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Abstract— In this paper analyzed WLAN–, GPS–,
and synthetic traces that record mobility in a variety
of network environments. We observe that from a
macroscopic level, human mobility is symmetric. In
other words, the number of users that move from
point A to point B approximates the number of users
that go in the opposite direction, i.e., from B to A. We
show that this type of symmetry is more accentuated
in synthetic mobility models, in particular, in random
way-point mobility. We also study the direction of
movement which also exhibits symmetric behavior in
both real– as well as synthetic mobility. Additional
contributions of our work include metrics to quantify
mobility symmetry. We conclude the paper with a
discussion of possible applications of our results in
mobile networking.

I. Introduction
Node mobility is a key factor in the design and perfor-

mance evaluation of mobile networks and their protocols
and mobility characterization has attracted consider-
able attention from the networking research community.
Evaluation studies of early mobile networks and their
protocols used most of the time “synthetic” mobility
models such as random walk, Brownian motion, and the
random way-point (RWP) model [1], just to mention a
few. The RWP, in particular, has been one of the most
used mobility models for evaluating mobile networks
which motivated several studies that scrutinized its be-
havior, identified a number of undesirable features [2],
as well as proposed variations to improve its behavior.

More recently, motivated in part by the problems
associated with the RWP and recognizing the impor-
tance of employing more realistic mobility scenarios
when designing and evaluating mobile networks, there
has been considerable interest in using real mobility
traces and developing models that reflect real mobility.
Crawdad [3], is an example of an initiative to make real
mobility traces widely available to network researchers.

In this paper, also motivated by the trend towards
employing real mobility to design and evaluate wireless
networks, we study different types of traces obtained by
recording user mobility. Our goal is to identify patterns,
extract features, and define metrics to characterize the
spatial behavior of human mobility. As a result, we
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identify an interesting characteristic exhibited by human
mobility that, to the best of our knowledge, have not
yet been revealed in previous studies. We work with
a number of real traces that record user mobility in
infrastructure-based networked environments (i.e., wire-
less LANs) as well as GPS positioning traces. We show
that, from a macroscopic level, human mobility is sym-
metric. In other words, the number of users that move
from point A to point B approximates the number of
users that go in the opposite direction, i.e., from B to
A. We also show that this type of symmetry is more
accentuated in synthetic mobility models, in particular,
in random way-point mobility. Additionally, we study
the direction of movement which also exhibit symmetric
behavior in both real– as well as synthetic mobility. In
order to quantify the degree of symmetry exhibited by a
given mobility scenario, we define a new metric we call
coefficient of symmetry. Finally, we hope that this work
will generate input for the development of new and more
realistic models, and that the new metrics presented here
will aid in the evaluation of these models.

The remainder of this paper is organized as follows.
Section II describes the mobility traces we studied, in-
cluding wireless LAN, GPS, and synthetic traces. In Sec-
tion III, we describe our methodology, define the metrics
we used, and present our results. Section IV discusses
the implications of mobility symmetry in areas such as
design of forwarding algorithms, mobility management,
mobility prediction, and the design of mobility models.
We finally present some related work in Section V.

II. Mobility Traces

In this section we describe the mobility traces we
used in our study. Here, we make a distinction between
different types of traces and define macro– and micro–
mobility. In macro-mobility traces, the resolution of node
positions is coarser grained; this is the case of WLAN
traces or cell phone traces, where the exact position
of a node is unknown and is instead represented by
the position of the access point with which the node is
associated (in WLANs) or the cell in which the node
is presently located (in cellular networks). In micro-
mobility traces, a node’s location is represented with
finer grain resolution; this is the case of GPS traces,
where positioning information is given by latitude and



longitude, and typically has a resolution of meters.
We considered three types of mobility traces in our

study, namely: infrastructure-based scenarios (WLANs);
ad-hoc scenarios (using GPS positioning), and synthetic
scenarios (using RWP mobility). Below we present the
traces in these different categories in more detail.
A. WLAN Traces

Table I summarizes the WLAN traces in terms of
number of users, number of Access Points (APs), and
duration of the trace. The first 3 WLAN traces were
collected in university campus environments: Dartmouth
and Stanford, available at [3] and the MIT trace [4].

Trace # users # APs Duration
Dartmouth 9480 623 1 year (2003)
Stanford 74 21 12 weeks
MIT 1366 173 1 day
Rio 120 17 1 week

Table I
WLAN traces description.

