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Abstract User mobility is of critical importance when

designing mobile networks. In particular, ‘‘waypoint’’

mobility has been widely used as a simple way to describe

how humans move. This paper introduces the first model-

ing framework to model waypoint-based mobility. The

proposed framework is simple, yet general enough to

model any waypoint-based mobility regimes. It employs

first order ordinary differential equations to model the

spatial density of participating nodes as a function of (1)

the probability of moving between two locations within the

geographic region under consideration, and (2) the rate at

which nodes leave their current location. We validate our

model against real user mobility recorded in GPS traces

collected in three different scenarios. Moreover, we show

that our modeling framework can be used to analyze the

steady-state behavior of spatial node density resulting from

a number of synthetic waypoint-based mobility regimes,

including the widely used Random Waypoint model.

Another contribution of the proposed framework is to show

that using the well-known preferential attachment princi-

ple to model human mobility exhibits behavior similar to

random mobility, where the original spatial node density

distribution is not preserved. Finally, as an example

application of our framework, we discuss using it to

generate steady-state node density distributions to prime

mobile network simulations.

Keywords Realistic mobility models � Ordinary

differential equations � Modelling � Spatial node

density

1 Introduction

When designing and evaluating wireless networks and their

protocols, user mobility is a critical consideration. So much

so that user mobility has inspired an extensive body of

work both in infrastructure-based networks (e.g., wireless

LANs or WLANs), as well as in infrastructure-less net-

works, a.k.a., wireless, self-organizing networks (WSONs).

The latter include wireless mobile ad-hoc networks (MA-

NETs), wireless sensor networks (WSNs), and disruption-

tolerant networks (DTNs). Unlike their infrastructure-based

counterparts where only end user nodes are mobile, in

infrastructure-less networks, every node may move and

thus mobility plays a considerable role in the performance

of the network.

Synthetic mobility regimes are an important consider-

ation on simulating, testing and conducting performance

evaluation on wireless networks and their protocols. The

research community have been investing quite a lot of

effort in developing mobility models that would reflect

more faithfully the mobility patterns and characteristics

found in real mobile applications. When moving in real

mobility scenarios (e.g. walking on a park, city center,

university campus, etc), humans do not behave randomly,

but tend to form groups and clusters, even when moving

independently of each other. These clusters are formed due

to the social interactions between the mobile entities,
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geographical restrictions in the area, the intrinsic attraction

some specific locations might have towards some nodes,

etc. One way to characterize and describe mobility, and

study how mobile entities interact and agglomerate is

through the spatial density of mobile nodes. Spatial node

density can be defined as the number of nodes located in a

given unit area and has significant impact on fundamental

network properties, such as connectivity and capacity, as

well as on core network functions, e.g., medium access and

routing.

Yet, the characterization of real human mobility

through spatial node density remains a challenging sub-

ject. To date, only a few efforts have focused on modeling

spatial density. Notable examples include [15, 5, 26].

However, most previous work have been focusing exclu-

sively on synthetic mobility regimes, specially the Ran-

dom Waypoint (RWP) model [6], since it is the most used

mobility model in the literature, due to its simplicity and

easy of implementation.

In this paper, we focus on modeling the spatial node

density of ‘‘waypoint’’-based mobility. More specifically,

our model describes the spatial density steady-state

behavior under waypoint-based mobility which is a

mobility pattern characterized by having nodes probabi-

listically choose the next destination, or waypoint, based on

some probability density function, moving to this point

with a given speed, pausing for some time, and starting the

process again. We define spatial density as the percentage

of subareas (or cells) containing Ck nodes, which can also

be viewed as the probability of finding a cell with k or more

nodes at a given time. We assume a Markovian property

for this quantity as the count of the number of users in each

cell (our state) at the next time instant only depends on the

number of users in the cells in the current time instant,

given the cost of making a transition (increasing or

decreasing the number of users in each cell), and the rate at

which transitions occur. We present an approximation by a

set of Ordinary Differential Equations (ODEs) and propose

a framework to mathematically model spatial node density

under different ‘‘waypoint’’-based mobility regimes.

We contend that waypoint-based mobility is one way to

describe forms of human mobility. Therefore, we apply our

model to describe the steady state of real human mobility

and validate it against real user mobility recorded by GPS

traces in different scenarios, comparing the results against

the corresponding traces. Moreover, we present compara-

tive results for steady-state spatial distribution analysis of a

number of synthetic waypoint mobility regimes. To the best

of our knowledge, this is the first node density modeling

framework generic enough that it can be applied to any

waypoint-based mobility regime. As an example, we use

our framework to model the well-known RWP mobility

regime. Our model confirms the well-known result showing

that node density’s steady-state behavior under RWP

mobility tends to homogeneity, as defined in [7]1.

