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Abstract
Estimating the performance of multimedia (MM) traffic is important in numerous contexts, including routing and for-
warding, quality of service (QoS) provisioning, and adaptive video streaming. This paper proposes a network perfor-
mance estimator which aims at providing, in quasi real-time, network performance estimates for IoT MM traffic in IEEE
802.11 multihop wireless networks. To our knowledge, the proposed MM-aware performance estimator, or MAPE, is
the first deterministic simulation-based estimator that provides real-time per-flow throughput, packet loss, and delay
estimates while considering inter-flow interference and multirate flows, typical of MM traffic. Our experimental results
indicate that MAPE is able to provide network performance estimates that can be used by IoT MM services, notably to
inform real-time route selection in IoT video transmission, at a fraction of the execution time when compared to sto-
chastic network simulators. When compared to existing deterministic simulators, MAPE yields higher accuracy at com-
parable execution times due to its ability to consider multirate flows.
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1. Introduction

Efficient transmission of multimedia (MM) traffic in mul-

tihop wireless networks poses significant challenges

mainly due to their more stringent quality of service (QoS)

requirements (e.g., throughput and delay), especially in the

case of real-time applications.1 In addition, multihop wire-

less communication is inherently more prone to losses and

congestion; for instance, the performance of a single wire-

less link can vary due to factors such as link-layer trans-

mission rate, its signal-to-noise ratio (SNR), and complex

propagation phenomena. Furthermore, transmission of

multiple flows that are not limited by rate control mechan-

isms can also cause congestion, as well as inter-flow inter-

ference, medium access contention, and collisions.2 And,

in the specific case of MM traffic, even though compres-

sion techniques use a predefined average data rate as a tar-

get, the actual data rate of the compressed flow may vary

considerably depending on scene complexity, flow resolu-

tion, and the different types of frames.3

Estimating network performance is an effective

mechanism to address the challenges raised by MM traffic

as a way to achieve QoS-aware admission control,

resource provisioning, and allocation in multihop wireless

networks.4 It allows estimating current available network

capacity as well as deciding whether the network can ful-

fill each flow’s requirements. In addition, accurate MM

performance estimates are useful for routing and video

coding decisions.1,5,6

There are a wide variety of IoT (Internet of Things)

MM applications that can benefit from a real-time network

performance estimator to route selection,5 such as surveil-

lance systems for outdoor or indoor spaces in smart cities

that require multiple video sources transmitting simultane-

ously to the monitoring center.7 Note that the performance
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of these application scenarios can vary according to the

selected route for each video flow, as this may cause inter-

flow interference.

As will be discussed in more detail in section 2, differ-

ent performance estimators have been proposed but do not

fulfill the needs of IoT MM applications which require

estimators to account for multirate flows as well as inter-

flow interference, while being able to provide their esti-

mates in a timely and resource-efficient manner.

In this paper, we propose the multimedia-aware perfor-

mance estimator, or MAPE for short, which estimates net-

work performance for multirate MM flows using their

video coding rate as input. To the best of our knowledge,

MAPE is the first estimator that is able to provide through-

put, packet loss, and delay estimates in real-time consider-

ing rate-heterogeneous flows and accounting for inter-flow

interference.

Experiments using different IoT MM application sce-

narios demonstrate that MAPE is able to provide real-time

network performance estimates, i.e., throughput, delay,

and packet loss, with savings of over two orders of magni-

tude in execution time when compared to the ns-38 net-

work simulator. Furthermore, we show how MAPE can

be used to improve video transmission quality by guiding

route selection on a per-flow basis.

The remainder of this paper is organized as follows:

section 2 reviews related work on network performance

estimation in IEEE 802.11 networks. Section 3 describes

MAPE’s design and operation in detail. Our experimental

methodology, and results from our evaluation of MAPE’s

accuracy are reported in sections 4 and 5, respectively.

Section 6 shows how MAPE can be used to guide route

selection in order to improve video transmission quality.

Section 7 discusses how MAPE can be deployed in practi-

cal IoT MM applications while considering its perfor-

mance profile as discussed in section 6. Finally, section 8

concludes the paper and presents directions for future

work.