Since our goal is to study human mobility in general,
not only in the context of a campus environment, we
collected a fourth trace recording user mobility in a pub-
lic WLAN network deployed in an urban environment.
The Rio trace was collected during the first week of
April 2010 recording user mobility in the Digital Orla
Project [5] network deployed along Ipanema Beach, Rio
de Janeiro, Brazil. At the time the trace was collected,
the network consisted of 17 Cisco APs mounted on light
poles along the beach’s boardwalk, providing network
access in the boardwalk and nearby streets. The APs
were configured to transmit a syslog message every time
a client associated or disassociated. The resulting trace
reflects one week of network usage; a total of 120 distinct
clients who performed at least 1 transition between APs
were recorded. Clients use a variety of devices to connect
to the network including laptops and smart phones.
B. GPS Traces

The focus here was to study user mobility with finer-
grained resolution. WLAN traces represent “on-off” type
behavior, where users connect to an AP, stay connected
for a given period of time, disconnects, stays discon-
nected for a period of time, reconnects again to some
other AP, and so on. GPS traces, represent mobility in
a more continuous fashion where nodes roam around a
given area, and connection between nodes and an AP
or another node is a function of the distance between
the nodes and the transmission range of their commu-
nication devices. Table II summarizes the GPS traces
we used in our study in terms of number of users, trace
duration, and the period between GPS samples.

Trace # users Duration Samples
Quinta 98 900 s 1 s
KAIST 78 5000 s 10 s

Table II
Description of the GPS traces studied.

Quinta, refers to the “Quinta da Boa Vista Park”
trace, presented in [6]. It is a GPS trace collected

at a park in the city of Rio de Janeiro, Brazil, that
has many trees, lakes, caves and trails, and holds the
National Museum and the city Zoo. The KAIST trace,
also available at [3], on the other hand, is a GPS trace
collected on a university campus environment.
C. Simulated Traces

Two synthetic traces were generated using the RWP
mobility model. We tried to simulate the two scenarios
described by the traces in Section II-B using RWP
mobility. Our goal here is to compare characteristics of
synthetic mobility against real mobility, especially when
the former is inspired by the latter. In our simulations,
we set the velocity range in a way that the average
velocities would match the ones measured in the Quinta
and KAIST traces. The same was done for average pause
time and the dimensions of the area covered by the
traces. Velocity and pause time were chosen according
to a uniform distribution whose average is computed as
described above 2. Table III summarizes the parameters
used to generate the synthetic traces.

Parameter Quinta RWP KAIST RWP
Avg. Speed 1.2 m/s 0.72 m/s
Avg. Pause 3.6 s 17 s
Area 840 m X 840 m 5000 m X 5000 m
Duration 900 s 5000 s
# nodes 98 78

Table III
Simulation parameters.

In order to study transitions we divided the area into
square cells. We assumed 100 meters of range for a Wi-
Fi device and set the cell to be the square inscribed in
a 200 meters diameter circle. That gives approximately
a square cell of size 140 X 140 meters.

III. Dataset Analysis
In this section, we present the methodology we used

to analyze the traces and the results of our study. We
start by defining the metrics and parameters employed
in our analysis.
A. Definitions
Transition is the event caused when a node moves from
one cell to another. When analyzing the GPS traces,
transitions are detected when nodes move between
neighboring cells. In WLAN traces, transitions happen
between any cells.
Transition Matrix (TM) A is a square matrix of N
x N elements where N is the total number of cells in
the system. Every element aij , denotes the number of
transitions observed from cell i to cell j. Since we do
not consider transitions when nodes move within the
same cell, the main diagonal is zero.
Time-Aggregated Transition Matrix For a given
window of time, we count how many transitions were
observed for a given user. The larger this window, the

2For more details on how these parameters are derived from real
traces refer to [6].