Furthermore, several previous work on synthetic

mobility modeling (discussed in more detail in the next

section) apply the preferential attachment principle [1], in

order to create and maintain the formation of clusters of

mobile nodes. We also use our framework to model way-

point-based mobility regimes that apply the preferential

attachment principle. We show through the application of

our proposed model that using preferential attachment to

model human mobility leads to undesirable steady-state

behavior. More specifically, our model shows that, at

steady state, the original spatial node density distribution is

not preserved and exhibits behavior similar to random

mobility a la Random Waypoint regime. This behavior has

been observed empirically in [27]. Instead, real human

mobility exhibits ‘‘persistent’’ density heterogeneity as

illustrated in Fig. 1. This figure shows the spatial density

distribution for one of the traces used in this paper which

was collected in the Quinta da Boa Vista Park in Rio de

Janeiro, Brazil.

The first 4 curves in the plot refer to the distributions at

instants 300, 500, 700, and final (900 s), which is the end of

the trace collection interval. The two other curves corre-

spond to the node density distributions measured after 900 s

of simulations of two synthetic waypoint-like mobility

regimes, namely RWP and Natural [8]. Each of these curves

reflect the final node distribution averaged over 10 runs of

simulations2. Both mobility models and the experiments that

generated these curves are discussed in detail in Sect. 5. The

last curve shown in the graph is the initial node distribution
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Fig. 1 Node spatial density distribution at different trace collection

times for mobility in a city park

1 The use of the term ‘‘homogeneous node distribution’’ refers here to

the fact that there is no significant concentration of nodes (clusters),

and should not be mistaken with uniform distribution normally used

to model the choice of next destination, speed and pause time in

random mobility models.
2 A 90 % confidence level was computed. The confidence interval

was too small to be seen in this scale and was omitted for clarity of

the plot.
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measured from the Quinta trace and also used as the initial

distribution in all simulation runs of both synthetic mobility

regimes studied.

From Fig. 1, we observe that the density distribution of

the real trace does not vary much with time: the largest

deviation from the initial distribution for any value of k at

any instant is 8.3 %; the average deviation from the initial

distribution measured in all the instants for all values of k is

1.27 %. Similar observations can be drawn from the other

traces used in our work as reported in Sect. 4.1. Moreover,

we also observe a very different behavior when applying

either one of the synthetic regimes to the same scenario.

They deviate significantly from the initial conditions.

However, an interesting observation here is the fact that

using a preferential attachment based regime such as Nat-

ural, does not preserve the original clustering of the nodes.

In fact, spatial density resulting from preferential-attach-

ment based waypoint mobility ‘‘deteriorates’’, at steady

state, to behavior similar to random mobility. In Sect. 5, we

present more details on these results and apply our pro-

posed model to study the steady-state behavior of spatial

density of these mobility regimes.

Overall, the contributions of our work are many-fold: (1)

we introduce the first spatial node density modeling

framework for waypoint mobility regimes, (2) we apply our

proposed framework to study the steady state behavior of

real human mobility in three different real mobility sce-

narios, (3) we present results from applying the proposed

framework over two different waypoint-based mobility

models, (4) we use our model to show that the steady-state

behavior of node density under preferential-attachment

based mobility does not preserve node density’s original

distribution and exhibits behavior similar to random

mobility, and (5) as an example application of our frame-

work, we discuss using it to generate steady-state node

density distributions to prime mobile network simulations.

The remainder of this paper is organized as follows.

Section 2 places our work in perspective by presenting

related work in mobility modeling and characterization.

Our ODE model is presented in detail in Sect. 3, how its

parameters are set, and our implementation. Section 4 show

the validation of our proposed framework towards model-

ing real human mobility, while Sect. 5 presents the appli-

cations of our work on modeling spatial density of

synthetic waypoint-based mobility regimes. Finally, Sect. 6

concludes the paper with a discussion of future work.

2 Related work

Mobility models are vital to the design, testing, and eval-

uation of wireless networks and their protocols. As an

indication of the importance of mobility models to the

study of wireless network protocols, most well-known

network simulators include ‘‘mobility generators’’, which,

following a pre-specified mobility regime, determine the

position of network nodes over time during simulation

runs. Synthetic mobility generators have been extensively

used in the study of wireless networks [9]. A notable

example of such synthetic mobility models is the Random-

Waypoint Mobility (RWP) regime [6].

