have verified that these measurements are additive, i.e., if both hardware compo-

nents are active (processing/sensing/communication core), the node draws approximately

139 mA + 161 mA + 185 mA = 485 mA (refer to Table 3.4).

• When active, the node performs specific, finite–duration tasks involving the processor

108

core with or without cooperation of the other hardware components (e.g., compressing

an image). Note that some of these tasks, when executed, simply change the state of

the node, e.g. taking the node from sleep to idle mode. Our measurements highlight

that these “state transition” processes take non-negligible time to execute and consume

a non-negligible amount of energy. Therefore, they need to be accounted for, e.g., when

planning a node’s duty cycle. As previously pointed out, we assume that at the beginning

and at the end of a task, the node is in idle mode (with or without hardware components

activated). The only exceptions are: the task that brings the node from sleep to idle mode

(wireless card module is automatically activated when the system is awaken, and thus the

“wake up” task thus includes wireless card activation); and the task that brings the node

from idle (with the webcam and wireless card deactivated) to sleep. We also assume that

two tasks are never executed concurrently. This assumption is reasonable since, in most

cases, the execution of a task depends on the completion of the task that precedes it in

the duty cycle. For example, in order to acquire an image, one needs to load the webcam

modules first, and then based on the results from image processing, it will decide whether

to transmit or not the image (which would would require wireless card to be activated).

Table 4.1 shows the cost, in incremental charge and duration, of each elementary task

executed by the Meerkats node. The top part of the table summarizes the state transition tasks

(already presented in Table 3.4), while the bottom part of the table lists two other categories of

tasks, namely sensing/processing and transmission. As discussed in Section 3.3.1.2, depending

on the specific duty cycle organization, a node may take an image at regular intervals and JPEG

109

Table 4.1: Incremental charge drawn (in milli-Coulombs) and duration (in milli-seconds) for
the elementary tasks considered. Average values and standard deviations were computed over
twenty runs.

Task Incremental Charge (mC) Duration (ms)
Activate webcam 126± 5 1301± 27
Deactivate webcam 79± 6 356± 11
Activate wireless card 104± 18 2316± 329
Deactivate wireless card 54± 19 374± 80
Put to sleep 75± 12 389± 33
Wake up 496± 3 2798± 10
Acquire image 49± 2 585± 15
Acquire and save (raw image) 51± 2 590± 11
Acquire, compress and save image 81± 2 760± 9
Acquire and process image (no event detected) 88± 6 1129± 21
Acquire, process, compress and save sub-image 105± 12 1244± 56
Send 7KB (compressed image portion) 12± 1 123± 12
Send 20KB (compressed image portion) 20± 1 207± 11
Send 28KB (compressed image portion) 23± 2 248± 15
Send 48KB (full compressed image) 34± 2 356± 16
Send 200KB (raw image) 130± 3 1375± 21

compress it. Or the node may take an image, analyze it, and if an event is detected, compress

only relevant portions of the image. The size of the compressed image (or portion thereof)

varies and, for this reason, we considered three different transmission tasks, depending on the

size of the transmitted data. These different image sizes were obtained through experiments,

considering different distances between the object and the camera. We also include the three

additional tasks as references, namely: image acquisition (without any processing or compres-

sion), acquire and save raw image, and transmit raw image.

Each task is characterized in Table 4.1 by its duration and by the incremental charge

110

drawn, that is, the total amount of charge drawn by the board when executing the task minus

the charge the node would draw if it was idle (with the same hardware modules active at the

beginning of task execution for image and communication related tasks, or idle for processor

core for transitions). For example, the task of acquiring and compressing an image (with only

the webcam activated) draws additional 49 mC with respect to when the node is in idle (with

the webcam activated). To compute the total charge drawn by the node during the execution

of this task, we need to add this value to the charge drawn by a node in idle mode (with the

webcam activated) over the same period of time (585ms). Thus the total charge drawn in this

case would be 49 mC + (585 ms ∗ (139 + 185) mA) = 239 mC. Suppose now that the

wireless card was active during the execution of this task. The total charge drawn in this case

would be 49 mC + (585 ms ∗ (139 + 185 + 161) mA) = 333 mC. Obviously, the charge

drawn multiplied by the battery voltage gives the amount of energy dissipated. Since battery

capacities are normally expressed in Ampère-hour, it seems more sensible to use the charge

drawn to measure energy consumption (1 Ampère-hour = 3600 Coulombs).

A number of interesting observations can be drawn on inspection of Table 4.1. For

example, we notice that the state transition tasks can take a long time to execute (1.3 seconds

for webcam activation, 2.4 s to activate the wireless card and almost 3 seconds to bring up the

board from sleep state). Likewise, the overall charge drawn can be relatively high. Also note that

acquiring and compressing an image consumes over 2.5 times more charge than transmitting the

compressed image, while transmitting a raw image (200KB) uses almost 4 times more charge

than transmitting a full compressed image (48KB). All these considerations must be taken into

account when specifying the system’s duty cycle organization.

111

Table 4.2: Incremental charge drawn (in milli-Coulombs) and duration (in seconds) for different
combinations of image acquisition and transmission related elementary tasks.

Combination of elementary tasks Duration (s) Incremental Charge (mC)
Acquire and save raw image, then
transmit raw image 1.965 181
Acquire, compress and save jpg image,
then transmit compressed image 1.116 115
Acquire and process image
(no object detected) 1.129 88
Acquire and process image, then compress
and save blob, transmit 30K jpg image 1.492 128

Another important observation is that, if no event is detected, acquiring and analyzing

the image with our foreground detection algorithm draws about 7 mC more than acquiring

and compressing the full image. In the case an event is detected, acquiring, analyzing and

compressing an image portion draws about 24 mC more than acquiring and compressing the

full image 1.

Given the different costs (both for incremental charge and duration) of the sens-

ing/processing and communication elementary tasks, it is worth to compare different possi-

ble strategies, namely: image acquisition and transmission of raw image); image acquisition,

compression and transmission; image acquisition and processing with background subtraction

algorithm, followed by transmission of compressed portions of images when events are de-

tected. Table 4.2 shows the incremental charge and duration of the combined elementary tasks.

Acquiring and transmitting a raw image is the most expensive combination of tasks, lasting

almost 2 seconds. Acquiring, compressing and saving a compressed image, followed by trans-
1Note that there is a large standard deviation in this case because the size of the compressed image may vary

significantly.

112

mission lasts 1.1 s, while consuming 115 mC. If no event is detected, acquiring and processing

the image lasts about the same, but consumes 27 mC less than the previous case. Consider now

the case an event is detected. The cost of acquiring, analyzing, compressing and transmitting an

image portion draws about 13 mC more than just acquiring, compressing and transmitting the

full image, while lasting almost 400 ms longer. Intuitively, this means that if the rate of event

detection is low, on-board event detection may lead to significant energy savings. On the other

hand, if event detection is high, acquiring, compressing and transmitting the full image costs

less to the node.

It is worth pointing out that although transmitting a larger image might be cheaper

to the node, the transmission costs presented here take into account only one-hop transmission,

and in a multi-hop network the overall cost will be much higher. Another aspect is that if the

compression or processing is not done on the node, it will have to be done on the sink.

4.4 Duty Cycle Energy Consumption Analysis

The energy consumption characterization of the elementary tasks presented in the pre-

vious section makes it possible to compare different duty cycle organizations that yield the same

functionality with different energy requirements. For example, one possibility is to never put

the node to sleep between two consecutive image measurements, thereby avoiding the overhead

associated with activating and deactivating hardware modules as well as transitions from idle to

sleep mode. Would this be more energy efficient than a cycle that puts the system to sleep after

each image acquisition and transmission? Clearly, the answer depends on the interval between

113

two consecutive image acquisitions: if the interval is larger than some critical value, the sav-

ings associated with being in sleep mode offsets the overheads due to state transitions. In fact,

differences between duty cycles may be more nuanced than this. A duty cycle may branch out

into different paths, e.g., depending on whether an event was detected or not. Additionally, the

image acquisition periods need not be constant. For example, if a moving body was detected

in the scene, it may be desirable to take a number of pictures of it while it is still in the field of

view of the camera. Hence, the node may wait for a shorter period of time to take the next shot.

These simple considerations highlight the fact that the energy analysis of a duty cycle

is not trivial and may require appropriate statistical modeling [52]. The key insight, however, is

that a given duty cycle is a sequence of elementary tasks, possibly with conditional branching

points. Hence, the energy consumed by the duty cycle (and its duration), can, in principle, be

predicted by simply adding up the energy (and the duration) of each single task in the sequence.

In this section we validate this important hypothesis by way of direct current measurements.

We consider six different possible duty cycles. Three of them do not include image

analysis for event detection (Figures 4.1, 4.2 and 4.3). We call these deterministic duty cycles

because their execution always follows the same sequence of tasks. The other three duty cycles

include visual event detection (Figures 4.5, 4.6 and 4.7), and are thus called conditional duty

cycles given that the output of the visual processing module will determine the sequence of

tasks being executed.

114

4.4.1 Measurement Setup

For the duty cycle measurements, we use the same setup described in Section 3.3.2.1,

i.e. we use the HP E3631A power supply configured to provide 5.4V to power the Stargate. The

HP34401A digital multimeter (DMM) is used to measure the current flow as the duty cycles are

executed. This setup allows us to measure the current and then, via time integration, obtain the

charge used by each duty cycle.

4.4.2 Deterministic Duty Cycles

The first three duty cycles, which do not include image analysis for event detection,

can be described as follows:

• Duty cycle (a): the node simply acquires an image, compresses and transmits it. Then

the node stays in idle for a period T1 = 5 seconds. Both sensing and communication cores

are always activated. Figure 4.1 summarizes the tasks executed.

• Duty cycle (b): similar to the previous case, but the sensor and communication cores are

activated only when needed, and deactivated as soon as possible. Figure 4.2 summarizes

the tasks executed.

• Duty cycle (c): different from the second case in that the system is put to sleep, rather than

kept idle for the same period T1. This duty cycle includes the additional task of wireless

card deactivation after system wake-up. Figure 4.3 summarizes the tasks executed.

The temporal profile for the current drawn during duty cycle (b) is shown in Fig-

ure 4.4. As depicted in the figure, one can see the variations in current drawn to activate the

115

Image capture/compression

Transmit image

Idle (T1)

Figure 4.1: Elementary task sequences of duty cycle (a).

Table 4.3: Predicted and measured (averaged over twenty tests) charge drawn during the cycle
are shown in the table below, along with the relative prediction errors.

Charge (mC)
Duty cycle Predicted Measured Relative Error

(a) 3342 3038± 19 9.1%
(b) 2302 2433± 43 -5.7%
(c) 2284 2308± 20 -1.0%

webcam, followed by image acquisition, webcam deactivation, wireless card activation, image

transmission, wireless card deactivation, and finally the node waits in idle mode until the next

cycle starts.

Table 4.3 presents the average measured charge (with its standard deviation) drawn

during each duty cycle, as well as the predicted charge according to Equation 4.1, based on the

characterization of each elementary task given in Section 4.3.

Table 4.4 presents the average measured duty cycle duration (with its standard devi-

ation) and the predicted duration according to Equation 4.2, based on the characterization of

each elementary task given in Section 4.3.

116

Idle (T1)

Image capture/compression

Transmit image

Deactivate wireless card

Activate wireless card

Deactivate webcam

Activate webcam

Figure 4.2: Elementary task sequences of duty cycle (b).

Table 4.4: Predicted and measured (averaged over twenty tests) cycle durations are shown in
the table below, along with the relative prediction errors.

Duration (ms)
Duty cycle Predicted Measured Relative Error

(a) 6584 6393± 38 2.9%
(b) 10931 11577± 78 -5.9%
(c) 14491 13999± 12 3.4%

117

Image capture/compression

Transmit image

Deactivate wireless card

Activate wireless card

Deactivate webcam

Activate webcam

Deactivate wireless card

Sleep (T1)

Figure 4.3: Elementary task sequences of duty cycle (c).

