
Analysis of a TCP hybrid model∗

Stephan Bohacek† João P. Hespanha‡ Junsoo Lee†† Katia Obraczka§

bohacek@math.usc.edu hespanha@usc.edu junsoole@usc.edu katia@cse.ucsc.edu

†Department of Mathematics, Univ. of Southern California
Los Angeles, CA 90089-1113

‡Dept. Electrical Engineering–Systems, Univ. of Southern California
Los Angeles, CA 90089-2563

††Computer Science Department, Univ. of Southern California
Los Angeles, CA 90089

§Computer Engineering Department, University of California
Santa Cruz, CA 95064

Abstract

In this paper we use hybrid systems to model and analyze the transient and
steady-state behavior of multiple TCP flows that share a single common bottle-
neck link. The main contributions of this paper are (1) a characterization of the
transient behavior of the flows, predicting their experimentally observed exponen-
tial synchronization and (2) a characterization of the steady-state regimen that is
significantly more accurate than existing ones, especially under heavy traffic. The
transient analysis of TCP also provides rules for network provisioning.

1 Introduction

For the past decade, TCP congestion control mechanisms have been under the scrutiny of
the network research community. The existence of several versions of TCP such as TCP-
Tahoe, Reno, Vegas, New Reno, and Selective Acknowledgement (SACK) is evidence of
the attention TCP has received over the years. More recently, motivated by the increasing
popularity of multimedia services, several efforts have been investigating TCP-friendly
approaches to congestion control [1, 2, 3]. One goal of TCP-friendly congestion control
is to avoid the large window size variations that may be experienced by TCP flows and,
at the same time, be able to coexist with TCP in a mutually fair way. This prompted
several researchers to propose models that would permit the analysis of TCP and establish
conditions for fairness with respect to alternative forms of congestion control.

Similarly to existing work on TCP congestion control, the model presented here is
based on the dumbbell topology. In this topology (cf. Figure 1), n persistent TCP flows
are generated at a source node n1 and are directed towards a sink node n2. All the flows
compete for the finite bandwidth B that characterizes the bottleneck link � connecting the
nodes. In more realistic networks, a path of several links (and intermediate nodes) would

∗This research was supported by NSF and DARPA

1

connect the source and destination. However, to analyze congestion control mechanisms,
one often ignores the existence of all the intermediate links, except for the bottleneck
link, i.e., the most congested link.

n1 n2
�

flow1
flow2

flown

Figure 1: Dumbbell topology

This topology has been well studied in the context of TCP congestion control [4, 5,
6, 7, 2, 8] mainly for the two following reasons. First, for congestion control analysis
purposes, it is believed to be (to some extent) representative of the behavior of a more
general topology. In fact, while TCP behaves differently in different topologies, some
characteristics are common to many of them and, hence, a complete understanding of
how TCP behaves in one topology provides insight into how it might behave in other
topologies. Second, analysis of more complicated topologies quickly becomes intractable.
This problem of intractability has been accommodated by relying purely on simulation or,
for theoretical work, on strong and often unrealistic assumptions. In this investigation,
the framework of hybrid systems is utilized to theoretically determine specific properties
of TCP without the use of overly simplifying assumptions. These properties are then
validated through packet-level simulations performed using the network simulator ns-2

[9].

Many of the recently proposed TCP-friendly algorithms are based on the well known
relationship

T =
1.23

RTT
√

p
(1)

where T is the average throughput, RTT the average round-trip time, and p the average
drop rate [10, 11, 6, 12] or variations of (1) that consider timeouts [13, 2]. Our hybrid
model provides a relationship between these quantities that, under heavy traffic, becomes
significantly distinct from (1). The new relationship appears to be more accurate when
compared with detailed packet-level simulations. One key difference is that our analy-
sis does not require some of the simplifying assumptions found in previous work. For
example, we do not assume that the round-trip time is constant. As it is well known,
the round-trip time plays an important role in TCP: when the queue fills, the round-trip
time increases and the TCP congestion window increases more slowly. In essence, the
round-trip time has a stabilizing effect on the TCP flows, even before a drop has occurred.

The transient analysis of TCP also provides rules for network provisioning. For ex-
ample, we show that the queueing capacity at the bottleneck should not be smaller than
the “wire-capacity.” In particular, that the maximum queue size qmax at the bottleneck
link should be larger than BT �, where B denotes the link bandwidth and T � the round-
trip propagation time. When this condition is violated, the bottleneck queue will empty,
leading to underutilization of the available bandwidth.