The work by Bettstetter et al. [7] points out that random

mobility leads to homogeneous node distributions. They

proposed a method that creates initial non-homogeneous

node distributions and in [15], analyze via simulations the

impact of random mobility in maintaining the non-homo-

geneity of spatial node density distributions. They also

propose a metric for measuring such non-homogeneity as

well as a variant of RWP mobility that maintains the non-

homogeneity of an original node distribution.

More recently, network researchers and practitioners have

been trying to use more realistic scenarios to drive the eval-

uation of wireless network protocols. This motivated initia-

tives such as the CRAWDAD [11] trace repository, which

makes real traces available to the networking community.

These traces can then be used to run trace-driven simulations.

Even though initiatives like CRAWDAD have greatly

increased availability of real traces, relying exclusively on

traces to design and evaluate network protocols would not

allow a broad enough exploration of the design space.

To address this problem, a number of efforts have pro-

posed mobility models based on realistic mobility patterns

[25]. Notable examples include [3, 4, 31, 17]. More recent

work focuses on the ‘‘scale-free’’ properties observed in

many real networks like the Internet, the Web, and some

social networks, to name a few. The seminal work of

Barabási and Albert [1] proposes a model that generates

scale-free networks, i.e., networks whose node degrees

follow a power law distribution. They demonstrate that

many real-world networks are scale free, that is, the node

degree in the network graph follows a power law and

discuss the mechanism responsible for the emergence of

scale-free networks. They argue that understanding this

problem will require a shift from modeling network

topology to modeling ‘‘network assembly and evolution’’.

To this end, they define the Barabási-Albert model based

on growth and preferential attachment. Growth refers to

the fact that the number of nodes in the network increases

over time, where a new node is placed with m edges con-

necting it to other m nodes. Preferential attachment means

that a node will choose to connect to another node i with

probability PðkiÞ ¼ kiP

j

kj

based on the degree ki of node

i and any node j connected to node i. In other words, the
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preferential attachment principle states that ‘‘the more

connected a node is, the more likely it is to receive new

links’’. Several recently proposed mobility models (e.g.,

[18, 20, 8, 23, 24, 21]), try to mimic real human mobility

by following the preferential attachment principle: they

define attraction points, whose probabilities of attracting

other nodes increase as more nodes congregate around

them. The main goal of these preferential attachment based

approaches is to try to maintain the non-homogeneous

characteristics of spatial node density observed in real

mobility traces. This calls for models that are able to create

and maintain the non-homogeneous node distributions and

clustering observed in real human mobility. For example,

in [8], a model based on preferential attachment has been

proposed, where the choice of going towards an attraction

region is weighted proportionally to the region’s popularity

(i.e., the number of other nodes that chose it) and inversely

proportional to the distance to it. We call this model Nat-

ural and use it as one of our case of studies. More spe-

cifically, we apply our framework to model Natural’s

spatial node density stationary regime and show that it

exhibits similar characteristics when compared to random

mobility patterns such as Random Waypoint.

The work proposed in [21] is another example of a

model that follows Barabási-Albert’s growth and prefer-

ential attachment principles. The authors even show a

figure where they present their initial (after growth) and

steady-state spatial distribution. It is possible to see how

clusters dissipate and fade away over time. The same

concept is also used in [23] where nodes are also driven by

pre-defined social interactions. The proposed approach is

validated by showing the power-law exponential decay of

inter-contact times among node communities, comparing it

with measurements in real traces.

One distinguishing feature of our work is the generality

of our modeling framework which can be applied to any

waypoint mobility regime. Waypoint mobility follows the

following basic steps: (1) a node chooses its next destina-

tion following some given probability distribution; (2)

moves to that destination in a straight line and constant

speed; (3) pauses for some time (also following some pre-

specified rule); and (4) repeats the process. Most previous

work on modeling node spatial density have focused spe-

cifically on the RWP model. In [5], for example, analytical

expressions are derived for the spatial density distribution

that results from using the RWP model in simulations. The

one-dimensional case is analyzed and an approximation for

the two-dimensional case is also given. They also analyze

the concept of attraction areas in a modified version of the

RWP regime. One other effort that focused on modeling

steady-state behavior of the RWP is described in [26]. In

that work, stationary analytical expressions for node den-

sity and node speed are derived.

Our approach was inspired by classical epidemiological

models [12] which allowed us to derive a framework that is

not only general but also simple when compared to ana-

lytically solving Markov chains. This is because our

framework is derived directly from a transaction-by-

transaction Markov process modeling. We follow the

analogy with epidemiology where mobile users ‘‘infect’’

subareas (or cells) as they move into them, and cells are

‘‘cured’’ as nodes move away from them, towards other

destinations (susceptible to infection).