118

Figure 4.4: Temporal profile of current drawn in one cycle of duty cycle (b).

From Table 4.4, note that the cycles have very different durations. This can be ex-

plained by the fact that, while the amount of time (T1) the system is idle or in sleep mode is

constant, the different duty cycles include different transition tasks. The significant differences

in the duration of the various duty cycles show that the overhead associated with state transi-

tions contribute significantly to the overall cycle duration. In order to obtain the same image

acquisition period, these duty cycles would have to have the same duty cycle duration, and thus

the amount of idle/sleep time should be carefully tuned in each cycle.

The relative prediction error Eq for the charge drawn during one cycle is defined as

1 minus the ratio between the measured- and the predicted charge (the relative prediction error

Et for the cycle duration is similarly defined). It is seen from Tables 4.3 and 4.4 that Eq for

119

all the duty cycles of Figures 4.1, 4.2 and 4.3 is less than 10%. During our measurements for

the duty cycles, we noticed some variation in the cycle duration (see the standard deviation for

Table 4.4). By observing the temporal profiles of current drawn, we noticed that some of them

presented a (variable) delay between the loading wireless card modules and actual transmission

(node spend this delay mostly in idle mode). This delay is introduced by the program that

transmits the image trying to connect to the server (it uses TCP) and most likely occurred due to

wireless interference. The variation in the duty cycle duration reflects in the charge necessary

to execute the duty cycle.

4.4.3 Conditional Duty Cycles

Figures 4.5, 4.6 and 4.7 show three different duty cycles that include visual event

detection in which the task execution sequence depends on whether an event is detected or

not. The basic idea is that if no event is detected, the system is put in sleep or idle mode for

T1 = 5 seconds. Otherwise, the system remains idle for T2 = 3 seconds. The three duty cycles

can be described as follows:

• Duty cycle (d): the node starts in idle mode (only with the processing core active). Then

it activates the webcam, acquires and process an image and then deactivates the webcam.

If no event is detected, the system is put into sleep mode for T1 = 5 seconds. Otherwise,

the system activates the wireless card, transmits the image, deactivates the wireless card

and then stays in idle for a period T2 = 3 seconds. Figure 4.5 summarizes the tasks

executed.

120

• Duty cycle (e): this case, shown in Figure 4.6, is a variation of the previous one, where

the node stays in idle mode instead of going to sleep when no event is detected.

• Duty cycle (f): this is the simplest case (see Figure 4.7), where all cores (processing,

sensing and communication) remain active all the time and the system stays in idle in

between image acquisitions.

The temporal profile for the current drawn during Duty cycle (d) when no event is

detected is shown in Figure 4.8. The figure depicts the current draw as the node engages in the

following task sequences: the node starts sleeping (9mA), and then it wakes up, going to idle

mode which activates the wireless card (as mentioned before, this is done automatically within

the kernel), then deactivates the card, activates the webcam, acquires image and processes it.

Since no object was detected, it deactivates the webcam, and finally goes into sleep mode.

The predicted and average measured charge drawn for each branch of each duty cycle,

along with the relative prediction errors, are shown in Table 4.5. The predicted and average

measured cycle durations, along with the relative prediction errors, are summarized in Table

4.6.

Note that the relative error for both the charge as well as for the duration presented

in Tables 4.5 and 4.6 is less than 10%, for all cases. Again, similarly to what happened to our

measurements for duty cycle (c), we noticed considerable variation in the duty cycle duration

for (d) and (e) when an event is detected (see the standard deviation for the second row on

Table 4.6). Two aspects contribute to this variation: first, there is a (variable) delay between

the loading wireless card modules and actual transmission (node spend this delay mostly in

121

Deactivate wireless card

Sleep (T1)

Transmit image

Deactivate wireless card

Activate wireless card

Idle (T2)

Event detected?

Deactivate webcam

Activate webcam

Image capture/processing

Figure 4.5: Elementary task sequences of duty cycle (d).

122

Transmit image

Deactivate wireless card

Activate wireless card

Idle (T2)

Idle (T1)

Event detected?

Deactivate webcam

Activate webcam

Image capture/processing

Figure 4.6: Elementary task sequences of duty cycle (e).

123

Idle (T1) Transmit image

Idle (T2)

Image capture/processing

Event detected?

Figure 4.7: Elementary task sequences of duty cycle (f).

Figure 4.8: Temporal profile of current drawn during a cycle of duty cycle type (d) when no
event is detected.

124

Table 4.5: Predicted and measured (averaged over twenty tests) charge drawn during the cycle
are shown in the table below, along with the relative prediction errors. Note that the event
detection branches in duty cycles (d) and (e) are the same, and thus values are omitted in this
table.

Charge (mC)
Duty cycle Predicted Measured Relative Error
(d) - no event 1565 1602± 15 -2.3%
(d) - event 1989 2176± 115 -9.4%
(e) - no event 1583 1688± 7 -6.7%
(f) - no event 3072 2915± 22 5.1%
(f) - event 2316 2127± 18 8.2%

Table 4.6: Predicted and measured (averaged over twenty tests) cycle durations are shown in
the table below, along with the relative prediction errors. Note that the event detection branches
in duty cycles (d) and (e) are the same, and thus values are omitted in this table.

Duration (ms)
Duty cycle Predicted Measured Relative Error
(d) - no event 10973 11000± 13 -0.2%
(d) - event 8948 9536± 289 -6.6%
(e) - no event 7786 8300± 17 -6.6%
(f) - no event 6129 6199± 48 -1.1%
(f) - event 4452 4398± 34 1.2%

125

idle mode); and second, there is the variation in the camera perception of the detected object

(due to the different positions the object could be relative to the camera), which affects the

processing of the image and compression of the sub-image, i.e. the relevant portion of the

image to be transmitted (note the standard deviation ”acquire, process and compress image

portion” when an event is detected shown in the tenth row of Table 4.1), and the actual duration

of the transmission of the sub-image (note the different transmission duration for the different

image sizes presented in Table 4.1).

4.5 Discussion

In Section 4.4, we described the results we obtained for the duty cycle prediction

based on elementary task composition. In general, we noticed that the relative error was at

most 10%. This discrepancy between our measurements and results from our model based on

task composition can be explained by a number of factors, including variations in the image

size obtained by image processing and also in the duration of the transmission task. In this

section, we investigate these factors in more detail. More specifically, it is necessary to carefully

evaluate the possible issues that affect the duty cycle prediction accuracy. The first step in

this evaluation is to look at the definition of the duration of a task (and duty cycle) from the

measurement perspective (Section 4.5.1) versus its duration from an OS (Operating System)

perspective. Then we address how the model could be modified to decrease the relative error

(Sections 4.5.2 and 4.5.3), and summarize what we have learned in Section 4.5.4.

126

4.5.1 Duration Issues

As we described in Sections 4.4.1 and 3.3.2.1, we obtained direct measurements of

current drawn using a DMM. The DMM was connected to a computer, which through a Lab-

VIEW [33] program recorded time-stamped DMM readings. Recall that the duration of a task

was computed as the time interval between when the current level changes from idle and when

the current level goes back to idle. To obtain the corresponding charge consumed by a duty

cycle (or task), the current is integrated over the duration of the duty cycle (task), following the

same methodology described above to determine the duty cycle (task) duration.

The question we pose in this section is how different is the measured task/duty cycle

duration when compared to the duration reported by the operating system. This will provide us

insight into how this difference affects the error between the measured duty cycle and the duty

cycle composed by elementary tasks. Similarly to the results reported in Section 3.3.4, we use

the operating system time utility to look into the time necessary to execute all tasks listed in

Table 4.1, and summarize results in Table 4.7. Note that results obtained with the time utility

for all elementary tasks are consistently smaller than the corresponding results for the measured

durations.

We define the relative error Ed for the duration of the elementary task as one minus

the ratio between the OS and measured durations. From Table 4.7 we observe that the relative

error varies a lot depending on the elementary task.

The first elementary tasks to observe are the ones related to hardware activation and

deactivation, i.e. activate and deactivate webcam and wireless card. It is clear that the time

127

Table 4.7: OS and measured duration (in milli-seconds) for the elementary tasks considered.
Average values and standard deviations were computed over twenty runs.

Task OS duration (ms) Duration (ms) Rel. Error
Activate webcam 335± 0 1301± 27 74%
Deactivate webcam 189± 18 356± 11 47%
Activate wireless card 1972± 0.4 2316± 329 15%
Deactivate wireless card 42± 22 374± 80 89%
Acquire and compress image 1028± 3 1227± 17 16%
Acquire and process image (no event) 1075± 25 1129± 21 5%
Acquire, process and compress sub-image 1207± 52 1244± 56 3%
Send 7KB (compressed image portion) 23± 2 123± 12 81%
Send 20KB (compressed image portion) 82± 11 207± 11 60%
Send 28KB (compressed image portion) 116± 18 248± 15 53%
Send 48KB (full compressed image) 176± 25 356± 16 51%

necessary for the operating system to execute the corresponding program to activate/deactivate

the hardware is smaller than the actual time necessary for the corresponding hardware sub-

system to become active/inactive. For both the cases of activating webcam and wireless card,

we already introduce an additional one second delay in the duty cycle control script to allow the

hardware to be ready to be used by the next elementary task. Therefore, the duration difference

for activating the webcam, which is about one second, should not influence the duty cycle

prediction. On the other hand, the delay introduced to wait for the wireless card to be ready

will increase the duty cycles that use this task by 655 ms, which is the difference between the

durations.

For the case of the image acquisition and compression elementary task, there is 16%

difference between OS and model duration for the task (see Table 4.7), while for the image

acquisition and processing elementary task, it is at most 5%. Since the former has to write a

128

full compressed image to a file (in RAM disk), the difference is likely due to I/O. This could be

further verified by looking at the different image sizes.

Another group of elementary tasks that must be carefully observed is the one associ-

ated with image transmission. The relative error for these elementary tasks range from 51% to

81%, depending on the image size. The first aspect to consider is that the communication pro-

gram we employ uses TCP as its transport protocol (and thus data might be stored in the TCP

buffer when the program terminates, or data may still be in transit). If this happens, from the OS

perspective the execution finished, but the hardware is still working (i.e., there is still I/O going

on and thus electrical activity). Yet another aspect, is the fact that because we employ wireless

communication, wireless channel impairments (e.g., interference, noise, etc.) may introduce

additional, non-deterministic delays in data transfer.

We already looked into the duration issues related to the activation of the webcam and

wireless card; image acquisition, compression and processing; and image transmission. We still

need to look at the issues associated with system sleep/wakeup, and webcam and wireless card

deactivation.

We use the command sys suspend (duration) to put the system to sleep, and it wakes

up when an interruption is generated after duration seconds. Since from the OS perspective this

is only one task, we can not use the time utility to obtain the duration of the elementary tasks

go to sleep and wakeup. Therefore, we will verify if the measured duration of the sleep period

is the same given as a parameter to the sys suspend (duration) utility. The measured duration of

the sleep period was about 4.3 s long instead of the expected duration of 5 s, which is smaller

than expected.

129

According to Table 4.7, the difference in the wireless card deactivation elementary

task is significant (i.e., the measured duration of the elementary task deactivate wireless card is

about 374 ms, while the OS duration is about 40 ms). One way to look at how this will affect

the duty cycle duration is to look at the measured duration of the idle period following this task.

In this case, the measured duration of the idle period was about 4.6 s instead of 5 s, or 2.6 s

instead of 3 s. If the idle period is preceded by elementary tasks related to image acquisition and

visual processing, or communication, there was no significant different in the duration of the

measured and expected idle periods. Therefore, as previously pointed out, this difference in the

duration of the idle period can be explained by the additional time necessary for the hardware

to conclude the task of deactivating the wireless card.