more we aggregate transitions in time. The window
can be sliding or fixed over time. If we choose a sliding
window, we define a window size W and a starting time
instant, say t1,i, when the first transition for user i
occurred. We then count how many transitions occurred
from t1,i to t1,i + W . After that, the beginning of the
window slides to the time of the next transition, say t2,i
and the transitions between t2,i to t2,i+W are counted.
This is done for all transitions for the duration of the
trace. In the case of a fixed-window, the trace is divided
in slots of size W and we count the transitions that
happen inside every slot. We used the fixed-window
approach to compute aggregated transitions in the
results presented below.
User-Aggregated Transition Matrix The TM can
be computed for each user in the system separately,
called here individual transition matrix (iTM), or
for a number of users n, an n-aggregated transition
matrix (n-aTM). For a time window of fixed size, user
aggregation refers to how many users we consider when
computing the TM.
Symmetric Transition Matrix A is considered
symmetric when aij ≈ aji, ∀i, j ∈ {1, ..., N}.
Direction Angle is the counter-clockwise angle formed
between the X-axis (0°) and the line connecting two
consecutive location samples in the trace.
B. Transition Symmetry

Figures 1(a), 1(b), and 1(c) show the aggregated
TMs for the Rio, Stanford, and Dartmouth datasets,
respectively. These TMs consider transitions within 24
hours and aggregate all users for the duration of the
trace according to Table I. The MIT TM is not shown
due to space constrains but shows similar behavior.

The aggregated TMs show a clear symmetry in re-
lation to the main diagonal. One might argue that the
symmetric behavior could be a consequence of the ping-
pong effect reported in [7], commonly seen in WLAN
traces. This phenomenon occurs when a mobile node
is in range of two or more APs, and because of the
variation in signal strength, this node might go back and
forth associating and disassociating with the different
APs in range. It is easy to identify this behavior if the
session time is in the order of seconds, but when the gap
between transitions is in the order of minutes, this task
becomes non-trivial. In order to mitigate this behavior,
we filtered high frequency transitions, only accounting
for transitions that happened more than 1, 5, 10 and
15 minutes away from each other. As we increased the
time gap, the number of transitions per node decreased
as expected. However, it did not affect the symmetric
behavior of the TM. For that reason, we set the ping-
pong filter to 10 min for all the results presented here.

In order to further explore the reasons for the TMs’
symmetric behavior, we considered clusters of APs such
that if a transition occurred between APs in the same

cluster, either due to node movement or the ping-pong
effect, that would not count as a transition. In other
words, only transitions between clusters were considered.
We use AP clustering in the Dartmouth trace, which
was the one with the largest number of APs. A map
of the Dartmouth campus was used to decide how to
cluster the APs: we used the known locations of the
APs to overlay them on the map; we then clustered
the APs according to proximity and area of coverage
(instead of using clusters of similar size and number of
APs). The Dartmouth TM represented in Figure 1(c) is
a result of organizing the campus APs in 30 clusters.
Evidently, symmetry persisted even after filtering out
high frequency transitions and using AP clusters.

(a) Rio Dataset

(b) Stanford Dataset

(c) Dartmouth Dataset.
Figure 1. Transition matrices for the WLAN traces.

The explanation for the symmetric behavior is illus-
trated in Figure 2. If user1 takes the path from AP2 to
AP1 to AP3 and user2 goes from AP2 to AP3 to AP1,
then the resulting transition matrix is symmetric. The
more we aggregate users and/or the longer we observe
their movement, the higher is the chance of observing
movement in opposite directions.

In order to understand and be able to quantify sym-
metry as we observe user mobility collectively and over
time, we define a metric called coefficient of symmetry,
α, where 0 ≤ α ≤ 1, as defined in Equation 1:

α=
1
T

N−1∑

i=1

N∑

j=i+1
|aij − aji| (1)



where T is the total number of transitions in matrix
A. Thus, the closer α is to 0, the higher the symmetry.
α = 1 means that A does not have any transitions in
symmetric positions. This metric can also be seen as
the percentage of transitions happening in symmetric
positions. For example, if α = 0.2, it means that 80%
of the transitions are in symmetric positions. α can be
computed for each node individually, or for the entire
network from a TM aggregated over all users.

Figure 2. Transition matrix built for a network of 3 APs, after
two users make 3 transitions each in opposite directions.

(a) Rio Dataset

(b) Stanford Dataset

(c) MIT Dataset

(d) Dartmouth Dataset
Figure 3. Metric of symmetry α for different number of aggregated
users, under different time aggregation windows for (a) Rio, (b)
Stanford, (c) MIT and (d) Dartmouth datasets.

Figure 3 shows α for all 4 WLAN traces studied,
varying the number of aggregated users and aggregating
transitions in time for 3 different window sizes: 24–, 12–,

and 6 hours. The X-axis is how many users were aggre-
gated to compute α, and users are ordered in decreasing
order, according to their individual α (computed using
their iTM).