Another distinguishing feature of our approach is that it

is based on Ordinary Differential Equations (ODEs). ODEs

have been used to model a wide variety of networking

functions and services. For example, ODEs were applied in

a similar fashion to model epidemic forwarding [34] in a

DTN environment. Similarly, in [13], an ODE model to

analyze the performance of self-limiting epidemic for-

warding mechanisms has been proposed. Similar ODE

approaches have been applied to model worm propagation

on the Internet [30, 35, 10], and bitTorrent file sharing [19].

Moreover, in [14] Partial Differential Equations (PDEs)

have been used to model spatial node density of the RWP

and Random Direction mobility regimes. An analysis of the

transient behavior of the spatial node density under these

two mobility regimes is described. While this work is

another example of efforts that focus on studying random

mobility, our approach is generic enough that can be used

to study any waypoint-based mobility regime (including

random approaches and preferential-attachment based

regimes). The work described in [16] proposes a Markov-

ian based mobility model with the purpose of forming and

dissolving clusters of nodes. They study analytically spatial

distribution of nodes, presenting results, specifically for

their mobility model.

3 Proposed model and framework

Our objective is to model the spatial node density of a

mobile network. We assume a waypoint-based mobility

pattern, where nodes stay in a given location i for a given

period of time and choose to leave i towards another

location j with probability pij. Once the node arrives at j,

the process restarts.

3.1 ODE framework

Assume a mobile network composed of m mobile nodes,

where all nodes are capable of moving around inside a

delimited area a. Now assume this area is divided into

equally sized square subareas of size l 9 l, defined here as

cells. The mobile nodes can then choose to move from cell

to cell with a given probability. Let X(t) be the stochastic
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process that determines which cell a mobile node chooses

at time t. We can write then pij = P{X(t) = i |

X(t ? c) = j}, as the transition probability, which is the

probability that a node in cell i, at time t, is going to choose

to go to cell j at time (t ? c), after some time step c.

Thus, we are interested in the average number of nodes

in each cell i, represented by the component NiðtÞ8i 2
f1; . . .; ng of the state vector NðtÞ 2 R

n�1, where n is the

total number of cells for the desired scenario.

The variation in the number of nodes at each cell

_NiðtÞ ¼ dNiðtÞ
dt

is simply the difference between nodes

arriving in cell i and the ones departing from the same cell

at time t, as expressed in Eq. 1.

_NiðtÞ ¼ k0 þ
X

j

pjiljNjðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Arriving at cell i

�
X

j

pijliNiðtÞ þ l0NiðtÞ
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Departing from cell i

;

ð1Þ

where k0 is the rate at which new nodes arrive in cell i from

outside the system and l0 the rate at which nodes decide to

get disconnected and leave the system, given that they are at

cell i. Also, li is the rate at which nodes decide to leave cell

i towards another cell, which allow us to write lij = pij li

as the rate at which nodes in cell i decide to leave this cell

towards cell j. We can also define the arrival rate in cell i as

the sum of the departing rates of all nodes going from cell

j to cell i, over all possible values of j, including j = i, since

we allow transitions from a cell to another position in itself.

The arrival rate is given by Eq. 2.

ki ¼
X

j

pjilj: ð2Þ

3.2 Parameters choice, discussion and simplifications

In reality we observe that nodes prefer some cells over

others and some transitions over others. The probability of

choosing a destination and the rate at which nodes depart

from that destination depends on how popular that desti-

nation is and what are the nodes’ interests in each desti-

nation. For example, nodes moving around on a campus

environment may go very often from the cafeteria to the

classroom, but not so often from the cafeteria to the library.

This means that pcafeteria,classroom [ pcafeteria, library. More-

over, since people might tend to stay inside the library for

longer than in the cafeteria, the relationship between the

departure rate from this two locations might be such

as lcafeteria [ llibrary.

In order to simplify our model, more specifically the

choice of the parameters (departure rates and transition

probabilities), we define the rate li as the inverse of the

average time spent by the nodes in cell i. We also

considered the transition probabilities independent of

where the transition originated. This means that the prob-

ability of going from cell j to cell i is the same probability

of simply choosing cell i as the next destination for all

j. We then make pji = P{X(t) = j | X(t ? c) = i} =

P{X(t ? c) = i} = pi.

Moreover, in order to validate our model we have

chosen to extract the model parameters from—and com-

pare our results with—real live GPS traces, where the

number of nodes in the system remains constant during the

whole duration of the trace. For that reason, in the results

we present in Sect. 4.3 we used a slightly simplified version

of our model, where k0 = l0 = 0. Equation 3 gives this

version of our ODE model.