4.5.2 Adjusting the Model

based on the previous discussion on potential error sources that cause discrepancy

between the measured duty cycle duration and the one composed by elementary tasks, in this

section we will explore different alternatives to adjust the proposed task composition model.

The goal is to try to reduce the gap between the measurements and the model for the duty cycle.

The different adjustment alternatives include:

• Adjust duration of the elementary task associated with wireless card activation (should

be 656 ms longer) and webcam activation (should be 34 ms longer).

• Adjust the sleep duration (it should be 4.3 s long from our measurements) for duty cycles

(c) and (d) - no event detected.

130

• Adjust the idle period duration for duty cycles where wireless card deactivation precede

it, i.e. duty cycles (b), (d) - event detected and (e) - event detected.

• Combine all previous adjustments to obtain the final correction.

Table 4.8 shows the predicted duty cycle durations adjusted using the first alternative

described above, as well as the relative error Ed. The first alternative adjusts the duration

of the elementary tasks associated with wireless card activation, increasing it by 656 ms, and

webcam activation, increasing it by 34 ms, and in this way the additional one second delay in

the duty cycle control script will be properly accounted for. Also, the charge associated with

these elementary tasks were adjusted, considering that the system was in idle mode during the

period increased in the duration. The adjusted duty cycles are the ones affected by the wireless

card and webcam activation, i.e., duty cycles (b), (c), (d) and (e). As expected, the duty cycles

affected by the wireless card activation are the ones that show larger variation in the relative

error. Note that duty cycles (b), (d) and (e) presented negative relative prediction errors for

the duration, which means that the prediction was smaller than the actual duty cycles, and thus

confirms that the adjustment reduced the gap between the prediction and the measurements.

Table 4.9 shows adjusted predicted duty cycle duration, as well as the relative error

Ed, of the duty cycles affected by the sleep period, i.e. duty cycles (c) and (d), when no event

is detected. Since the sleep period decreased (recall that the measured duration of the sleep

period was about 4.3 s long instead of the expected duration of 5 s), the relative prediction error

increased and underestimated the duration.

Table 4.10 shows adjusted predicted duty cycle duration, as well as the relative error

131

Table 4.8: Duty cycle durations: measurements (averaged over twenty tests) and adjusted pre-
diction with wireless card and webcam activation corrected times are shown in the table below,
along with the relative errors (Ed) for the original and adjusted predictions. Note that the event
detection branches in duty cycles (d) and (e) are the same, and thus values are omitted in this
table.

Duration (ms)
Duty cycle Measurement Ed Orig. Pred. Adjusted Prediction Ed Adj. Pred.
(b) 11577± 78 -5.9% 11.621 0.4%
(c) 13999± 12 3.4% 15.181 7.8%
(d) - no event 11000± 13 -0.2% 11.007 0.1%
(d) - event 9536± 289 -6.6% 9.638 1.1%
(e) - no event 8300± 17 -6.6% 7.820 -6.1%

Table 4.9: Duty cycle durations: measurements (averaged over twenty tests) and adjusted pre-
diction with sleep period corrected times are shown in the table below, along with the relative
errors (Ed) for the original and adjusted predictions.

Duration (ms)
Duty cycle Measurement Ed Orig. Pred. Adjusted Prediction Ed Adj. Pred.
(c) 13999± 12 3.4% 13.775 -1.6%
(d) - no event 11000± 13 -0.2% 10.257 -7.2%

132

Table 4.10: Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction with idle period corrected times are shown in the table below, along with the relative
errors (Ed) for the original and adjusted predictions. Note that the event detection branches in
duty cycles (d) and (e) are the same, and thus values are omitted in this table.

Duration (ms)
Duty cycle Measurement Ed Orig. Pred. Adjusted Prediction Ed Adj. Pred.
(b) 11577± 78 -5.9% 10531 -9.9%
(d) - event 9536± 289 -6.6% 8548 -11.6%

Ed, of the duty cycles affected by the idle period preceded by wireless card deactivation, i.e.

duty cycles (b), (d) - event detected and (e) - event detected. Since the idle period decreased

(recall that the measured duration of the idle period was about 4.6 s instead of 5 s for duty cycle

(b), and 2.6 s instead of 3 s for duty cycles (d) - event detected and (e) - event detected), the

relative prediction error increased and underestimated the duration.

Table 4.11 shows predicted duty cycle duration adjusted using a combination of the

three alternatives previously described, as well as the relative error Ed. The duty cycles affected

by the wireless card and webcam activation, and the sleep and idle periods simultaneously are

duty cycles (b), (c), (d) and (e). Note that for duty cycles (b), (d) - event detected and (e), the

relative prediction error decreased significantly, while it decreased slightly for duty cycle (c).

As for duty cycle (d) - no event detected, the relative prediction error actually increased, which

is primarily due the adjustment in the sleep period.

Table 4.12 shows the predicted charge adjusted using a combination of the three al-

ternatives previously described, as well as the relative error Ed. For all duty cycles adjusted, the

relative prediction error decreased significantly.

Although all these adjustments can not be applied in practice, they are really helpful

133

Table 4.11: Duty cycle durations: measurements (averaged over twenty tests) and adjusted
prediction affected by the wireless card and webcam activation as well as the sleep and idle
periods simultaneously are shown in the table below, along with the relative errors (Ed) for the
original and adjusted predictions. Note that the event detection branches in duty cycles (d) and
(e) are the same, and thus values are omitted in this table.

Duration (ms)
Duty cycle Measurement Ed Orig. Pred. Adjusted Prediction Ed Adj. Pred.
(b) 11577± 78 -5.9% 11221 -3.2%
(c) 13999± 12 3.4% 14481 3.3%
(d) - no event 11000± 13 -0.2% 10307 -6.7%
(d) - event 9536± 289 -6.6% 9238 -3.2%
(e) - no event 8300± 17 -6.6% 7820 -6.1%

Table 4.12: Duty cycle charge: measurements (averaged over twenty tests) and adjusted predic-
tion affected by the wireless card and webcam activation as well as the sleep and idle periods
simultaneously are shown in the table below, along with the relative errors (Ed) for the original
and adjusted predictions. Note that the event detection branches in duty cycles (d) and (e) are
the same, and thus values are omitted in this table.

Charge (mC)
Duty cycle Measurement Ed Orig. Pred. Adjusted Prediction Ed Adj. Pred.
(b) 2433± 43 -5.7% 2398 -1.5%
(c) 2308± 20 -1.0% 2419 4.6%
(d) - no event 1602± 15 -2.3% 1608 0.4%
(d) - event 2176± 115 -9.4% 2085 -4.4%
(e) - no event 1688± 7 -6.7% 1588 -6.3%

134

in understanding and verifying where the prediction error comes from.

4.5.3 Another Approach

Given the fact that we had to adjust the proposed model because of the differences

between the measured and the OS durations of the elementary tasks, one could wonder why not

to use the OS duration as the basis for the prediction model. In this Section, we address this

approach.

We still use Equation 4.2 to calculate the duration of the duty cycle, but we use the

duration of elementary tasks from the OS perspective, presented in Table 4.7. To obtain the

charge for a given elementary task in this approach, we divide the measured charge by the

measured duration of each task, and then multiply it by the OS duration. This will give the

incremental charge for each task (equivalent of Table 4.1). Using this and the each task duration

(from Table 4.7), we obtain the duty cycle OS-time based prediction. Table 4.13 shows the

resulting predicted duration, which has larger relative error than the original model, and also

under-estimates the duration for all duty cycles presented.

Table 4.14 shows the resulting predicted charge. For duty cycles (a) and (f), which

do not have wireless card and webcam activation and deactivation, the relative prediction error

for the charge is smaller than the original model. But for duty cycles (b), (c), (d) and (e), the

relative prediction error is larger than the the original model, besides under-estimating it.

135

Table 4.13: Duty cycle durations: measurements (averaged over twenty tests) and OS-time
based prediction are shown in the table below, along with the relative errors (Ed) for the original
and OS-time predictions. Note that the event detection branches in duty cycles (d) and (e) are
the same, and thus values are omitted in this table.

Duration (ms)
Duty cycle Measurement Ed Orig. Pred. OS-time Pred. Ed OS-time Pred.
(a) 6393± 38 2.9% 6204 -3.1%
(b) 11577± 78 -5.9% 10741 -7.8%
(c) 13999± 12 3.4% 13970 -0.2%
(d) - no event 11000± 13 -0.2% 10786 -2.0%
(d) - event 9536± 289 -6.6% 8921 -6.9%
(e) - no event 8300± 17 -6.6% 7599 -9.2%
(f) - no event 6199± 48 -1.1% 6075 -2.0%
(f) - event 4398± 34 1.2% 4289 -2.5%

Table 4.14: Duty cycle charge: measurements (averaged over twenty tests) and OS-time based
prediction are shown in the table below, along with the relative errors (Ed) for the original and
OS-time predictions. Note that the event detection branches in duty cycles (d) and (e) are the
same, and thus values are omitted in this table.

Charge (mC)
Duty cycle Measurement Ed Orig. Pred. OS-time Pred. Ed OS-time Pred.
(a) 3038± 19 9.1% 3124 2.7%
(b) 2433± 43 -5.7% 2124 -14.5%
(c) 2308± 20 -1.0% 2013 -14.7%
(d) - no event 1602± 15 -2.3% 1397 -14.6%
(d) - event 2176± 115 -9.4% 1897 -14.7%
(e) - no event 1688± 7 -6.7% 1509 -11.9%
(f) - no event 2915± 22 5.1% 3042 4.2%
(f) - event 2127± 18 8.2% 2218 4.1%

136

4.5.4 Lessons Learned

The first observation is that the time necessary for the operating system to execute

the tasks associated hardware transitions is smaller than the actual time necessary for the cor-

responding hardware sub-system to become active/inactive. The duty cycle modeling needs to

account for that in order to improve its accuracy. Also, for the elementary tasks associated with

image transmission there is a considerable difference between the time the OS takes to execute it

and the time the model uses (51% up to 81%). This is probably due interference in the wireless

network, and data stored in the TCP buffer.

Given these differences in the duration, which in turn affect the relative prediction

error for the duty cycle, one could consider using elementary tasks with a smaller granularity

(but still not at instruction level). For example, we could divide the image acquisition and

compression elementary task into two, but this introduce an overhead of saving the image data

after acquisition and reading it before compression. Considering the set of elementary tasks we

have (Table 4.1), the tasks are already ate their minimal granularity (transition tasks) or dividing

them would introduce overhead and increase energy consumption, therefore the granularity

defined for the set of elementary tasks is appropriate.

Tables 4.15 and 4.16 summarize the relative errors (Ed) for the original, adjusted and

OS-time predictions for both duty cycle duration and charge, respectively. Overall, the original

adjusted approach represents a better solution for duty cycle duration and charge prediction.

137

Table 4.15: Summary of relative errors (Ed) for the original, adjusted and OS-time predictions
for duty cycle duration. Note that the event detection branches in duty cycles (d) and (e) are the
same, and thus values are omitted in this table.

Duration
Duty cycle Ed Original Prediction Ed Adjusted Prediction Ed OS-time Prediction
(a) 2.9% - -3.1%
(b) -5.9% -3.2% -7.8%
(c) 3.4% 3.3% -0.2%
(d) - no event -0.2% -6.7% -2.0%
(d) - event -6.6% -3.2% -6.9%
(e) - no event -6.6% -6.1% -9.2%
(f) - no event -1.1% - -2.0%
(f) - event 1.2% - -2.5%

Table 4.16: Summary of relative errors (Ed) for the original, adjusted and OS-time predictions
for duty cycle charge. Note that the event detection branches in duty cycles (d) and (e) are the
same, and thus values are omitted in this table.