For the traces with larger number of users, when we
decrease the aggregation time window, the TM becomes
less symmetric (i.e., α increases), as we can observe from
the Dartmouth TM (Figure 3(d)). This behavior is not
as evident in the MIT trace (Figure 3(c)). This is due to
the fact that all the APs are in the same building which
greatly contributes to the ping-pong effect, making it
much harder to filter. Therefore, decreasing the aggre-
gation window does not affect the results as much. This
happens because users’ transitions, in this case, occur
with great frequency, always falling inside the minimum
window used (6 hours). To confirm this hypothesis we
used an additional window of 30 minutes for the MIT
dataset. Only then we were able to notice the difference,
as the 30 minutes curve went over the other curves as
we aggregated more users.

In the case of the traces with fewer users, time ag-
gregation appears to have an opposite effect on the
symmetry, as we can see in Figures 3(a) and 3(b). The
smaller the time window is, the less transitions are
accounted in the TM. In the case of those two traces,
there is a preference for a few specific APs (more popular
APs appear as the spikes in the TMs on Figures 1(a)
and 1(b)). The transitions not accounted for due to the
smaller time window are more likely to be taken from the
most popular APs, what would decrease the difference
amongst the cells in the matrix. This would increase the
overall symmetric pattern, contributing to a lower α and
making the α curve converge faster to lower values as we
aggregate more users.

In Figure 4 we plot the coefficient of symmetry, α,
for the GPS and RWP traces. For the RWP traces, we
plot the average aggregated α for 15 different random
seeds. The first interesting observation is that α for the
synthetic traces is similar to α for the corresponding
real traces. The differences are due to the fact that in
real environments, users tend to favor some areas (e.g.,
they walk on roads), limiting the degree of freedom of
their movement. On the other hand, for the synthetic
traces, users tend to disperse more uniformly increasing
the chances of the number of transitions between a cell
and its neighbors to be similar for every cell. For the
KAIST trace, in particular, we notice that nodes tend
to concentrate even more than in the Quinta trace,
visiting less cells overall. That explains KAIST’s higher
symmetry, even with less users. This limited number of
visited cells, in the KAIST trace, increases the relation
user/cells increasing the chances of random transitions
falling in symmetric positions.



C. Direction Angle Symmetry
Direction of movement provides additional informa-

tion on the spatial behavior of human mobility. Figure 5
shows the distribution of direction angles which rep-
resent relative frequency of directions users take when
moving as reported in the GPS– and synthetic traces.
The bin size used in these plots is 1°. We observe a
symmetric–, close to uniform distribution of direction
angles for both of the synthetic traces (Figures 5(b) and
5(d)), where it is not possible to identify any significant
preference for a given direction.

Figure 4. α per number of aggregated users, under a 24h
aggregation window.

For the KAIST trace, in Figure 5(c), it is possible
to notice the concentration of points over a symmetric
shape, like a circle. Despite some few outliers, it is also
not possible to identify any significant preferred angle.
That is not true for the Quinta trace in Figure 5(a).
This trace has a peculiar symmetric shape with respect
to 180 degrees, for the direction nodes take. This can
be explained by considering the physical terrain and the
fact that users mostly move only along roads and tracks
which limit the possible movement directions.

(a) Quinta Dataset (b) Quinta RWP Dataset

(c) KAIST Dataset (d) KAIST RWP Dataset
Figure 5. Distribution of direction angles for (a) Quinta, (b)
Quinta RWP, (c) KAIST and (d) KAIST RWP datasets.

The KAIST trace, on the other hand, was collected
on a much larger area which corresponds to the KAIST
campus, with several roads and pathways. Because it was
derived from the real KAIST trace, the KAIST RWP

trace also presents this characteristic. This is what is
shown in Figure 6 which plots the Empirical Cumulative
Distribution Function (ECDF) of the direction angles
for the GPS– and synthetic traces. We observe that the
KAIST RWP trace is able to reflect closely the statis-
tical properties of the trajectory angle. The differences
between Quinta and Quinta RWP traces are mainly due
to movement restrictions (obstacles and paths).

IV. Discussion
Despite the large body of work that focus on studying

real traces, to the best of our knowledge, our work is
the first to observe and quantify spatial symmetry in
user mobility in terms of cell transitions and angle of
movement. The only other work that briefly alludes to
direction angle symmetry is [8].