_NiðtÞ ¼
X

j

piljNjðtÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Arriving at cell i

�
X

j

pjliNiðtÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Departing from cell i

; ð3Þ

3.3 Implementation

In this section we present a vectorized version of Eq. 3, so

that we could implement it on MATLAB [22]. We used a

4th order Runge-Kutta ODE solver, native to the platform,

to do so.

We start by defining a matrix A 2 R
n�n as a parameter

matrix given by A = P 9 M. P 2 R
n�1 is a column vector

containing in every ith position the probability pi of a node

choosing cell i as the next destination, and M 2 R
1�n a row

vector containing in every ith position the rate li at which

nodes choose to leave cell i. The components of matrix A,

resulting from this multiplication are aij = pi lj.

Thus, it is possible to write Eq. 3 for _NðtÞ 2 R
n�1 in its

equivalent vectorized form as follows:

_NðtÞ ¼ A� NðtÞ
|fflfflfflfflffl{zfflfflfflfflffl}

Arriving

� ðAT � 1Þ � NðtÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Departing

; ð4Þ

where AT is the transpose of matrix A, that we multiply by

1 2 R
n�1, a column vector of ones, to give us a resulting

n 9 1 column vector in which every component i repre-

sents the summation of all the components of the ith row of

matrix AT. After that, we perform a component wise mul-

tiplication with the state vector N(t), which gives us the

number of nodes departing from a given cell. That repre-

sents the second summation in the right-handed side of

Eq. 3.

4 Spatial node density of human mobility

We validate our model using real mobility traces; in other

words, we show how the model can be applied to describe
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the steady-state behavior of spatial node density associated

with human mobility. Three real GPS traces were used in

our validation. These traces were collected in scenarios that

are quite diverse, namely a city park, a university campus,

and a state fair. We describe these traces in detail below as

well as how we use information from the traces to estimate

the parameters of our ODE framework.

4.1 Mobility traces

Table 1 summarizes the GPS traces in terms of number of

users, duration of the trace, and GPS sampling period.

Quinta, refers to the ‘‘Quinta da Boa Vista Park’’ trace,

first presented in [2]. It is a GPS trace collected at a park in

the city of Rio de Janeiro, Brazil. The park has many trees,

lakes, caves, and trails. It houses the National Museum of

Natural History and the city Zoo. The KAIST trace [29], on

the other hand, is a GPS trace collected at the KAIST

University campus in Daejeon, South Korea. The Statefair

trace, also available at [29], is yet another mobility sce-

nario showing daily GPS track logs collected from the NC

State Fair held in North Carolina, USA.

We select sections of the raw traces where no discon-

tinuity occurred, i.e., we use only nodes which recorded a

continuous sequence of GPS fixes that were 900, 5,000 and

8,000 s long for the Quinta, KAIST, and Statefair traces,

respectively. These times were the total duration of the

traces.

4.2 Parameter estimation

We extracted from the traces the distributions of speed,

pause time, and node density. We used the trace’s sampling

period, for example, in the Quinta trace, the sampling period

is T = 1 s. Node speed is defined as d
Dt

where d is the distance

traveled between two consecutive entries in the GPS trace at

times t1 and t2 and Dt ¼ t2 � t1. Pause time is defined as

P ¼ Dt, if d \ threshold, or zero otherwise. The threshold is

used to account for GPS error. We set this threshold to be

2 m for KAIST and Statefair traces and 0.5 m for the Quinta

trace, due to jitter in GPS update frequency.

To extract spatial node density, the area covered in the

trace is divided into squared cells of 140 x 140 m. The

choice of cell size was based on empirical observations,

i.e., we picked a cell size that provided both adequate

resolution as well as clustering. An alternate approach

could be based on identifying ‘‘attraction zones’’, as was

done in [20]. This is one of the topics of future work we

plan to address. At the limit, i.e., where the cell is either

infinitesimal (lower limit) or the size of the whole area

(upper limit), all the traces and synthetic mobility regimes

would have the same relative spatial density, namely one or

zero nodes per cell for the lower limit and all the nodes in

the same (unique) cell for the upper limit.

After dividing the area into cells, we took a snapshot of

the number of nodes at every cell every T s. The value of

T = 10 was used since, for the size of the cells and the

speeds sampled from the traces, a node could not on

average change between more than two cells during T. For

every cell, at every interval T we counted the number of

nodes in each cell. We then averaged the number of nodes

in each cell over the course of the whole duration of the

trace. The result is what we refer to as Intensity Map (IM)

which we use to estimate the probability that a node will

choose a given cell as its next destination.