Charge
Duty cycle Ed Original Prediction Ed Adjusted Prediction Ed OS-time Prediction
(a) 9.1% - 2.7%
(b) -5.7% -1.5% -14.5%
(c) -1.0% 4.6% -14.7%
(d) - no event -2.3% 0.4% -14.6%
(d) - event -9.4% -4.4% -14.7%
(e) - no event -6.7% -6.3% -11.9%
(f) - no event 5.1% - 4.2%
(f) - event 8.2% - 4.1%

138

4.6 Related Work

Previous work has provided energy consumption values for other types of simpler

sensor network platforms, such as Berkeley’s motes [68, 82], or for small granularity tasks

involving switching the state of a microprocessor [6]. A detailed low-level analysis of the

power cost for lossless compression and transmission in a StrongARM processor was presented

in [5].

Sanli et al [64] consider the transition costs (time and energy overhead) when eval-

uating the energy efficiency of the collaborative task scheduling mechanism proposed on a

simulated environment using Mica motes as the sensor nodes. The drawback in their approach

is that they do not have any measurements to support the model they use for the transition costs,

and the energy cost (or overhead as authors say) of a transition is obtained by averaging the

power cost of the high and low states, and then multiplying it by its duration.

Han et al. [26] discusses energy efficient data collections mechanisms for sensor net-

works, and present a series of state transition models to optimize energy consumption on the

sensor node. The drawback in their work is the fact that the processor and sensor device is

always on, and they only consider state transitions for the radio.

Sinha and Chandrakasan [70] prerent a workload prediction strategy based on adap-

tive filtering of the past workload profile. The power-aware sensor node model used by the

authors is similar to the one we use, considering the different combination of sub-systens states

and the transitions cost.

139

4.7 Conclusions

Wireless networks of embedded visual processing nodes are very attractive for surveil-

lance and monitoring. We have presented an analysis of the power requirement and execution

time of the elementary tasks that compose a typical duty cycle of a visual sensing node based

on the Crossbow Stargate board. This analysis is necessary to predict the node’s lifetime when

it is battery-operated, and to choose the most appropriate design parameters. Our study has

highlighted the fact that activation and deactivation of hardware components, as well as the

transition between idle and sleep mode of the node’s processor core, may require considerable

overhead energy and may take substantial time. We also showed how elementary tasks can be

combined together to form different duty cycles performing the same function but with rather

different energy requirements.

In addition, we validated our hypothesis that the energy consumed in a duty cycle, as

well as its execution time requirements, can be estimated by simply adding up the relevant quan-

tities for each elementary task involved. Modeling duty cycles by task composition achieves a

relative error in the range of -10% to 10% for both the average duration and charge. We also

discussed the issues associated with the task concatenation approach to determine a duty cycle,

and how its accuracy is affected.

In order to achieve our ultimate goal of conducting a comprehensive study of visual

sensor network’s lifetime, we divided the work in three main steps: (1) characterize energy

consumption of the node in our testbed (work reported in Section 3.3); (2) determine the cost (in

terms of charge and duration) of the main tasks in a visual sensor network and the possible duty

140

cycles, as well as validate the hypothesis that energy consumption for a given duty cycle can be

obtained by the composition of the energy consumed by the individual tasks (work reported in

this chapter); and finally (3) develop and validate an energy consumption model based on task

composition to determine a visual sensing node’s lifetime, which is the work presented in the

next chapter (Chapter 5).

It is worth pointing out that, although our work was done considering a specific visual

sensing platform, i.e., the Meerkats node, the methodology we used could be applied to other

platforms and applications. Essentially, the methodology we proposed includes: (1) charac-

terizing energy consumption of the platform; (2) determining the cost (in terms of charge and

duration) of the tasks representative of the target application; (3) extend/adapt the energy model

based on task composition to determine the node’s lifetime.

141

Chapter 5

Visual Sensor Node Lifetime Experiments and

Prediction

In this Chapter, we extend the work on duty cycle energy consumption prediction

described in Chapter 3 to predict the lifetime of a Meerkats node.

5.1 Introduction

In order to achieve our ultimate goal of conducting a comprehensive study of visual

sensor network’s lifetime, we divided the work in three main steps: (1) characterize energy

consumption of the node in our testbed (work reported in Section 3.3); (2) determine the cost (in

terms of charge and duration) of the main tasks in a visual sensor network and the possible duty

cycles, as well as validate the hypothesis that energy consumption for a given duty cycle can be

obtained by the composition of the energy consumed by the individual tasks (work described

in Chapter 4); and finally (3) develop and validate an energy consumption model based on task

142

composition to determine a visual sensing node’s lifetime (work presented in this chapter).

To accomplish step (3) above, we first executed a series of experiments utilizing dif-

ferent duty cycles. Each experiment consisted of running a given duty cycle repetitively to

obtain statistically representative data on the lifetime of the Meerkats node when executing that

duty cycle.

The remainder of this chapter is organized as follows. Section 5.2 presents long term

experiments with repetitive duty cycles for the visual sensor node. In Section 5.3, we present

an energy consumption model based on task composition to determine a node lifetime, as well

its validation. Next, in Section 5.5, we apply this results to the Meerkats’ testbed. Section 5.6

concludes the chapter.

5.2 Node Lifetime Experiments

Each experiment consists of continuously running a given duty cycle. Using the same

setup described in Section 3.3.2, we changed the scripts that implement the duty cycles to

periodically check the DCA (Discharge Current Accumulator) available through batmon, until

1000 mAh is discharged. Once this threshold is reached, the system is shutdown. By following

this approach, we intend to mimic a real-life situation, where the sensor node would shutdown

itself once the battery discharges down to a certain threshold. A continuous monitoring of the

DCA through batmon would interfere too much with the system energy consumption. In order

to avoid this, batmon checks the DCA status every 100 cycles. Note that this approach might

lead to experiments that use more than 1000 mAh.

143

For the sake of clarity, we revisit the duty cycles’ main features here. The duty cy-

cles employed in our experiments, which were described in Section 4.4, can be classified into

deterministic (duty cycles (a), (b) and (c)) and conditional (duty cycles (d), (e) and (f)).

• Duty cycle (a): the node simply takes an image, compresses it and transmits, and then

stays in idle for a period T1 = 5 seconds. Both sensor and communication cores are

always activated.

• Duty cycle (b): similar to the previous case, but the sensor and communication cores are

activated only when needed, and deactivated as soon as possible. Figure 4.2 summarizes

the tasks executed.

• Duty cycle (c): different from the second case in that the system is put to sleep, rather

than kept idle for the same period T1 of time. This duty cycle includes the additional task

of wireless card deactivation after system wake-up.

• Duty cycle (d): the node starts in idle mode (only with the processor core active). Then

it activates the webcam, acquires and process an image and then deactivates the webcam.

If no event is detected, the system is put into sleep mode for T1 = 5 seconds. Otherwise,

the system activates the wireless card, transmits the image, deactivates the wireless card

and then stays in idle for a period T2 = 3 seconds.

• Duty cycle (e): this case is a variation of the previous one, where the node stays in idle

mode instead of going to sleep in case no event is detected.

• Duty cycle (f): this is the simplest case, where all cores (processor, sensor and com-

144

Table 5.1: The average duration of the experiment for deterministic duty cycles. We executed
10 runs of each experiment, and results presented are the average and standard deviation.

Duty cycle Measured Lifetime (s)
(a) 7425± 301
(b) 17251± 3426
(c) 20053± 740

munication) remain active all the time and the system stays in idle in between image

acquisitions.

Next, we present the results for the experiments for each of the six duty cycles de-

scribed.

5.2.1 Deterministic Duty Cycles

Table 5.1 shows the duration of experiments for each of the deterministic duty cycles.

From these results, it is clear that the lifetime of a node can be considerably extended by making

use of low-power states and by deactivating unnecessary hardware components. This is why

duty cycle (c), which deactivates hardware components not in use and change to low-power

mode while waiting, has the longest lifetime of all three deterministic duty cycles.

Table 5.2 shows the charge calculated by time-integration (i.e., the current drained by

the node throughout the experiment is integrated over the duration of the experiment) and the

charge obtained by converting the final difference in the DCA register (DCA readings are in

mAh, thus to obtain the equivalent in mC, we do DCA ∗ 3600/1000), as well as the relative

error between them.

While running experiments with duty cycles (b) and (c), we noticed that the program

145

Table 5.2: The average charge used by the experiment for deterministic duty cycles, as well as
the charge obtained through batmon DCA register and their relative error. We executed 10 runs
of each experiment, and results presented are the average and standard deviation.

Charge (C)
Duty cycle Measured batmon DCA register Rel. Error
(a) 3598± 143 3707± 237 2.9%
(b) 3835± 739 3843± 110 0.2%
(c) 3546± 70 3750± 97 5.4%

running on the sink node was crashing after several images were sent. We further investigated

this problem and noticed that the TCP connections were not being properly closed. The sender

program running on the visual sensor node displayed a message acknowledging that the image

was fully sent, but the sink program did not fully receive it, and thus did not close the TCP

connection. This happens because the wireless card is deactivated as soon as the sender program

finishes its execution; however the fact that the program terminated does not mean that all data

on the TCP queue was sent. In order to fix this problem, we ran a simple test: one second delay

was added at the sender program before deactivating the wireless card. This change in the duty

cycle allowed all images to be successfully transmitted and the TCP connection to be properly

closed.

5.2.2 Conditional Duty Cycles

Table 5.3 shows the duration of experiments for each of the conditional duty cycles.

Again, from these results, it is clear that the lifetime of a node can be considerably extended by

making use of low-power states and by deactivating unnecessary hardware components (exper-

iments employing duty cycles (d) and (e) lasted at least twice more than duty cycles (f)). But

146

Table 5.3: The average duration of the experiment for conditional duty cycles. We executed 10
runs of each experiment, and results presented are the average and standard deviation over all
10 trials.

Duty cycle Measured Lifetime (s)
(d) 20044± 1489
(e) 15863± 506
(f) 7352± 296

Table 5.4: The average charge used by the experiment for conditional duty cycles, as well as the
charge obtained through batmon DCA register and their relative error. We executed 10 runs of
each experiment, and results presented are the average and standard deviation over all 10 trials.

Charge (C)
Duty cycle Measured batmon DCA register Rel. Error
(d) 3478± 146 3605± 203 3.5%
(e) 3534± 120 3812± 101 7.3%
(f) 3549± 129 3812± 100 6.9%

comparing these three duty cycles is not as straightforward as comparing the deterministic duty

cycles, since duty cycle behavior depends on the outcome of visual processing. Also, these duty

cycles do not have the same duration. Duty cycle (d) lasts 11.4 s if no event is detected and 9.6 s

if an event is detected (same as duty cycle (e) when an event is detected), while duty cycle (e)

lasts 7.8 s if no event is detected, but duty cycle (f) lasts 4.6 s if an event was detected and 6.1 s

if not.

Table 5.4 shows the charge calculated by time-integration and the charge obtained by

converting the final difference in the DCA register (DCA readings are in mAh, thus to obtain

the equivalent in mC, we do DCA ∗ 3600/1000), as well as the relative error between them.

As mentioned before, the behavior of the conditional duty cycles depends on the

outcome of the visual processing module. Therefore we report the number of events detected in

147

Table 5.5: The average number of total cycles during the experiment duration, as well as the
number of cycles with and without events detected for conditional duty cycles. We executed 10
runs of each experiment, and results presented are the average and standard deviation over all
10 trials.

Number of Cycles
Duty cycle Total with Events Detected without Events Detected
(d) 1870± 109 550± 347 1337± 446
(e) 1750± 178 625± 345 1126± 498
(f) 1340± 70 507± 256 834± 209

each experiment, which was recorded during the experiments. Table 5.5 shows the average and

standard deviation of the number of cycles per experiment, as well as the number of cycles in

which events where detected.