2. Related work

IEEE 802.11 networks have offered several attractive rate-

capable amendments that serve various MM application

scenarios.1 Providing performance estimates is critical to

meet QoS guarantees in such networks. Existing

approaches to network performance estimation in IEEE

802.11 networks can be classified in three main categories,

namely, mathematical models, online estimators, and

discrete-event simulators.

2.1. Mathematical models

Estimators based on mathematical models typically make

simplifying assumptions to make modeling tractable. For

instance, most existing proposals target one-hop flows.9–11

Moreover, they make additional simplifications, such as

perfect links and identical transmission rates for all nodes.

In the context of per-flow performance estimation, Laufer

and Kleinrock12 present a more complete model for ana-

lyzing the throughput of carrier sense multiple access with

collision avoidance (CSMA/CA) networks. This model

estimates the maximum throughput for each flow by mod-

eling the network behavior as a system of non-linear equa-

tions and solving the resulting optimization problem. That

approach can become prohibitively expensive for larger

networks, as the size of the system of equations grows

exponentially with the number of network nodes.

2.2. Online estimators

While mathematical models for performance estimation

are useful to understand the limits of contention-based

medium access protocols, approaches that can be operated

online are required in practice, e.g., for real-time applica-

tions such as adaptive video streaming6,13–20 and routing

protocols.21 In particular, performance estimation for

adaptive video streaming is discussed in Wei et al.16 and

Karn et al.18 These studies also consider buffer occupancy

information for predicting performance to improve video

streaming quality of experience (QoE). The work reported

in Wang and Ren20 proposes a method to reduce the

impact of inaccurate throughput prediction on QoE by

controlling the buffer occupancy within a safe range. In

turn, routing metrics provide indirect information that is

expected to correlate well with throughput,21 but they usu-

ally fail to evaluate the interference between flows.

2.3. Discrete-event simulators

Discrete-event simulators can be stochastic or determinis-

tic. Stochastic simulators use pseudo-random number gen-

erators to determine the outcomes of events that have some

level of randomness (e.g., the choice of backoff intervals

for medium access), while deterministic simulators replace

pseudo-random generation with deterministic values (e.g.,

a fixed average backoff interval).

Network performance estimation performed by stochas-

tic simulators like ns-38 and OMNET++22 is commonly

used to either conduct an a priori evaluation of a certain

network and its protocols, guide network provisioning,

deployment, or operational tasks. Because of their random

nature, they usually require a large enough number of runs

for every experimental configuration in order to obtain sta-

tistically meaningful results, which adds to their inherent

scalability limitations, long execution times, and high

computational resource needs. However, deterministic

estimators provide an adequate accuracy with identical

results no matter how many times they are run. However,

they must be designed to perform in real-time while the
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network operates to help dynamically adjust operational

parameters.

One notable example of this latter class of performance

estimators is Algorithmic Framework for Throughput

EstimatoR (AFTER).23 It was proposed to tackle the prob-

lem of real-time throughput estimation for multihop IEEE

802.11 networks. AFTER simulates the behavior of the

link and network layers to quickly converge to steady-state

behavior that allows it to estimate the long-term average

throughput of each flow for a given set of application flows

and corresponding routes. To this end, it maintains in

memory a complete view of the network topology and per-

forms a deterministic simulation of the network dynamics,

generating simulated virtual packets (v_packets) for each

flow at their respective virtual source nodes, triggering a

number of other relevant simulation events, such as wire-

less medium access, queue management (v_packets being

added, removed, and discarded from buffers), and, eventu-

ally, the delivery of v_packets to their virtual destination

nodes. In particular, AFTER takes into account inter-flow

interference, employing a set of deterministic rules to deal

with nodes competing to access the wireless medium.

However, AFTER cannot handle arbitrary traffic models

because it seeks to estimate the maximum achievable net-

work throughput by considering each flow to have an infi-

nite backlog at the source. This means that AFTER

provides no support for scenarios in which MM applica-

tions themselves limit the transmission rate of each flow.

In summary, to our knowledge, MAPE is the first determi-

nistic performance estimator that takes into account both

inter-flow interference and heterogeneous flows, i.e., flows

with different data rates, while being able to be executed in

real-time.