In the case of real mobility, e.g., as described by GPS

traces, we set the probabilities of choosing a given cell, pi of

our ODE model to be the normalized value of the IM for cell

i, such that pi ¼ IMðiÞP
j
IMðjÞ, where IM(i) is the intensity in cell i.

The rate li, as mentioned before, is computed as the

inverse of the average time spent by the nodes in cell

i. This time has two components. The time spent by the

node moving towards or from a given point in the cell, and

the time spent in pause at this point, which reflect both

main basic parameters of human mobility, speed and pause

time. This two components were empirically measured

from the GPS traces and used to compute li.

4.3 Results

As highlighted in previous sections, the goal of our model

is to describe the steady-state behavior of spatial node

density in waypoint-like mobility regimes in which: (1) a

node chooses its next destination following some given

probability distribution, (2) moves to that destination, (3)

pauses for some time, and (4) repeats from step (1).

Spatial node density is defined as the percentage of cells

containing Ck nodes. It can also be expressed as the

probability of finding a cell containing Ck nodes. It

describes the degree of ‘‘clustering’’ exhibited by mobility

regimes and can be used to evaluate how close to reality a

given synthetic mobility regime is as far as its ability to

mimic the degree of clustering exhibited by real mobility.

We followed the guidelines presented in Sect. 4.2 to

estimate the parameters of our model for each of the traces

studied. Figures 2, 3 and 4 plot spatial node density in the

Quinta, KAIST, and Statefair scenarios, respectively. Each

Table 1 Summary of the GPS traces studied

Trace # users Duration (s) Samples (s)

Quinta [2] 97 900 1

KAIST [29] 78 5,000 10

Statefair [29] 19 8,000 10
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figure shows three curves plotting the spatial density: (1) at

the beginning of the trace, (2) at the end of the trace, i.e., at

900 s for the Quinta Trace, 5,000 s for KAIST, and 8,000 s

for Statefair, and (3) by applying our ODE framework.

Note that the plots for the KAIST and Statefair traces are

zoomed into the region of interest. In those two plots, the

only point not shown is k = 0, where the percentage of

cells containing 0 or more nodes P[k C 0] is the same for

every curve and it is, of course, equal to 100 %.

The largest deviation of our ODE model from the final

density distribution measured from the traces, for any value

of k at any instant is 5.36, 0.58 and 7.52 %; the average

deviation from the initial distribution measured in all the

instants for all values of k is 1.45, 0.06 and 2.02 % for the

Quinta, KAIST and Statefair traces respectively.

5 Node density in synthetic waypoint mobility

Here we show our framework’s ability to closely describe

the steady-state behavior of spatial node density resulting

from synthetic waypoint-like mobility. We apply our model

to two different regimes, namely Random Waypoint

(RWP) [6] and the Natural [8] mobility. We start by briefly

describing these two mobility regimes and then present the

setup we used to generate mobility traces under them.

Subsequently, we explain how we estimated the parameters

for the model and present results comparing spatial node

density distributions resulting from the synthetic mobility

regimes and our model.

5.1 RWP mobility

Random Waypoint (RWP) mobility, an example of way-

point-like mobility regime, has been widely used in the

study of multi-hop ad-hoc wireless networks (MANETs).

Under RWP mobility, mobile nodes are initially placed in

the area being simulated according to a given distribution.

Typically, a uniform distribution is used. Each node

remains in its position for a given period of time, called

pause time P uniformly chosen in the interval [0, Pmax],

where Pmax is a pre-specified parameter. After this period,

the mobile node chooses a new destination uniformly dis-

tributed in the simulation area, and a speed, also uniformly

distributed in the interval [vmin, vmax], where both vmin and

vmax are pre-specified parameters. Once the destination is

reached, the node pauses again and chooses another des-

tination and speed, as described above.

5.2 The natural mobility regime

We also compare our results against mobility regimes that

follow the preferential attachment principle. As represen-

tative of this family of mobility regimes, we use the Nat-

ural mobility model, or simply Natural [8].