It is important to point out that these experiments were conducted with the visual

sensor located in the lab, where there was no control over the event generation, i.e. events could

be generated by people walking in the node’s field of view, lights being turned off, etc. This

fact is illustrated in Tables 5.6, 5.7 and 5.8, which shows the actual number of total cycles, as

well as the number of cycles with and without events detected for all runs of duty cycles (d), (e)

and (f), respectively.

We also encountered the same problem reported earlier for duty cycles (b) and (c),

now happening for duty cycles (d) and (e). The problem happens because the wireless card is

deactivated too soon, i.e. as soon as the sender program finishes its execution, but before the

image had been fully sent. We also tested changing the duty cycles by adding a one second

delay after the sender program and before deactivating the wireless card, which allowed all

images to be successfully transmitted and the TCP connection to be properly closed.

148

Table 5.6: The number of total cycles during the experiment duration, as well as the number of
cycles with and without events detected for all runs of duty cycle (d).

Number of Cycles
Run Total with Events Detected without Events Detected
1 2001 359 1642
2 1801 841 960
3 1801 351 1490
4 1801 433 1391
5 1701 1188 513
6 1901 293 1672
7 1901 667 1234
8 2001 327 1674
9 2001 22 2006
10 1801 1014 787

Table 5.7: The number of total cycles during the experiment duration, as well as the number of
cycles with and without events detected for all runs of duty cycle (e).

Number of Cycles
Run Total with Events Detected without Events Detected
1 1800 839 962
2 1500 775 726
3 1900 378 1523
4 1700 901 800
5 1900 428 1473
6 1400 1113 288
7 1900 101 1800
8 1800 413 1388
9 1700 1017 684
10 1900 288 1613

149

Table 5.8: The number of total cycles during the experiment duration, as well as the number of
cycles with and without events detected for all runs of duty cycle (f).

Number of Cycles
Run Total with Events Detected without Events Detected
1 1400 865 536
2 1400 412 989
3 1400 653 748
4 1400 510 891
5 1400 890 511
6 1300 181 1120
7 1300 417 884
8 1300 584 717
9 1200 108 1093
10 1300 446 855

5.2.3 Battery Experiments

All previous experiments were done using the Agilent E3631A power supply to power

the Meerkats node. In this section, we report the results obtained when we executed experiments

with the node powered by a 2-cell Lithium-Ion battery with 1000 mAh capacity.

We ran duty cycle (d) continuously, following the same methodology reported earlier

in this section. Again, there was no control over the event generation during experiments.

One consideration when using the battery to power the sensor node is that the battery

should not be utilized until its charge is totally depleted, since that might damage the battery.

Another consideration about Lithium-Ion batteries is that its voltage is kept almost constant, up

to a point where it drops abruptly. For the battery used in the experiments, this drop point is

when the voltage reaches about 6.5 V, and it corresponds to about 80% of the battery capacity.

The voltage profile of a Lithium-Ion battery being discharged is shown in Figure 5.1.

Table 5.9 summarizes the results for the battery experiments. The first experiment

150

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

V
ol

ta
ge

 (
V

)

Time (s)

Lithium-Ion Battery Discharge

Figure 5.1: Voltage profile for discharge of a Lithium-Ion battery.

Table 5.9: The average measured duration and charge, as well as the charge obtained through
batmon DCA register for the battery experiments for duty cycle (d).

Charge (C)
Run # Measured Lifetime (s) Measured batmon DCA register
1 10577 3218 3751
2 15942 2311 2916

had its cut-off threshold set to 1000 mAh, while the second one had the value of 800 mAh.

We can not compare the charge obtained through the multimeter measurements with

the batmon DCA readings for these experiments. This happens because the multimeter was

monitoring the current provided to the switching regulator board and flowing out of the battery,

which runs at 7.6 V. The batmon DCA readings are relative to the current flowing through the

Stargate, which runs at 5 V (the voltage provided by the switching regulator board). Therefore

the fair comparison would be in terms of power, i.e. charge times voltage. In computing power,

we should account for the fact that the DC/DC switching regulator we use to convert the voltage

151

Table 5.10: The power calculated based on charge measurements and obtained through batmon
DCA register for the battery experiments for duty cycle (d), as well as their relative error.

Power (W)
Run # Measured batmon DCA register Rel. Error
1 19567 18756 -4.3%
2 14051 14580 3.6%

Table 5.11: The average number of total cycles during the experiment duration, as well as
the number of cycles with and without events detected for duty cycle (d) running on a battery
powered visual sensor node.

Number of Cycles
Run Total with Events Detected without Events Detected
1 1300 1216 85
2 1500 206 1295

on the battery (7.6 V) to the voltage level expected by the Stargate (5 V) has an efficiency

εregulator of 80%. Equation 5.1 illustrates this.

PBattery = PStargate

QBattery ∗ VBattery = εregulator ∗QStargate ∗ VStargate

QStargate = εregulator
QBattery ∗ VBattery

VStargate
(5.1)

Table 5.10 presents the power calculated based on charge measurements and obtained

through batmon DCA register for the battery experiments for duty cycle (d), as well as their

relative error.

Table 5.11 shows the number of cycles per run, as well as the number of cycles when

events were detected.

152

5.3 Lifetime Prediction for Deterministic Duty Cycles

We now continue to develop and validate our energy consumption model based on

task composition to predict the lifetime of the Meerkats node. In this section, we consider

deterministic duty cycles, i.e. the ones that follow a known sequence of tasks. Examples of

such cycles are duty cycles (a) through (c) previously described in Section 4.4. In Section 5.4,

we do the same exercise for conditional duty cycles.

The methodology follows the same hypothesis we used for duty cycle modeling by

task composition (Section 4.2), i.e., that we can obtain duty cycle charge (and duration) by

simply adding up the charge (and duration) of each single task in the sequence. Then, to obtain

the lifetime of a node given its duty cycle (Lx, where x specifies the duty cycle type), we divide

the total amount of charge available in the battery (Qb) by the charge necessary for each duty

cycle (Qx) to obtain the number of cycles that can be executed (Nx), and then we multiply this

by the duty cycle duration (Dx). Equation 5.2 summarizes this algorithm.

Lx =
Qb

Qd
∗Dd (5.2)

According to Equation 5.2, the lifetime Lx is a function of the charge consumed

during a duty cycle, which can be obtained from direct measurements, or it can be obtained by

task composition. In the latter case, we can expand Equation 5.2 by replacing Qd with Equation

4.1 and Dd with Equation 4.2, thus obtaining Equation 5.3, where q(Ti) is the average charge

of an elementary task Ti.

153

Lx =
Qb∑n

i=1 q(Ti)
∗

n∑

i=1

d(Ti) (5.3)

For example, a duty cycle of type (a) (where the node takes an image, compresses and

transmits it, and then stays in idle for a period T1 = 5 seconds, with all hardware components

active) uses about 3300 mC. A battery with 1000mAh has 3600 C. Assume all this charge is

available to the node. Then we divide the charge available on the battery by the charge necessary

per cycle to obtain the number of cycles (3600/3.3 = 1091). Finally we multiply the number

of cycles (1091) by its duration (6584 ms), to obtain a lifetime of 7183 s (about 2 hours).

In Chapter 4.2, we described how to model duty cycle energy consumption through

elementary task composition, as well as possible adjustments to the model, which we briefly

revisit now. The adjustments we proposed to the model are related to hardware activation, as

well as the actual duration of the sleep period and the duration of the idle period when preceded

by wireless card activation.

In this section, we consider three possible schemes for lifetime prediction, namely:

• Lifetime prediction based on duty cycle measurements.

• Lifetime prediction based on the original duty cycle prediction model.

• Lifetime prediction based on the adjusted duty cycle prediction model.

In the first scheme, we use the measured charge consumed during a duty cycle as Qd

and the measured duration of a duty cycle as Dd in Equation 5.2 to obtain the expected lifetime.

In the second and third schemes, Qd and Dd are obtained by task composition, and therefore we

154

Table 5.12: The charge used by one duty cycle and its duration obtained through measurements,
as well as the predicted number of cycles and lifetime for deterministic duty cycles based on
duty cycle measurements, and the relative error comparing the prediction and the measurements.

Duty Cycle Measurements Lifetime Prediction
Duty cycle Charge (C) Duration (s) Number of Cycles Lifetime (s) Rel. Error
(a) 3.038 6.4 1185 7575 2.0%
(b) 2.433 11.6 1480 17130 -0.7%
(c) 2.308 13.9 1560 21840 8.2%

Table 5.13: The charge used by one duty cycle and its duration obtained by task composition, as
well as the predicted number of cycles and lifetime for deterministic duty cycles based on duty
cycle original prediction, and the relative error comparing the prediction and the measurements.

Duty Cycle Orig. Prediction Lifetime Prediction
Duty cycle Charge (C) Duration (s) Number of Cycles Lifetime (s) Rel. Error
(a) 3.342 6.6 1077 7091 -4.7%
(b) 2.302 10.9 1564 17092 -0.9%
(c) 2.284 14.5 1576 22837 12.2%

use Equation 5.3 to predict the lifetime. The difference between the second and third schemes

is that in the third scheme we utilize the adjusted duty cycle model by task composition.

By comparing results obtained using these three approaches, we can understand how

effectively we can predict a visual sensor node lifetime.

Tables 5.12, 5.13 and 5.14 summarize lifetime prediction results for the three deter-

ministic duty cycles - (a), (b) and (c) - using the three different approaches described.

The best lifetime prediction results are obtained when using the charge and duration

measured for the duty cycles, as expected. On the other hand, when comparing results obtained

with the original and adjusted duty cycle prediction model based on elementary task composi-

tion, the lifetime prediction based on the adjusted model improves the results only for duty cycle

(c). In summary, the overall results are encouraging. Our duty cycle energy consumption pre-

155

Table 5.14: The charge used by one duty cycle and its duration obtained through adjusted task
composition, as well as the predicted number of cycles and lifetime for deterministic duty cycles
based on duty cycle adjusted prediction, and the relative error comparing the prediction and the
measurements.

Duty Cycle Adj. Prediction Lifetime Prediction
Duty cycle Charge (C) Duration (s) Number of Cycles Lifetime (s) Rel. Error
(a) - - - - -
(b) 2.398 11.2 1501 16843 -2.4%
(c) 2.419 14.5 1488 21552 7.0%

diction model has a relative error of at most 10%, and this error does not increase significantly

the relative lifetime prediction error.

Another aspect that contributes to the relative lifetime prediction error is the fact that

this lifetime experiments measurements also include two tasks, which are considered as over-

head and are not part of the prediction mechanism. The first task is a camera stabilization

program, which is part of the visual processing module, and adjusts the parameters of the we-

bcam according to the environment. This program is executed once, in the beginning of the

experiment. The second task, is the shutdown procedure, which is the last task executed in the

experiment. Besides these two tasks, there is control overhead for the experiments: monitor-

ing the discharge current accumulator using batmon (already discussed), saving information on

event detection and number of cycles executed.

5.4 Lifetime Prediction for Conditional Duty Cycles

We can extend the algorithm presented in Section 5.3 to consider a fixed probability

of event detection, and then predict the lifetime of the node. Equation 5.4 gives the expression

156

Table 5.15: The predicted number of cycles and lifetime for conditional duty cycles based
on duty cycle measurements, as well as the relative error comparing the prediction and the
measurements.

Duty cycle Number of Cycles Lifetime (s) Rel. Error
(d) 2033 21493 6.7%
(e) 1923 16895 6.1%
(f) 1375 7590 3.1%

Table 5.16: The predicted number of cycles and lifetime for conditional duty cycles based on
duty cycle original prediction, as well as the relative error comparing the prediction and the
measurements.