The philosophy behind a hybrid systems modeling framework

A few comments should be made regarding the philosophy behind the type of network
modeling that we propose here. The most accurate network models are packet-level mod-
els that keep track of individual packets as they travel across the network. These are

2

used in network simulators such as ns-2 [9]. These models have two drawbacks: the large
computational requirements for large-scale simulations and the difficulty in understand-
ing how network parameters affect the overall system performance. Aggregate fluid-like
models overcome these difficulties by simply keeping track of the average quantities that
are relevant for network design and provisioning (such as queue sizes, transmission rates,
drop rates, etc.) (cf. ,e.g., [12, 14]). The main limitation of these models is that they
mostly capture steady state behavior and ignore the detailed transient behavior of con-
gestion control because the averaging is typically done over large time scales. These
models are unsuitable, e.g., to capture the dynamics of short-lived flow.

The model proposed in this paper fills the gap between packet-level and aggregate
models by averaging discrete variables over a very short time scale (on the order of a
round-trip time). This means that the model will be able to capture the dynamics of
transient phenomena fairly accurately, as long as their time constants are larger than a
couple of round-trip times. This is quite appropriate, e.g., for the analysis and design of
congestion control mechanisms.

The “hybridness” of the model comes from the fact that, because of averaging, many
variables that are essentially discrete (such as queue and window sizes) are allowed to take
continuous values. However, because the averaging occurs over short time intervals, one
still models discrete events such as the occurrence of a drop and the consequent reaction
by congestion control. Also, one can still model fairly accurately the several distinct
modes of TCP congestion control (slow-start, congestion avoidance, fast recovery, etc.)
as these last for periods no shorter than one round-trip time. However, one should keep
in mind that the timing at which events occur in the model (e.g., drops or transitions
between TCP modes) are only accurate up about one round-trip time. Finally, it is
important to note that, although, timing is only accurate up to roughly one round-trip
time, since the variations on the round-trip time typically occur at a slower time scale, the
hybrid models capture quite accurately the dynamics of the round-trip time evolution.
In fact, that is one of the strengths of the models proposed here, which do not assume
constant round-trip time.

The remaining of this paper is organized as follows. In the next section we introduce
an hybrid model for TCP congestion control. This model builds upon the one originally
proposed in [15]. The two most significant new features are the explicit modeling of slow-
start and fast-recovery. In Section 3 we carry out a formal analysis of the system. To
achieve this we first introduce a time-normalization that renders the continuous dynamics
of the hybrid model linear. We then proceed to derive several transient and steady-
state properties of the system. The results obtained are compared with packet-level
simulations. Section 4 contains some final conclusions and direction for future research.

2 Hybrid modeling of TCP

In this paper, we consider Reno congestion control. We provide next a simplified descrip-
tion of this algorithm that is sufficient for the purposes of this paper and refer the reader
to [16, 17, 18] for a more detailed description.

Associated with each TCP flow there exists a congestion controller that possesses
an internal state known as the window size. We denote by wf , f ∈ {1, 2, . . . , n}, the
window size of the congestion controller associated with the fth flow. The window size
determines the maximum number of unacknowledged packets for the flow. In essence,

3

the window size wf determines the rate rf at which the fth congestion controller sends
packets. The relationship between wf and rf depends on the round-trip time, denoted
by RTT , which is the time interval measured from the moment a packet is sent until
an acknowledgment for that packet is received. Since wf packets can be sent during one
round-trip time we have

rf =
wf

RTT
, f ∈ {1, 2, . . . , n}.

The round-trip time is given by

RTT (t) = T � +
q(t)

B
,

where T � denotes the propagation time (together with any fixed component of the service
time) and q(t) is the size of the output queue of node n1 at time t. For simplicity, we
assume here that the bandwidth B is measured in packets per second.

The algorithm used by TCP to update the window size wf is as follows: The conges-
tion controller initially starts in the slow-start mode, where the window size wf doubles
every round-trip time, leading approximately to

ẇf =
log 2

RTT
wf , rf =

wf

RTT
.