As discussed in Sect. 2, Natural is based on attraction

points, where the attractiveness of each point is propor-

tional to the attractor’s popularity given by the number of
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nodes at or going towards it and inversely proportional to

the distance to it. Thus, the probability PðaiÞ that a node zk

chooses an attractor ai among all possible attractors is

proportional to the portion of the total attractiveness it

carries: PðaiÞ ¼
Aai ;zkP

j
Aaj ;zk

. The attractiveness of an attractor

is then defined as:

Aai;zk
¼
ð1þ

P
zj2Z;zj 6¼zk

Bðai; zkÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXai
� Xzk

Þ2 þ ðYai
� Yzk

Þ2
q ð5Þ

where B(ai, zk) is a Bernoulli variable, with B = 1 if the

individual zk is going toward or staying at attractor ai and 0

otherwise, and X and Y are the coordinates of a node and an

attractor. In our implementation, we divided the simulation

area in equally sized squares, or cells, and consider each

cell to be an attraction point. The coordinates (Xa_i, Ya_i)

mark the center of the i-th attraction point. Once the new

destination is known, the node travels towards it with a

speed that is uniformly distributed in the interval [vmin,

vmax]. A pause time is randomly selected once arriving at

the destination before choosing another destination and

beginning the process again.

5.3 Generating synthetic waypoint mobility traces

Using a modified version of the Scengen [32] scenario

simulator we generated mobility traces according to the

RWP and the Natural mobility regimes. We setup the

simulations trying to mimic the three real scenarios

described in this paper, for Quinta, KAIST and Statefair.

Three sets of synthetic traces were generated using the

RWP and Natural mobility models. The speed range was

set in a way that the average speed would match the ones

measured in the GPS traces.

In order to address the decaying speed problem reported

in [33], we followed the recommendations mentioned in

that work. The speed range was thus set to be ± the

standard deviation measured in the real traces around the

measured average speed. Thus, the speed was chosen

uniformly in a range in which the lower limit was greater

than zero and where the mean matches the one measured in

the real traces. This is the simplest though not the optimal

solution mentioned in [33]. However, since the focus of our

work is not network performance evaluation itself, we

found this solution to be suitable for our purposes.

Pause time was chosen uniformly in the range [0, Pmax],

where the value of Pmax was set to an appropriate value, in

a way that the average pause time would match the one

measured in the real traces. The same was done for the

dimensions of the rectangular simulation area, set to be the

same as in the GPS traces. Moreover, in all simulation

scenarios, we used the same initial positions found in the

respective real traces for the same number of users. For

further discussions on the actual distributions for these

traces’ mobility parameters, please refer to [2, 29].

When applying the ODE framework to describe spatial

density behavior in synthetic mobility, pi follows the

probability distribution particular to the specific mobility

regime used. For example, in RWP mobility, pi is the same

for every value of i, since the probability of choosing the

next waypoint follows a uniform distribution. For Natural,

the probability of choosing a given cell is computed ‘‘on-

the-fly’’, based on the cell’s attractiveness, defined by Eq. 5.

The rate li is computed as the inverse of the average

time spent by the nodes in cell i. This time has two com-

ponents. The time spent by the node moving towards or

from a given point in the cell, and the time spent in pause at

this point. This two components were empirically mea-

sured from long simulations (105 s), using the same

parameters for each scenario, and used to compute li. A

more generic approach to determine the value of this

parameters for a given generic scenario is the subject of our

future work.

Reported simulation results on density, comparing our

ODE framework with simulated traces, reflect 10 runs of

the simulations using each mobility regime at each sce-

nario. Table 2 summarizes the simulation parameters.

5.4 Results

Figures 5 and 6 show the results for spatial node density

distribution at the Quinta scenario, for the RWP and Nat-

ural mobility regimes respectively. The plots show three

curves corresponding to: (1) the initial density distribution

taken from the trace and used to feed all the simulations for

both mobility models, (2) the steady-state density distri-

bution using the proposed ODE framework applied to the

RWP and Natural mobility regimes, and (3) the final

density distribution measured and averaged at the end of

the simulations for the synthetic mobility regimes.

The first obvious observation analyzing these plots is

that the synthetic mobility regimes are unable to follow the

long tail behavior of the density metric presented by the

Table 2 Simulation parameters

Parameter Quinta KAIST Statefair

Avg. speed

(±r)(m/s)

1.2 (±0.53) 0.72 (±0.68) 0.48 (±0.39)

Avg. pause (s) 3.6 86 72

Area

(meters 9 meters)

840 9 840 5,000 9 5,000 1,260 9 1,260

Duration (s) 900 5,000 8,000

# nodes 97 78 19
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distribution measured in the real traces. Moreover, as we

demonstrated in the previous section, the presented ODE

model is able to follow this long tail characteristic when

applying the parameters extracted from the real traces. In

the case of the synthetic models, when applying the exit

rate and probability of choosing the next cell, characteristic

to each mobility regime, the proposed framework now

behaves as the synthetic models do and is able to describe

density distribution curves very similar to the RWP-like

regimes studied.