Duty cycle Number of Cycles Lifetime (s) Rel. Error
(d) 2131 22110 9.3%
(e) 2083 17083 7.1%
(f) 1292 7099 -3.6%

for the lifetime in the case of the conditional duty cycles considering the probability of detecting

an event Pd−ev.

Lx =
Qb

Qd−ev ∗ Pd−ev + Qd−no ∗ (1− Pd−ev)
∗Dd (5.4)

Again, we will consider three possible schemes for lifetime prediction, namely:

• Lifetime prediction based on duty cycle measurements.

• Lifetime prediction based on the original duty cycle prediction model.

• Lifetime prediction based on the adjusted duty cycle prediction model.

Tables 5.15, 5.16 and 5.17 show the predicted number of cycles and lifetime (in sec-

onds) for the three conditional duty cycles - (d), (e) and (f).

157

Table 5.17: The predicted number of cycles and lifetime for conditional duty cycles based on
duty cycle adjusted prediction, as well as the relative error comparing the prediction and the
measurements.

Duty cycle Number of Cycles Lifetime (s) Rel. Error
(d) 2059 20573 2.6%
(e) 2039 16978 6.6%

For all the three different approaches, the relative lifetime prediction error for the

conditional duty cycles is at most 10%. In the conditional duty cycles, we incur the same

overhead as in the deterministic ones; i.e., monitoring the discharge current accumulator and

saving control information.

5.5 Applying Duty Cycle Prediction to the Meerkats Testbed

The Meerkats testbed is a wireless network of battery-operated camera nodes, that

can be used for monitoring and surveillance of wide areas. The goal of the system is detect and

track moving bodies within the covered area. Ideally, any time a body enters the field of view

(FOV) of a node, the node’s camera would take one or more snapshots.

In this section, we will look into different resource management policies the Meerkats

node could use to extend its lifetime, while still attending the application requirements. The

Meerkats node should take snapshots at a given frequency, which depends on the expected

event rate and acceptable event miss rate (i.e., the application requirements).

The duty cycles we described in Section 4.4 have in common the fact that the idle/sleep

period is the same, and this results in different duty cycle durations. The duty cycles we will

use to implement the different resource management policies the Meerkats node could use must

158

have the same duration, and therefore we need to adjust the idle/sleep period such that the duty

cycle duration is the same, and the interval between image acquisitions is constant. For exam-

ple, if the interval between images is 5 s and the node will run duty cycle (a), then the sum of

the duration of all elementary tasks plus the idle period should be 5 s. Therefore, the duration

of the idle period Tidle will be given by Tidle = 5−Tacq&comp−Tsend, where Tacq&comp = 1.2

and Tsend = 0.35 (from Table 4.1). Thus Tidle = 3.45.

Note that not all duty cycles described in Section 4.4 might be feasible for a 5 s du-

ration. For instance, consider duty cycle (c), where webcam and wireless card are deactivated

when not in use, and the node is put in sleep mode. From Table 4.1, the duration of the elemen-

tary tasks (in seconds) are as follows: Tact−wcam = 1.3, Tacq&comp = 1.2, Tdeact−wcam = 0.35,

Tact−wifi = 2.3, Tsend = 0.35, Tdeact−wifi = 0.37, Tgosleep = 0.39, Twakeup = 2.8. If we

add these durations, we obtain a total of 9.06 s, which does not include any actual sleep period.

Therefore, duty cycle (c) is not feasible for an interval between image acquisitions smaller than

10 s.

Another aspect to be considered is the charge necessary to execute a given duty cycle.

From Tables 4.3 and 4.5, we observe that duty cycle (b) uses about 100 mC more than duty

cycle (c), but lasts about 2.4 s less. Therefore, determining the appropriate duty cycles for the

Meerkats node is a trade-off between the time requirements and the energy consumption.

Next we will consider four different sampling periods (or interval between image

acquisitions) for the end node: 5, 10, 15 and 20 s. For each of these sampling periods, we verify

if the six duty cycles previously described are feasible, and how the idle/sleep periods need to

be adjusted. Then we will apply the lifetime prediction methodology described in Sections 5.3

159

and 5.4 to compare which duty cycle would be more energy efficient given different image

acquisition periods.

5.5.1 Duty Cycle Feasibility

First, we need to adjust the six duty cycles previously described considering the one

second delay after sender program for duty cycles (b), (c), (d) and (e)), as well as adjustments

related to webcam and wireless card activation (see Section 4.5.1). The duty cycles are adjusted

as follows:

• Duty cycle (a): the node simply takes an image, compresses it and transmits, and then

stays in idle for a period Ti. Both sensor and communication cores are always activated.

• Duty cycle (b): similar to the previous case, but the sensor and communication cores are

activated only when needed, and deactivated as soon as possible. Note that a one second

wait is necessary after issuing webcam and wireless card activation tasks, as well as after

the sender program.

• Duty cycle (c): different from the second case in that the system is put to sleep, rather

than kept idle for the same period Ti of time. This duty cycle includes the additional

task of wireless card deactivation after system wake-up. Note that a one second wait is

necessary after issuing webcam and wireless card activation tasks, as well as after the

sender program.

• Duty cycle (d): the node starts in idle mode (only with the processor core active). Then it

activates the webcam (one second delay added here), acquires and process an image and

160

Table 5.18: The sum of the duration of the elementary tasks involved in a given duty cycle, and
the idle/sleep period allowed for a given duty cycle duration. Note that duty cycle (d) and (e)
when an event is detected are the same, and thus only one is shown here.

Ti (s) for different duty cycle durations
Duty cycle Duration of tasks (s) 5 s 10 s 15 s 20 s
(a) 2.58 2.42 7.42 12.42 17.42
(b) 7.62 - 2.38 7.38 12.38
(c) 11.18 - - 3.82 8.82
(d) - no event 6.38 - 3.62 8.62 13.62
(d) - event 7.53 - 2.47 7.47 12.47
(e) - no event 2.82 2.18 7.18 12.18 17.18
(f) - no event 1.13 3.87 8.87 13.87 18.87
(f) - event 2.49 2.51 7.51 12.51 17.51

then deactivates the webcam. If no event is detected, the system is put into sleep mode

for Ts. Otherwise, the system activates the wireless card (one second delay added here),

transmits the image (one second delay added here), deactivates the wireless card and then

stays in idle for a period Ti.

• Duty cycle (e): this case is a variation of the previous one, where the node stays in idle

mode instead of going to sleep in case no event is detected.

• Duty cycle (f): this is the simplest case, where all cores (processor, sensor and com-

munication) remain active all the time and the system stays in idle in between image

acquisitions.

Given the four different sampling periods (or interval between image acquisitions): 5,

10, 15 and 20 s we want to evaluate, the duty cycles idle/sleep period would be as depicted in

Table 5.18. Note that the sampling periods will in fact be the duty cycle duration.

161

Table 5.19: The charge associated with the duty cycles for given duration. Note that duty cycle
(d) and (e) when an event is detected are the same, and thus only one is shown here.

Charge (mC) for different duty cycle durations
Duty cycle 5 s 10 s 15 s 20 s
(a) 2.57 5.01 7.44 9.88
(b) - 2.33 3.03 3.72
(c) - - 2.71 2.76
(d) - no event - 1.60 1.65 1.69
(d) - event - 2.31 3.01 3.70
(e) - no event 1.20 1.89 2.59 3.28
(f) - no event 2.52 4.96 7.39 9.83
(f) - event 2.56 5.00 7.43 9.87

From Table 5.18, we observe that duty cycles (b), (c) and (d), as well as duty cycle

(e) when an event is detected, are not feasible for a 5 s duration duty cycle. Also, duty cycle (c)

is not feasible for a 10 s duration duty cycle.

Next step is to calculate the charge associated with each feasible duty cycle. Ta-

ble 5.19 presents these results.

Duty cycles that make use of hardware activation/deactivation and low-power mode

to optimize energy consumption (e.g., duty cycles ((b), (c), (d) and (e)) have a larger minimum

duration because of the transition costs. On the other hand, they consume less charge when

compared to duty cycles (a) and (f), which always have all power subsystems active.

5.5.2 Meerkats node lifetime prediction

In this section, we use the charge and duration obtained for the Meerkats node feasible

duty cycles to predict the node’s lifetime, and thus evaluate simple resource management poli-

cies. We use the prediction methodology described in Sections 5.3 and 5.4 to compare which

162

Table 5.20: The predicted lifetime for a Meerkats’ node running deterministic duty cycles for a
given duration.

Lifetime (s) for different duty cycle durations
Duty cycle 5 s 10 s 15 s 20 s
(a) 7001 7191 7257 7290
(b) - 15424 17828 19334
(c) - - 19892 26090

duty cycle would be more energy efficient given a sampling period for image acquisition.

Table 5.20 shows the predicted lifetime for a Meerkats’ node running the deterministic

duty cycles (i.e., duty cycles (a), (b) and (c)) for the four different sampling periods (5, 10, 15

and 20 s).

The prediction for the conditional duty cycles is more complex, since it must consider

the probability of an event being detected by the visual processing module. Therefore we calcu-

late the predicted lifetime for different probabilities of event being detected (it ranges from zero

until one, in increments of 0.1). Tables 5.21, 5.22 and 5.23 present the results for the feasible

durations for duty cycles (d), (e) and (f), respectively.

Since duty cycle (d) makes use of the low-power mode while waiting to complete

the expected duty cycle duration, we observe a significant increase in node lifetime as duty

cycle duration increases. Also, as expected, the predicted lifetime decreases as the probability

of event detection increases, since event detection incurs in image transmission followed by a

wait period in idle mode. Duty cycle (e) follows the same trend exhibited by duty cycle (d),

but with less significant differences between duty cycle durations. Duty cycle (f) shows almost

no difference in the lifetime for different probabilities of event detection, because since the

163

Table 5.21: The predicted lifetime (in seconds) for a Meerkats’ node running conditional duty
cycle (d) for different durations and probabilities of detecting an event.

P(event) (d) - 10s (d) - 15s (d) - 20s
0.0 22468 33702 44936
0.1 21515 32273 43031
0.2 20640 30960 41281
0.3 19833 29750 39667
0.4 19087 28631 38175
0.5 18395 27593 36791
0.6 17752 26628 35504
0.7 17152 25728 34304
0.8 16591 24887 33182
0.9 16066 24099 32131
1.0 15573 23359 31145

Table 5.22: The predicted lifetime (in seconds) for a Meerkats’ node running conditional duty
cycle (e) for different durations and probabilities of detecting an event.

P(event) (e) - 10s (e) - 15s (e) - 20s
0.0 19040 28560 38080
0.1 18625 27938 37251
0.2 18228 27343 36457
0.3 17848 26772 35696
0.4 17483 26224 34966
0.5 17133 25699 34265
0.6 16796 25194 33592
0.7 16473 24709 32945
0.8 16161 24242 32323
0.9 15862 23792 31723
1.0 15573 23359 31145

164

Table 5.23: The predicted lifetime (in seconds) for a Meerkats’ node running conditional duty
cycle (f) for different durations and probabilities of detecting an event.

P(event) (f) - 5s (f) - 10s (f) - 15s (f) - 20s
0.0 3631 7262 10893 14523
0.1 3628 7256 10884 14511
0.2 3625 7250 10875 14500
0.3 3622 7244 10866 14488
0.4 3619 7238 10857 14476
0.5 3616 7232 10848 14464
0.6 3613 7226 10839 14452
0.7 3610 7220 10830 14440
0.8 3607 7214 10822 14429
0.9 3604 7208 10813 14417
1.0 3601 7203 10804 14405

duration of the idle period if no event is detected is larger than the duration of the idle period

when an event is detected, the cost of transmitting the image is evens out the overall charge

drained by the system. Increasing the duty cycle duration still increases the node lifetime, since

less activities are carried out.