3. MAPE

As discussed in section 2, although a number of perfor-

mance estimation approaches have been proposed, none of

them is able to provide real-time performance estimates

that account for both inter-flow interference and rate-

heterogeneous flows. The proposed MAPE tries to fill this

gap and uses a deterministic simulation-based approach to

estimate the long-term average throughput, packet loss,

and end-to-end delay for all (multirate) flows considering

inter-flow interference. Note that considering multirate

flows is essential to more realistically reproduce the beha-

vior of MM applications. For instance, in video applica-

tions, transmission rates are determined by video coding at

each source and, therefore, each flow can be transmitted at

different rates.

3.1. MAPE—design and operation

Algorithm 1 illustrates MAPE’s overall operation, which

is divided in three steps: Step 1—MAPE starts with a

complete snapshot of the current network state as input

consisting of a representation of the network topology that

includes link quality estimates (i.e., link frame delivery

probability), list of currently active flows along with the

respective paths, and each flow’s data rate; Step 2—

MAPE then uses the initial network snapshot to simulate

the network as it operates until reaching steady state,

which is used to compute long-term throughput, packet

loss, and end-to-end delay estimates in Step 3. Note that

we employ the term steady state in the same sense as in

Passos and Albuquerque,23 i.e., a simulation is said to have

reached steady state when, after a finite number of itera-

tions, a set of states starts repeating itself forming a cycle.

At the end of each iteration, MAPE stores a snapshot of

the current network state, which consists of currently

ongoing transmissions with their respective remaining

times, the content of the queues and the backoff counter of

the wireless medium access for all nodes that are traversed

by any flow on the evaluated flow set, and the current

medium access priority list. To decide whether the steady

state has been achieved, the current state is compared to

all previous ones. Whenever a duplicate state is found,

MAPE declares that steady state has been reached and

computes the average throughput, packet loss rate, and

end-to-end delay for each flow. A heuristic stop criterion

is also used to guarantee low execution time and adequate

real-time performance independent of application scenar-

ios. When duplicated states are not found, MAPE com-

putes the average cycle performance of events within

which at least one packet from each flow has been deliv-

ered to its final destination as an attempt to approximate

steady-state performance.

Unlike stochastic simulators that study network beha-

vior over a predefined period of time, MAPE aims at esti-

mating the performance of the network, e.g., throughput,

packet loss, and end-to-end delay at steady state. This can

be especially useful for QoS provisioning and, as previ-

ously noted, for route selection in real-time MM

Algorithm 1. MAPE’s pseudo-code.

{Step 1: Initialization}
networkTopology  graph representing the network
flowsPath list of paths of all flows
flowsRate list of bitrate of all flows
{Step 2: Simulation}
while no Steady State do

for each flow f ∈ flowsPath do
Update the number of v_packets received by flow f ;
Schedule the queuing of new packet of flow f to its
queue according to flowsRate;

End
Next network state;

End
{Step 3: Estimation}
Compute long-term per-flow performance.

Bhering et al. 3



applications. In addition, as discussed in section 2, deter-

ministic simulators that assume rate-homogeneous flows

may result in severely inaccurate estimates for a number

of reasons. First, the performance of a flow is necessarily

limited by its transmission rate. Thus, such simulators may

grossly overestimate performance in scenarios where net-

work capacity is much larger than the aggregate demand

of the active flows. Furthermore, severe underestimates

may also occur for individual flows because interfering

flows may be transmitted at a higher rate, consuming more

network resources than they would in reality, reducing the

achievable performance of other flows. MAPE overcomes

these limitations by explicitly accounting for both multi-

rate flows and inter-flow interference and thus attains

more accurate performance estimates in more realistic

MM application scenarios.

While MAPE builds on ‘‘traditional’’ deterministic estima-

tors such as AFTER,23 unlike these estimators, MAPE relaxes

the assumption that all flows have infinite backlogs and

instead generates v_packets according to the rate of each

flow—which can be specified as an input, based on the flows’

video coding rate, for instance. Whenever invoked, MAPE

receives flow rate arguments as input and uses them determi-

nistically to simulate the network dynamics by: (1) generating

simulated v_packets for each flow at their respective source

nodes, (2) triggering a number of other relevant simulation

events, such as wireless medium access transmission, queue

management (v_packets being added, removed, and discarded

from buffers), and (3) eventually, delivering v_packets to their

destination nodes. As such, inter-flow interference happens as

a result of buffer overflow, link-layer transmission losses, and

medium access conflicts.