Figures 7 and 8 show the results for spatial node density

distributions at the KAIST scenario, for the RWP and

Natural mobility regimes respectively. Similar results can

be observed in Figs. 9 and 10 for the Statefair scenario.

Once again, the plots for the KAIST and Statefair traces are

zoomed in to the region of interest.

These show not only the flexibility of the proposed ODE

framework and that it is able to describe the steady-state

behavior of the density distribution of real and synthetic

(RWP-like) mobility, but it also show the accuracy of the

proposed approach.

5.5 Application

In addition to its applications in the study of the steady-

state behavior of spatial node density of waypoint-like
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mobility regimes, we find another very interesting appli-

cation of our framework. Recall that the output of our

model is a vector where each position contains the

expected number of nodes encountered in the cell corre-

sponding to that position. This vector provides node den-

sity distribution at steady-state. Consequently, we can

interpret the normalized value in each cell as the proba-

bility of placing a node in that cell. In other words, the

normalized output vector can be seen as the steady-state

spatial distribution for the waypoint-based mobility regime

of interest. In this context, following the steady-state dis-

tribution given by our model, it is possible to use a Fitness

Proportionate Selection scheme, such as the Roulette-

Wheel described in [27] and commonly used in genetic

algorithms [28] to perform initial node placement when

setting up wireless network simulations.

Figure 11 illustrates this usage of our model. The solid

lines in this plot reflect one simulation of the RWP regime

in the Quinta scenario at instants 0 s (initial placement

using the initial positions from the Quinta trace), 50, 500,

700 and 1,500 s of simulation. It is possible to see how the

solid lines ‘‘move away’’ from the initial conditions and

converge to the steady-state. Another simulation with the

same seed and parameters was run, using the initial node

placement given by the normalized output of the ODE

framework. The dashed lines correspond to this initial

distribution, and the measured final distribution at 1500 s of

the same simulation run. As we can see, these two curves

are very similar, showing that the output of our model

gives an accurate steady-state distribution for the studied

mobility regime, where the final distribution measured at

the end of the simulation does not deviate form the initial

placement provided by the ODE model. These two curves

(the dashed ones) are a very close match also to the final

distribution of the simulation that uses the trace’s initial

node placement (solid line at 1,500 s). Density results of

simulations using the Natural mobility regime were also

generated, with the exact same parameters and scenario.

The same behavior was observed.

In conclusion, the main advantages of using the output

of our framework for initial node placement in wireless

network simulations are twofold. First, as illustrated by

Fig. 11, by defining what the steady-state node density

distribution is, the model saves considerable simulation

time, which is the time it takes to get to the steady-state

behavior. For instance, in the case of the RWP simulation,

for this particular scenario, steady state is achieved after

700 s, since the 700 s curve and the 1,500 s are almost

indistinguishable. Second, this result is important, once it is

very difficult to determine when a model is going to reach a

steady state, since this time varies from scenario to sce-

nario and according to the mobility model and parameters

used. Using our ODE model’s output to establish what the

steady-state behavior is constitutes a technique that is much

more scientifically sound than figuring out when steady

state is achieved by inspecting the mobility model’s

behavior over time.

6 Conclusions

In this paper, we developed a framework to study waypoint

mobility regimes which have been widely used in the

design and evaluation of mobile networks and their pro-

tocols. With our framework, which is based on first-order

ordinary differential equations, it is possible to model the

stationary behavior of spatial node density resulting from

waypoint-based mobility regimes as well as real mobility

described by GPS traces. We validated our approach by

comparing its results against real mobility recorded by GPS

traces. We also presented steady-state spatial distribution

for two synthetic mobility regimes in three different sce-

narios. To the best of our knowledge, this is the first

approach to spatial node density modeling that is generic

enough that can be applied to any waypoint-like mobility

regime.

We also used the proposed model to show the inability

of waypoint-based mobility regimes that are based on the

preferential attachment principle to maintain non-homo-

geneous spatial node density distributions, preserving node

clusters. We showed that in steady-state, preferential

attachment based models result in node density distribu-

tions that approach the distribution of a totally random

mobility regime, such as the RWP mobility model.

As another application of our framework, we discussed

how our modeling framework can be applied to derive

stationary spatial node density distributions which can then

be used to perform initial node placement when setting up

mobile network simulations.

As part of our ongoing and future work plans, we plan

on integrating our model to existing network simulation

platforms in order to prime network simulations with
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steady-state node density distributions. Developing

mobility regimes capable of reflecting the scale-free

properties of real networks and generating mobility traces

with density characteristics similar to what we measure in

real mobility traces are also the focus of our on-going and

future research.
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