Figure 5.2 depicts the predicted lifetime for all conditional duty cycles under different

event detection probabilities, summarizing the results presented in Tables 5.21, 5.22 and 5.23.

It is clear that duty cycle (d) is the one that allows better lifetime overall. But the choice of the

duty cycle also depends on the application requirements in terms of image acquisition period,

and if the requirements are for a sampling period of 5 s, then the best choice is duty cycle (a).

Another observation we can draw from Figure 5.2 is the fact that the gap between the

predicted lifetime for duty cycles (d) and (e) is smaller for shorter duty cycle durations. Given

this, we should look into a possible break-even point for duty cycles (d) and (e). If an event is

detected, duty cycles (d) and (e) follow the same sequence of tasks, and therefore the predicted

165

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 0.2 0.4 0.6 0.8 1

Li
fe

tim
e

P
re

di
ct

io
n

(s
)

Probability of event

(d) - 10s
(d) - 15s
(d) - 20s
(e) - 10s
(e) - 15s
(e) - 20s
(f) - 10s
(f) - 15s
(f) - 20s

Figure 5.2: The predicted lifetime (in seconds) for a Meerkats’ node running conditional duty
cycles.

lifetime for (d) and (e) is the same when the probability of detecting an event equals one. When

no event is detected, duty cycle (d) will make use of the low-power state, while duty cycle (e)

will remain in idle mode. So a possible break-even point for these duty cycles will happen if

there is a duty cycle duration where the charge incurred in transitioning to and remaining in

low-power mode is equivalent to remaining in idle mode.

Figure 5.3 shows the break-even point for conditional duty cycles (d) and (e). The

time cost associated with transitioning to low-power mode is 3.5 seconds. If the node is sup-

posed to sleep for 1 s, the overall duration is 4.5 s, and the charge associated is 634 mC. If the

node remains in idle mode (with only the Processing Core active) for 4.5 s, it draws 634 mC

too. Therefore, if the waiting period is to be smaller than 4.5 s, the node should remain in idle

mode instead of going to sleep.

166

 0

 0.5

 1

 1.5

 2

 6 6.5 7 7.5 8 8.5 9 9.5 10

D
ut

y
cy

cl
e

ch
ar

ge
 (

C
)

Duty cycle duration (s)

(d)
(e)

Figure 5.3: The break-even point for conditional duty cycles (d) and (e).

5.6 Conclusions

In this Chapter, we completed the third step to achieve our goal of conducting a com-

prehensive study of visual sensor network’s lifetime: develop and validate an energy consump-

tion model based on task composition to determine a visual sensing node’s lifetime.

We first executed a series of experiments running duty cycles repetitive to understand

the lifetime we could achieve with the visual sensor node being used. Then, considering the

lifetime experiments and the duty cycle prediction model presented in Chapter 4, we extended

the model to predict the lifetime of visual sensor node under a given duty cycle. Finally, we

applied all we learned and developed to the Meerkats’ testbed, being able to define a set of

feasible duty cycles under different requirements, and to compare how the choice of different

167

resource management policies affect the Meerkats’ node lifetime. We also showed that there is

a break-even point for putting the system into low-power state.

168

Chapter 6

Conclusions

The main goal of this work is to understand the energy consumption trade-offs be-

tween computation and communication in power-constrained networks in general, and, in par-

ticular, in visual sensor networks.

In Chapter 2, we presented our work on instrumenting network simulators to en-

able them to adequately and accurately account for the energy consumed by ad hoc network

protocols’ communication-related tasks. This is accomplished by explicitly accounting for all

possible radio states, i.e, transmitting, receiving, overhearing, idle, sensing, and sleeping, and

considering the different energy costs associated with each of them. Another contribution of our

energy consumption instrumentation is to allow the energy accounting to be done automatically

by the simulator irrespective of what layer of the stack the protocol designer is working. The

instrumentation energy model is validated analytically and through simulations using two MAC

protocols, i.e., IEEE 802.11 DCF and S-MAC. We also showcase our instrumentation’s ability

to evaluate energy consumption of protocols by comparing S-MAC against 802.11, and AODV

169

against DSR. Then work simulation results obtained using instrumented QualNet with our en-

ergy consumption accounting are used to validate the analytical model proposed to evaluate

energy consumption in IEEE 802.11 single-hop wireless networks.

In Chapter 3, we presented a task-level energy consumption characterization bench-

mark that accounts for basic tasks being executed by a laptop (a typical example of a mobile

computing platform and node in a MANET), and the Meerkats node (example of a visual sen-

sor network node). We also presented the extensions we implemented to obtain current and dis-

charge current accumulator readings using the Stargate’s on-board energy consumption measur-

ing capabilities. On-board energy consumption monitoring is important in order to track battery

discharge and be able to make decisions influencing the trade-off between power conservation

(and thus operation lifetime of the system) and performance. We showed that on-board moni-

toring interferes slightly with energy consumption but were still able to cross-validate on-board

monitoring measurements against DMM readings.

In Chapter 4, we have presented an analysis of the power requirement and execution

time of the elementary tasks that compose a typical duty cycle of a visual sensing node based

on the Crossbow Stargate board. This analysis is necessary to predict the node’s lifetime when

it is battery-operated, and to choose the most appropriate design parameters. Our study has

highlighted the fact that activation and deactivation of hardware components, as well as the

transition between idle and sleep mode of the node’s processor core, may require considerable

overhead energy and may take substantial time. We also showed how elementary tasks can be

combined together to form different duty cycles performing the same function but with rather

different energy requirements. In addition, we validated our hypothesis that the energy con-

170

sumed in a duty cycle, as well as its execution time requirements, can be estimated by simply

adding up the relevant quantities for each elementary task involved. Modeling duty cycles by

task composition achieves a relative error in the range of -10% to 10% for both the average du-

ration and charge. We also discussed the issues associated with the task concatenation approach

to determine a duty cycle, and how its accuracy is affected.

In Chapter 5, we completed the third step to achieve our goal of conducting a compre-

hensive study of visual sensor network’s lifetime: develop and validate an energy consumption

model based on task composition to determine a visual sensing node’s lifetime. We first exe-

cuted a series of experiments running duty cycles repetitive to understand the lifetime we could

achieve with the visual sensor node being used. Then, considering the lifetime experiments and

the duty cycle prediction model presented in Chapter 4, we extended the model to predict the

lifetime of visual sensor node under a given duty cycle. Finally, we applied all we learned and

developed to the Meerkats’ testbed, being able to define a set of feasible duty cycles under dif-

ferent requirements, and to compare how the choice of different resource management policies

affect the Meerkats’ node lifetime. We also showed that there is a break-even point for putting

the system into low-power state.

In summary, the contributions from this work are as follows:

• An energy model for communications, which was implemented under GloMoSim and

QualNet network simulators (code already contributed to the maintainers, and also the

GloMoSim code was made available on the webpage http://www.soe.ucsc.edu/

∼cintia/energy-glomo.html).

171

• Characterization of the energy consumption of two different wireless platforms, namely

a laptop (typical example of a MANET node) and the Stargate [17] (used as visual sensor

node).

• Extension and validation of the on-board battery monitoring capability on the Stargate,

which was contributed to the Stargate community and is available at http://www.

soe.ucsc.edu/∼cintia/batmon.html.

• Duty cycle prediction based on elementary tasks composition.

• A simple lifetime prediction model based on elementary task composition and experi-

ments on lifetime of a visual sensor network for different duty cycles.

• Analysis of the Meerkats node lifetime under different duty cycles and trade-offs.

6.1 Future Directions

There are two main paths to continue the work presented here.

The first path is to formalize the lifetime prediction model presented in Chapter 5

to include non-deterministic sequence of tasks. Similarly to what we have done, the set of

elementary tasks would be know. But the order this tasks would be executed would depend on

different parameters, such as event detection rate, amount of charge available on the battery,

information received from neighboring nodes, etc.

The second path is to apply the framework we developed in this thesis to a different

sensor network platform and application. As we already point out, although our work was done

172

considering a specific visual sensing platform, i.e., the Meerkats node, the methodology we used

to analyze the energy consumption trade-offs of the different tasks and duty cycles could be ap-

plied to other platforms and applications. Essentially, the methodology we proposed includes:

(1) characterizing energy consumption of the platform; (2) determining the cost (in terms of

charge and duration) of the tasks representative of the target application; (3) extend/adapt the

energy model based on task composition to determine the node’s lifetime. Given the discussion

presented in Section 4.5, applying the methodology a platform with simpler hardware and oper-

ating system should allow better results. An example of such a platform would be the mote [82]

as part of a environmental sensor network.

173

Bibliography

[1] A. Aburto. FFT double precision benchmarks. ftp://ftp.nosc.mil/pub/aburto/, 2001.

[2] A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy. Remote power control of wireless

network interfaces. In Proc. of PATMOS in Lecture Notes in Computer Science, Turin,

September 2003. Springer-Verlag.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: Interfaces for better

power management. In The Second International Conference on Mobile Systems, Appli-

cations, and Services (MobiSys 2004), Boston, USA, June 2004.

[4] S. Balakrishnan and J. Ramanan. Power-aware operating system using acpi. CS736 Project

- Fall 2001, 2001.

[5] K. Barr and K. Asanovic. Energy aware lossless data compression. In The First Inter-

national Conference on Mobile Systems, Applications, and Services, San Francisco, CA,

May 2003.

[6] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for system-level

174

dynamic power management. IEEE Transactions on VLSI Systems, 8(3):299–316, June

2000.

[7] M. Bhardwaj and A. P. Chandrakasan. Bounding the lifetime of sensor networks via opti-

mal role assignments. In Proceedings of the Twenty First International Annual Joint Con-

ference of the IEEE Computer and Communications Societies (INFOCOM 2002), New

York, NY, USA, June 2002.

[8] BIOS central. http://www.bioscentral.com, 2004.

[9] J. Boice, X. Lu, C. B. Margi, G. Stanek, G. Zhang, R. Manduchi, and K. Obraczka.

Meerkats: A Power-Aware, Self-Managing Wireless Camera Network for Wide Area

Monitoring. Technical Report ucsc-crl-05-04, University of California Santa Cruz, 2005.

[10] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz. usleep: A technique for reducing energy

consumption in handheld devices. In The Second International Conference on Mobile

Systems, Applications, and Services (MobiSys 2004), Boston, USA, June 2004.

[11] J.-C. Cano and P. Manzoni. A performance comparison of energy consumption for mobile

ad hoc network routing protocols. In 8th International Symposium on Modeling, Anal-

ysis and Simulation of Computer and Telecommunication Systems, San Francisco, CA,

September 2000. IEEE Computer Society.

[12] M. M. Carvalho and J. J. Garcia-Luna-Aceves. Delay analysis of IEEE 802.11 in single-

hop networks. In Proc. of 11th IEEE International Conference on Network Protocols

(ICNP), Atlanta, USA, November 2003.

175

[13] M. M. Carvalho, C. B. Margi, K. Obraczka, and J. J. Garcia-Luna-Aceves. Modeling

energy consumption in single-hop IEEE 802.11 ad hoc networks. In Thirteenth Inter-

national Conference on Computer Communications and Networks (ICCCN’04), Chicago,

USA, October 2004.

[14] A. Cerpa and D. Estrin. Ascent: Adaptive self-configuring sensor networks topologies.

In Proceedings of the Twenty First International Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2002), New York, NY, USA, June

2002.

[15] W. chi Feng, B. Code, E. Kaiser, M. Shea, W. chang Feng, and L. Bavoil. Panoptes:

scalable low-power video sensor networking technologies. In MULTIMEDIA ’03: Pro-

ceedings of the eleventh ACM international conference on Multimedia, pages 562–571,

New York, NY, USA, 2003. ACM Press.

[16] The CMUcam Vision Sensors. http://www.cs.cmu.edu/∼cmucam/, 2005.