This is known as multiplicative increase. When a drop occurs, the congestion controller
transitions to the fast-recovery mode and typically stays in this mode for one round-trip
time1. Although the protocol specifies that wf actually varies during this mode, the
average sending rate turns out to be approximately

rf (t) =
wf(τ)

2RTT (t)
,

where τ is the instant when the controller entered this mode. We can therefore assume
that during the fast recovery mode wf remains constant and we have

ẇf = 0, rf =
wf

2RTT
.

Once the congestion controller leaves the fast recovery mode, it transitions to the con-
gestion avoidance mode, where the window size increases by one packet every round-trip
time, leading approximately to

ẇf =
1

RTT
, rf =

wf

RTT
.

This is known as additive increase. Once a drop occurs the congestion controller transi-
tions again to the fast recovery mode mentioned above. For simplicity, we ignored the
existence of timeouts. These could have been considered, as shown in [19].

The output queue at node n1 receives a total of r :=
∑

f rf packets per second and is
able to send B packets to the link in the same period. The difference between these two
quantities determines the evolution of q(t). In particular,

q̇ =

{
0 q = 0, r < B or q = qmax, r > B

r − B otherwise
(2)

1This is consistent with Reno, New Reno, and SACK for the case of a single drop. If multiple drops
occur this particular model is only consistent with SACK [5].

4

The first branch in (2) takes into account that the queue size cannot become negative
nor should it exceed the maximum queue size qmax. When q(t) reaches qmax drops occur.
These will be detected by the congestion controllers and lead to a transition between
modes. Since a drop will only be detected after one round-trip time, the rate of incoming
packets will not change for a period of length RTT and multiple drops are expected. It
turns out that under drop-tail queuing policy exactly one drop per flow will occur in most
operating conditions [4]. To understand why, we must recall that during the period in
which there are no drops, the window size of each flow will increase by one in every round-
trip time. When the acknowledgment that triggers this increase arrives, the congestion
controller will attempt to send two packets back-to-back. The first packet is sent because
the acknowledgment that just arrived decreased the number of unacknowledged packets
and therefore a new packet can be sent. The second packet is sent because the window size
just increased, allowing the controller to have an extra unacknowledged packet. However,
at this point there is a very fragile balance between the number of packets that are getting
in and out of the queue, so two packets will not fit in the queue and the second packet
is dropped.

The system described above can be modeled by the hybrid system in Figure 2. In
this model, we split each state of the congestion controller into two discrete states for
the hybrid system. One corresponding the queue not being full and another to the
queue being full. Each ellipse in this figure corresponds to a discrete mode and the
continuous state of the hybrid system consists of the queue size q, the window sizes wf

and a timing variable ttim used to enforce that the system remains in the queue-full and
fast-recovery modes for RTT seconds. The differential equations for the continuous state
in each discrete mode are shown inside the corresponding ellipse. The arrows in the figure
represent discrete transitions between modes. These transitions are labeled with their
enabling conditions (followed by “?”) and any necessary reset of the continuous state that
must take place when the transition occurs (with the corresponding assignments denoted
by :=). We assume here that a jump always occurs when the transition condition is
enabled. The transition on the top-left entering the slow-start/queue-not-full represents
the system’s initialization. This model is consistent with most of the hybrid system
frameworks proposed in the literature (cf. [20] and references therein). The transitions
into the fast-recovery/queue-full state only occur when halving the window sizes is not
sufficient to lead to a decrease in queue length, in which case multiple drops will occur.
We assume here that such situation does not occur. We also assume that the queue never
empties. Later we will actually establish conditions under which these assumptions hold.

3 Hybrid system analysis

We proceed now to analyze the evolution of the hybrid system. Our analysis will show
that the window sizes converge to a periodic regimen, regardless of their values at the
end of the slow-start period. Because we are considering the variations of the round-trip
times caused by varying queuing delays, this regimen is more complex (but also closer
to reality) than the simple saw-tooth wave form that is often used to characterize the
steady-state behavior of TCP.