Using maps, social interaction,“hot spots”, and other
factors that limit and/or influence user mobility (e.g.,
what is the next destination) are effective strategies
to “bias” synthetic mobility models in order to obtain
behavior that is closer to reality. Along those lines, the
proposed TM can be used to identify the “popularity”
of the different regions of the network (including, e.g.,
hot spots) and based on this information specify the
probability distributions used by nodes to select their
next destination in synthetic mobility models.

Figure 6. ECDF of the direction for GPS and RWP traces.

Another interesting application of our results is the
use of the direction angle symmetry as a way to compare
mobility traces. The distributions of direction angles
in Figures 5(a) and (b) show very different behavior
when comparing the synthetic trace against the real one.
By using strategies to approximate synthetic mobility
models to real mobility, direction angle symmetry can
be used to quantify how close the resulting models get to
real mobility, and thus how effective these “approxima-
tion” strategies are. We are currently going a step further
and trying to draw a transitive relationship between
direction angle symmetry, spatial mobility behavior, and
performance of core networking functions such as routing
and forwarding.

Mobility or location prediction is yet another area in
which our results can find interesting applications. For
example, in [9], a Markovian predictor is used to predict
user location based on a given mobility trace (in the
paper, the Dartmouth trace was used). It was observed
that for nodes that did not have enough historical in-
formation recorded in the trace, the performance of the
predictor was not adequate. To mitigate this problem,



we could use the coefficient of symmetry, α, of a given
node to artificially “re-create” the node’s past historical
information.

V. Related Work
Several empirical studies have focused on character-

izing mobility behavior in WLANs. For example, the
work reported in [10] studies a campus WLAN trace and
extracts statistics such as the number of associations
per time per AP as well as session duration. Their
goal was to generate input for capacity planning. The
MIT WLAN trace was used in [4], where statistics on
traffic and AP associations were presented; the work
also introduced important metrics such as prevalence
and persistence. The study reported in [11] explored the
Stanford traces but focused on traffic– and application-
layer issues rather than mobility. Nonetheless, empirical
distributions were derived for the number of users per
AP and the maximum number of hand-offs per AP.
Campus WLAN usage was further studied in [12] using
the Dartmouth traces. Some of their findings include
the fact that users tend to persist at a single location
for longer and that different applications had different
mobility characteristics. Dartmouth’s, MIT’s, and two
other traces were studied further in [13] which pre-
sented ECDFs for time spent in each AP, number of
associations per user, and percentage of APs visited.
Moreover, metrics such as clustering coefficient, degree of
separation between nodes, and disconnection ratio were
also reported.

Trace-driven approaches aimed at building realistic
mobility models have been the focus of many research
efforts. In [14], a weighted waypoint model is proposed
based on a university campus mobile scenario contain-
ing 5 possible locations. The transition probabilities
were set based on a survey conducted on site, where
people were asked about their mobility patterns on
campus. A transition matrix was built as a result of
this survey; however, it did not exhibit any symmetry.
We believe this was the case because the transitions
did not take into consideration intermediate locations.
In [7], a framework for building trace-driven mobility
models was proposed. It uses a map-based model where
transition probabilities are computed from route weights
and depend on origin, destination, current and previous
locations, all extracted from the Dartmouth trace. In a
more recent study [15], a model where the next waypoint
depends on cell popularity and distance from current
position is proposed.

VI. Conclusions and Future Work
This paper explores the spatial behavior of human

mobility through a variety of mobility traces collected in
different network environments. As a result, we identify
characteristics exhibited by human mobility that, to
the best of our knowledge, have not yet been revealed
in previous studies. We used a number of real traces

that record user mobility in wireless LANs as well as
GPS traces. Additionally, we also investigated synthetic
mobility, in particular, through traces generated using
the RWP model. We show that, from a macroscopic
level, human mobility is symmetric. In other words, the
number of users that move from point A to point B
approximates the number of users that go in the opposite
direction. We also show that this type of symmetry is
more evident in synthetic models such as RWP. Ad-
ditionally, we study the direction of movement which
also exhibit symmetric behavior in both real– as well
as synthetic mobility. In order to quantify the degree
of symmetry exhibited by a given mobility scenario, we
define a new metric we call coefficient of symmetry. We
conclude by discussing the implications of our results in
different areas of mobile networking.
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