[17] Crossbow. Stargate. http://www.xbow.com/, 2004.

[18] B. Crow, I. Widjaja, J. Kim, and P. Sakai. IEEE 802.11 wireless local area networks. IEEE

Communications Magazine, 35(9):116–26, September 1997.

[19] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. Computer Maga-

zine, 37(8):41–49, 2004.

[20] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister. Energy and performance con-

176

siderations for smart dust. International Journal of Parallel and Distributed Systems and

Networks, 4(3):121–133, 2001.

[21] E. J. Duarte-Melo and M. Liu. Analysis of energy consumption and lifetime of heteroge-

neous wireless sensor networks. In IEEE Globecom, Taipei, Taiwan, November 2002.

[22] J. Ebert, S. Aier, G. Kofahl, A. Becker, B. Burns, and A. Wolisz. Measurement and

simulation of the energy consumption of an WLAN interface. Technical Report TKN-02-

010, Technical University Berlin, Telecommunication Networks Group, Germany, June

2002.

[23] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wireless network

interface in an ad hoc networking environment. In Proceedings of the Twentieth Annual

Joint Conference of the IEEE Computer and Communications Societies.INFOCOM 2001,

volume 3, pages 1548–1557. IEEE, April 2001.

[24] J. Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage of mo-

bile applications. In 2nd IEEE Workshop on Mobile Computing Systems and Applications,

New Orleans, Louisiana, February 1999.

[25] S. Fowler. wmacpi: A battery monitor dockapp for ACPI based systems. http://

himi.org/wmacpi-ng/, 2004.

[26] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Energy efficient data collection in

distributed sensor environments. In ICDCS, pages 590–597, 2004.

[27] R. Haralick and L. Shapiro, editors. Computers and Robot Vision. Addison-Wesley, 1992.

177

[28] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication

protocol for wireless microsensor networks. In Proceedings of the Hawaii International

Conference on System Sciences, pages 3005–14. IEEE, January 2000.

[29] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication

protocol for wireless microsensor networks. In 33rd Hawaii International Conference on

System Sciences (HICSS ’00), Hawaii, January 2000.

[30] W. B. Heinzelman. Application-Specific Protocol Architectures for Wireless Networks.

PhD thesis, Massachusetts Institute of Technology, 2000.

[31] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI: Advanced configuration

and power interface. http://www.acpi.info/, 2004.

[32] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, Nov 1997. P802.11.

[33] N. Instruments. LabVIEW 7.1. http://www.rt.com/man/hdparm.8.html,

2004.

[34] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust

communication paradigm for sensor networks. In Sixth Annual International Conference

on Mobile Computing and Networking, (MobiCom 2000), pages 56–67. ACM, August

2000.

[35] Intel. Intel PXA255 applications processors developer’s manual. http:

178

//www.intel.com/design/pca/applicationsprocessors/manuals/

278693.htm, Janeiro 2004.

[36] ISI/USC. ns-2. http://www.isi.edu/nsnam/ns/, 2003.

[37] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan. Energy-adaptive display system designs

for future mobile environments. In The First International Conference on Mobile Systems,

Applications, and Services (MobiSys 2003), San Francisco, USA, June 2003.

[38] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks.

In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer Academic Pub-

lishers, 1996.

[39] D. Kim, J. Garcia-Luna-Aceves, K. Obraczka, J.-C. Cano, and P. Manzoni. Performance

analysis of power-aware route selection protocols in mobile ad hoc networks. In IEEE

Networks 2002, Atlanta, GA, August 2002.

[40] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for dissemi-

nation information in wireless sensor networks. In Submited to ACM Wireless Networks,

2001.

[41] P. Kulkarni, D. Ganesan, and P. Shenoy. The case for multi-tier camera sensor networks.

In International Workshop on Network and Operating Systems Support for Digital Audio

and Video (NOSSDAV 2005), 2005.

[42] P. Levis, D. Gay, and D. Culler. Active sensor networks. In 2nd USENIX/ACM Symposium

on Network Systems Design and Implementation (NSDI), 2005.

179

[43] E. Lochin, A. Fladenmuller, J.-Y. Moulin, and S. Fdida. Energy consumption models for

ad-hoc mobile terminals. In Med-Hoc Net, 2003.

[44] X. Lu and R. Manduchi. Fast image motion computation on an embedded computer. In

2nd IEEE Workshop on Embedded Computer Vision, New York, June 2006.

[45] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acqusitional

query processing system for sensor networks. ACM Transactions on Database Systems,

2005.

[46] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor

networks for habitat monitoring. In First ACM Workshop on Wireless Sensor Networks

and Applications, Atlanta, GA, September 2002.

[47] MandrakeSoft. Mandrakelinux. http://www.mandrakelinux.com, 2004.

[48] C. B. Margi, R. Manduchi, and K. Obraczka. Energy consumption tradeoffs in visual

sensor networks. In 24th Brazilian Symposium on Computer Networks (SBRC 2006),

Curitiba, Brazil, June 2006.

[49] C. B. Margi and K. Obraczka. Instrumenting network simulators for evaluating energy

consumption in power-aware ad-hoc network protocols. In 12th Annual Meeting of the

IEEE / ACM International Symposium on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems (MASCOTS2004), Volendam, The Netherlands,

October 2004.

180

[50] C. B. Margi, K. Obraczka, and R. Manduchi. Characterizing system level energy con-

sumption in mobile computing platforms. In IEEE WirelessCom 2005 - Symposium on

Mobile Computing, Maui, HI, USA, June 2005.

[51] C. B. Margi, V. Petkov, K. Obraczka, and R. Manduchi. Characterizing energy consump-

tion in a visual sensor network testbed. In 2nd International IEEE/Create-Net Conference

on Testbeds and Research Infrastructures for the Development of Networks and Commu-

nities (TridentCom 2006), Barcelona, Spain, March 2006.

[52] R. A. Mini, M. do Val Machado, A. A. Loureiro, and B. Nath. Prediction-based energy

map for wireless sensor networks. Ad Hoc Networks Journal (Special Issue on Ad Hoc

Networking for Pervasive Systems), 3(2):235–253, 2005.

[53] R. A. Mini, A. A. Loureiro, and B. Nath. Prediction-based energy map for wireless sensor

networks. In Proceedings of IFIP-TC6 8th International on Conference Personal Wireless

Communications (PWC 2003), pages 12–26, 2003.

[54] D. Monticelli. System approaches to power management. In Applied Power Electronics

Conference and Exposition, 2002. APEC 2002. Seventeenth Annual IEEE, Dallas, TX,

USA, March 2002.

[55] W. D. Norcott and D. Capps. IOzone filesystem benchmar. http://www.iozone.

org/, 2004.

[56] C. Perkins, E. Belding-Royer, and S. Das. RFC 3561 - Ad hoc On-Demand Distance Vec-

tor (AODV) Routing. http://www.faqs.org/rfcs/rfc3561.html, July 2003.

181

[57] V. Petkov. Using the DS2438 Battery Monitor on Crossbow’s Stargate. Technical report,

University of California Santa Cruz, 2006.

[58] D. Qiao, S. Choi, A. Jain, and K. G. Shin. Miser: An optimal low-energy transmission

strategy for IEEE 802.11a/h. In Proc. of the 9th Annual International Conference on

Mobile Computing and Networking (MOBICOM). ACM Press, September 2003.

[59] V. Raghunathan, T. Pering, R. Want, A. Nguyen, and P. Jensen. Experience with a low

power wireless mobile computing platform. In ISLPED 2004, 2004.

[60] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and M. Srivastava.

Cyclops: In situ image sensing and interpretation in wireless sensor networks. In SenSys

2005), 2005.

[61] V. Rajendran, K. Obraczka, and J. Garcia-Luna-Aceves. Energy-efficient, collision-free

medium access control for wireless sensor networks. In ACM SenSys 03, Los Angeles,

CA, November 2003.

[62] J. M. Reason and J. M. Rabaey. A study of energy consumption and reliability in a multi-

hop sensor network. Mobile Computing and Communications Review, 8(1):84–97, 2004.

[63] RFM. TR1000 datasheet. http://www.rfm.com/products/data/tr1000.

pdf, 2003.

[64] H. O. Sanli, R. Poornachandran, and H. Çam. Collaborative two-level task scheduling for

wireless sensor nodes with multiple sensing units. In SECON, 2005.

182

[65] B. Scheifler and D. Krikorian. Unix man pages: xset (1). http://www.mcsr.

olemiss.edu/cgi-bin/man-cgi?xset+1, 2004.

[66] SCT. QualNet user manual. http://www.scalable-networks.com/, 2003.

[67] D. Semiconductor. DS2438: Smart battery monitor datasheet. http://www.

maxim-ic.com, 2004.

[68] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simulating the

power consumption of large-scale sensor network applications. In ACM SenSys 04, Balti-

more, MA, November 2004.

[69] H. Singh and S. Singh. Energy consumption of tcp reno, newreno, and sack in multi-hop

wireless networks. In SIGMETRICS02, 2002.

[70] A. Sinha and A. Chandrakasan. Dynamic power management in wireless sensor networks.

IEEE Design & Test of Computers, 18(2):62–74, 2001.

[71] I. Solis and K. Obraczka. The impact of timing in data aggregation for sensor networks.

In The 2004 International Conference on Communications (ICC 2004), June 2004.

[72] I. Solis and K. Obraczka. Efficient continuous mapping in sensor networks using isolines.

In Mobiquitous 2005, July 2005.

[73] A. Song. Piconet ii - a wireless ad hoc network for mobile handheld devices. http:

//piconet.sourceforge.net/, 2001.

[74] Standard performance evaluation corporation. http://www.spec.org, 2004.

183

[75] SPI. Debian – the universal operating system. http://www.debian.org/, 2004.

[76] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking”.

In IEEE Int’l Conf. on Computer Vision and Pattern Recognition, 1999.

[77] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network

interfaces in hand-held devices. IEICE Trans. on Communications, 8(E80-B):1125–1131,

1997.

[78] F. Tari, P. Rong, and M. Pedram. An energy-aware simulation model and a transaction pro-

tocol for dynamic workload distribution in mobile ad hoc networks. In Proceedings of the

21st International Conference on Computer Design: VLSI in Computers and Processors,

San Jose, CA, October 2003.

[79] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf. http://dast.

nlanr.net/Projects/Iperf/, 2003.

[80] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, P. Buonadonna, S. Burgess, D. Gay,

W. Hong, T. Dawson, and D. Culler. A macroscope in the redwoods. In Third ACM

Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[81] T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for wireless

sensor networks. In ACM SenSys 03, Los Angeles, CA, November 2003.

[82] A. Woo. Mote documentation and development information. http://www.eecs.

berkeley.edu/∼awoo/smartdust/, 2000.

184

[83] Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology control protocols to

conserve energy in wireless ad hoc networks. Technical Report CENS Technical Report

6, Center for Embedded Networked Sensing, USA, January 2003.

[84] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor

networks. In Proceedings of the 21st International Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2002), New York, NY, USA, June

2002.

[85] L. Yin, G. Cao, C. Das, and A. Ashraf. Power-aware prefetch in mobile environments. In

IEEE International Conference on Distributed Computing Systems (ICDCS), pages 571–

578, 2002.

[86] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang. Modeling

hard-disk power consumption. In Second Conference on File and Storage Technologies,

San Francisco, USA, March 2003.

[87] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of

large-scale wireless networks. In 12th Workshop on Parallel and Distributed Simulations

– PADS ’98, Banff, Alberta, Canada, May 1998.

[88] F. Zheng, N. Garg, S. Sobti, C. Zhang, R. Joseph, A. Krishnamurthy, and R. Wang. Consid-

ering the energy consumption of mobile storage alternatives. In MASCOTS’2003, Orlando,

USA, October 2003.

185