3.1 Time normalization

The dynamics for the model in Figure 2 are nonlinear because of RTT ’s dependence on
q. However, it is possible to make them linear by normalizing the time variable. To this

5

wf := 1

slow-start/queue-not-full:

ẇf =
log 2
RTT

wf , rf =
wf

RTT
q̇ = r − B

slow-start/queue-full:

ẇf =
log 2
RTT

wf , rf =
wf

RTT

q̇ = 0, ṫtim = −1

cong.-avoid./queue-not-full:

ẇf =
1

RTT
, rf =

wf

RTT
q̇ = r − B

cong.-avoid./queue-full:

ẇf =
1

RTT
, rf =

wf

RTT

q̇ = 0, ṫtim = −1

fast-recov./queue-not-full:

ẇf = 0, rf =
wf

2RTT

q̇ = r − B, ṫtim = −1

fast-recov./queue-full:

ẇf = 0, rf =
wf

2RTT
q̇f = 0

q = qmax, r > B?

q = qmax, r > B?

ttim := RTT

ttim := RTT

ttim < 0, r
2 ≤ B ?

ttim < 0, r
2 ≤ B ?

ttim := RTT

ttim := RTT

ttim < 0,
r
2 > B ?

ttim < 0,
r
2 > B ?

ttim < 0 ?

wf :=
w−

f

2

Figure 2: Hybrid model for a dumbbell network with TCP-SACK congestion control. In
this figure q :=

∑
f∈F qf , r :=

∑
f∈F rf , and RTT = T � + q

B
.

effect we introduce a new time variable τ , called normalized time2, defined by

dτ

dt
=

1

RTT
=

B

BTp + q
, τ(0) = 0. (3)

This means that an interval with duration dτ in the variable τ corresponds to an interval
of duration dt = RTTdτ in the variable t. We can think of τ as a time variable normalized
so that one unit of τ corresponds to one round-trip time. Figure 3 show the dynamics of
the hybrid model in normalized time. In these figures, ′ denotes the derivative d

dτ
with

respect to the normalized time τ .

It is interesting to note that the equation for q in the queue-not-full modes are stable.
This is an important property of window-based congestion control, as opposed to other
congestion control mechanisms that adapt the packets sending rates directly, instead of
indirectly through the window size. This is a manifestation of the well known property
that window-based mechanisms automatically adjust their sending rates to variations in
the round-trip time.

3.2 Transient behavior

We are interested here in characterizing the short-term evolution—also known as the
transient behavior—of the window sizes until the periodic regimen is reached. To this

2Formally, there is a bijective function f that maps normalized time τ into real time t. This function
is actually defined by (3). With some abuse of notation, when we write q(τ) for some normalized time
τ , we really mean q(f(τ)). Similar notation is used for the remaining time-dependent variables.

6

wf := 1

slow-start/queue-not-full:

w′
f = (log 2)wf , rf =

wf

RTT

q′ = w − (q + BT �)

slow-start/queue-full:

w′
f = (log 2)wf , rf =

wf

RTT
q′ = 0, t′tim = −RTT

cong.-avoid./queue-not-full:

w′
f = 1, rf =

wf

RTT

q′ = w − (q + BT �)

cong.-avoid./queue-full:

w′
f = 1, rf =

wf

RTT
q′ = 0, t′tim = −RTT

fast-recov./queue-not-full:
w′

f = 0, rf =
wf

2RTT
q′ =

w

2
− (q + BT �)

t′tim = −RTT

fast-recov./queue-full:

w′
f = 0, rf =

wf

2RTT
qf

′ = 0

q = qmax,
w

RTT > B?

q = qmax,
w

RTT > B?

ttim := RTT

ttim := RTT

ttim < 0, w
2RTT ≤ B ?

ttim < 0, w
2RTT ≤ B ?

ttim := RTT

ttim := RTT

ttim < 0,
w

2RTT > B ?

ttim < 0,
w

2RTT > B ?

ttim < 0 ?

wf :=
w−

f

2

Figure 3: Hybrid model in normalized time for a dumbbell network with TCP-SACK
congestion control. In this figure q :=

∑
f∈F qf , w :=

∑
f∈F wf , and RTT = T � + q

B
.

effect, let us denote by {τk : τk ≤ τk+1, k ≥ 1} the set of normalized times at which
the system enters the fast-recovery/queue-not-full state. Let also x denote a vector
containing q and all the wf , i.e.,

x :=
[
w1 w2 · · · wn q

]′
.

This vector essentially contains all the interesting components of the continuous state of
the hybrid system. By solving the (linear) differential equations on each discrete state
of the hybrid model in normalized time, we can write

x(τk+1) = T (x(τk)), k ≥ 1,

where T is an appropriately defined operator from the set of n + 1-dimensional vectors
with nonnegative entries into itself. It turn out that under appropriate conditions on the
window sizes, there exists a norm ‖ · ‖ε such that T is a contraction and, in particular,
that

‖T (x) − T (y)‖ε ≤ 1

2
‖x − y‖ε, ∀x, y (4)

(cf. [21] for details). Because of the Contraction Mapping Theorem [22, p. 126], we then
conclude that x(τk) converges as k → ∞ to the unique fixed point of T . Moreover, it is
shown in [21] that the fth component of the fixed point x of T is given by xf = x̄

n
, where

x̄ is the unique solution to

x̄ = π� + 2n + ng
(x̄

n
,
π�

n

)
, (5)

7

in which π� := qmax + BT � denotes the “size of the pipe,”

g(w̄, π̄) := f

(
−e−1−π̄+w̄/2

(
1 + f

(π̄ − w̄/2

ew̄/2

)w̄

2

))
, π̄ > w̄/2,

and f(z) is the unique solution w to the equation wew = z. The following can then be
stated:

Theorem 1. Let {tk : tk ≤ tk+1, k ≥ 1} be the set of times at which the system enters
the fast-recovery/queue-not-full state. Assuming that

2BT � ≤ w(t1) < 1.8π� = 1.8(qmax + BT �), π� ≥ 2n,

then all the wf(tk), f ∈ F converge exponentially fast to x̄
n

as k → ∞, with x̄ the solution

to (5). The convergence is as fast as
(

1
2

)k
.

The requirement on w(τ1) guarantees that one drop per flow is sufficient to take the
system away from the queue-full modes (right inequality) and that the queue never emp-
ties (left inequality). Since when a drop occurs the pipe is filled by the unacknowledged
packets, the w(τk) are always approximately equal to π� so the right inequality generally
holds. As for the left inequality, it holds as long as qmax ≥ BT �, i.e., as long as the
queueing capacity at the bottleneck link exceeds the “wire capacity.” This condition
should be taken into consideration when allocating buffer capacity as its violation will
lead to empty queues and therefore underutilization of the available bandwidth.

3.3 Steady-state behavior

In the previous section we established that the window sizes converge to a periodic
regimen, also known as the steady-state regimen. We consider now the system when it
operates under this regimen. Among other things, we are able to show that a relationship
between average throughput, average drop rate (i.e., the percentage of dropped packets),
and average round-trip time such as (1) can also be derived from our model. The following
is taken from [21]:

Theorem 2. Under the hypothesis of Theorem 1, the average drop rate p, the packet av-
erage round-trip time RTT , and the average throughput T of each flow are approximately
given by

p ≈ 8a

3(π�/n + 2a)(π�/n + 14a/3)
(6)

RTT ≈ n

B

7e(π�/n)3 + 3(19e − 4)(π�/n)2 + 4(17e + 12)

9e(π�/n + 2)(π�/n + 14/3)
(7)

T ≈ 1

RTT

7e(π̂�
f)

3 + 3(19e − 4)(π̂�
f)

2 + 4(17e + 12)

9e(π̂�
f + 2)(π̂�

f + 14/3)
., (8)

where π̂�
f is an estimate of the per-flow pipe size π�/n obtained from

π̂�
f :=

√
8(3 + 2p)

9p
− 10

3
.

8

To verify the formulas in Theorem 2, we simulated the dumbbell topology of Figure 1,
using the ns-2 network simulator [9]. Figure 4 summarizes the results obtained for a

network with the following parameters: B = 107 bits/sec
8 bits/char×1000 char/packet

= 1250 packets/sec,

Tp = .04 sec, qmax = 250 packets. As seen in the figure, the theoretical predictions given
by (6)–(8) match the simulation results quite accurately. Note the comparison in the
rightmost plot of the theoretical prediction obtained by (8) and that obtained using the
standard formula (1). One can see that the model derived here is valid over a wider range
of traffic conditions (almost one order of magnitude larger).

10
0

10
1

10
−5

10
−4

10
−3

10
−2

n

Drop rate

NS simulation
Theoretical prediction

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

n

Average round−trip time

NS simulation
Theoretical prediction

10
0

10
1

10
2

10
3

n

Throughput

NS simulation
Theoretical prediction
Standard Formula

Figure 4: Comparison between the predictions obtained from the hybrid model and the
results from ns-2 simulations.

4 Conclusions

We presented an hybrid model for the dynamics of multiple TCP flows that share a single
common bottleneck link. The main contributions of this paper were a characterization
of the transient behavior of the flows, predicting their experimentally observed expo-
nential synchronization as well as a characterization of the steady-state regimen that
is significantly more accurate than existing ones, especially under heavy traffic. The
transient analysis of TCP also provides rules for network provisioning. For example,
we showed that the queueing capacity at the bottleneck should not be smaller than the
“wire-capacity.” We are now in the process of generalizing this type of model to other
network topologies and other types of congestion control. Another direction we are ex-
ploring is the application of the hybrid models derived here to detect abnormalities in
TCP traffic flows. This has important applications in network security.

References

[1] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A TCP-friendly rate adjustment proto-
col for continuous media flows over best effort networks,” Tech. Rep. TR 89-04, UMASS-
CMPSCI, 1998.

[2] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for
unicast applications,” in Proc. of SIGCOMM, pp. 43–56, Aug. 2000.

[3] D. Bansal and H. Balakrishnan, “Binomial congestion control algorithms,” in Proc. of
INFOCOMM, pp. 631–640, Apr. 2001.

9

[4] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics of a congestion
control algorithm: The effects of two-way traffic,” in Proc. of SIGCOMM, Sept. 1991.

[5] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe Reno and SACK TCP,”
ACM Comput. Comm. Review, vol. 27, pp. 5–21, July 1996.

[6] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP
congestion avoidance algorithm,” ACM Comput. Comm. Review, vol. 27, July 1997.

[7] R. Morris, Scalable TCP Congestion Control. PhD thesis, Harvard University, Cambridge,
MA, Jan. 1999.

[8] E. Altman, C. Barakat, and E. Laborde, “Fairness analysis of TCP/TP,” in Proc. of the
39th Conf. on Decision and Contr., pp. 61–66, Dec. 2000.

[9] The VINT Project, a collaboratoin between researchers at UC Berkeley, LBL, USC/ISI,
and Xerox PARC, The ns Manual (formerly ns Notes and Documentation), Oct. 2000.
Available at http://www.isi.edu/nsnam/ns/ns-documentation.html.

[10] J. Mahdavi and S. Floyd, “TCP-friendly unicast rate-based flow control.” Technical note
sent to the end2end-interest mailing list, Jan. 1997.

[11] T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error recovery and flow
control with a slow acknowledgment channel: A study of TCP/IP performance,” in Proc.
of INFOCOMM, Apr. 1997.

[12] V. Misra, W. Gong, and D. Towsley, “Stochastic differential equation modeling and anal-
ysis of TCP-windowsize behavior,” in In Proceedings of PERFORMANCE99, (Istanbul,
Turkey), 1999.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple
model and its empirical validation,” in Proc. of SIGCOMM, Sept. 1998.

[14] V. Misra, W. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers
supporting TCP flows with an application to RED,” in Proc. of SIGCOMM, Sept. 2000.

[15] J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee, “Hybrid modeling of TCP con-
gestion control,” in Hybrid Systems: Computation and Control (M. D. D. Benedetto and
A. Sangiovanni-Vincentelli, eds.), no. 2034 in Lecture Notes in Computer Science, pp. 291–
304, Berlin: Springer-Verlag, Mar. 2001.

[16] V. Jacobson, “Congestion avoidance and control,” in Proc. of SIGCOMM, vol. 18.4,
pp. 314–329, Aug. 1988.

[17] V. Jacobson, “Modified TCP congestion avoidance algorithm.” Posted on end2end-interest
mailing list, Apr. 1990. Available at ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[18] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” RFC 2581, p. 13, Apr.
1999.

[19] S. Bohacek, J. P. Hespanha, J. Lee, and K. Obraczka, “A hybrid systems framework for
TCP congestion control: A theoretical model and its simulation-based validation (extended
version),” tech. rep., University of Southern California, Los Angeles, CA, July 2001. Avail-
able at http://www-rcf.usc.edu/˜hespanha/techreps.html.

[20] A. van der Schaft, An Introduction to Hybrid Dynamical Systems. No. 251 in Lecture Notes
in Control and Information Sciences, London: Springer-Verlag, 2000.

[21] S. Bohacek, J. P. Hespanha, J. Lee, and K. Obraczka, “Analysis of a TCP hybrid model
(extended version),” tech. rep., University of Southern California, Los Angeles, CA, Sept.
2001.

[22] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science. No. 40
in Applied Mathematical Sciences, New York: Springer-Verlag, 1982.

10