3.2. MAPE—implementation

MAPE’s current implementation (publicly available at:

https://github.com/fabianobhering/MAPE) uses AFTER23

as the underlying deterministic performance estimator. As

shown in Figure 1, MAPE starts by initializing the simula-

tion state with its input arguments. In this phase, the first

packet of each flow is added to the queue of the respective

source node, and the simulation time is initialized to keep

track of the events that are used to generate scheduled

v_packets. Thus, the main loop of the simulation starts

with the advance of the simulation according to the time of

next possible events. This loop also handles packet recep-

tions and eventually generates new transmission events

until it detects that the network has reached a steady state

which informs MAPE that it can then compute the esti-

mated performance of each flow.

MAPE’s functionality is implemented as a module

(called SPR for Specific Per-flow Rates) that interfaces

with the deterministic simulation engine to (1) provide

flow rate information as part of simulation initialization,

(2) update each flow when their v_packets are received,

(3) generate new v_packets according to the stipulated

flow rates, and (4) provide per-flow performance measure-

ments. MAPE uses a representation of the current simula-

tion state which includes information about all received

v_packets. Furthermore, the SPR module implements a

procedure to schedule the next packet generation for each

flow according to the specified rate and keeps track of the

number of v_packets received per flow, which is used to

calculate performance estimates for each flow once steady

state is reached.

To simulate v_packet transmissions, MAPE starts by

placing the initial v_packet of each flow on the queue

of the respective source node. It then iterates through

all nodes that have at least one v_packet on their queues

and triggers events for dequeuing a v_packet and add-

ing this v_packet to a transmission buffer, where the

v_packet is stored while waiting for an opportunity to

be transmitted.

Note that MAPE’s SPR Module introduces a mechan-

ism to schedule the next v_packet generation for each flow

according to the specified rate. Once per-flow rates have

Figure 1. MAPE’s implementation.
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been specified, the scheduler uses them to place new

v_packets in each source node’s queue until the steady

state is detected. Thus, v_packets of each flow are gener-

ated according to the intervals of the simulation time. To

keep track of the simulated time, MAPE uses a time vari-

able that is updated according to the end time of a link-

layer transmission attempt and the backoff procedure.

Once the simulation reaches steady state, MAPE com-

putes the average throughput of each flow as the ratio

between the total number of v_packets delivered within

the last steady-state cycle—i.e., the period between two

repeating simulation events—the steady-state cycle length.

In addition, the SPR Module computes packet loss and

end-to-end delay by tracking all v_packets from the instant

when they are generated at their source nodes until they

are received at their destinations. MAPE is then able to

estimate the average per-flow packet loss rate and end-to-

end delay. Such metrics account for the data link-layer

transmission attempts and queuing delays.

3.3. Discussion

While MAPE makes assumptions about network events

and convergence to steady state, our experimental evalua-

tion (see section 5) shows that MAPE is still able to esti-

mate per-flow performance with adequate accuracy in

quasi real-time.

Note that MAPE uses information about the topology

of the network and the driving application (e.g., MM

sources, flow rates), and, in the application scenarios envi-

sioned (e.g., Smart Cities, Industrial Automation), nodes

are typically stationary and have access to continuous

power sources. As such, frequent topology changes (and

energy limitations) are not expected to play a significant

role. In scenarios where topology changes need to be con-

sidered, topology updates can be conveyed by proactive

routing protocols.

Route selection is an example of how MAPE can be

used in practice. The routing protocol would invoke

MAPE with an up-to-date network snapshot as input.

Then, based on MAPE’s performance estimates, it would

perform route selection accordingly. For instance, a proac-

tive link-state algorithm (e.g., optimized link-state routing

(OLSR)24) can periodically discover topology changes and

disseminate this information through link-state updates

that MAPE can use to adjust its estimates. Network topol-

ogy information would be updated whenever a node iden-

tifies ‘‘significant’’ changes in the network topology, e.g.,

link failures, new nodes/links, or changes in link quality.

As part of our experimental evaluation (see section 6), we

show how MAPE can guide route selection and, as a

result, improve video transmission quality.

In its current implementation, MAPE assumes that

flows are transmitted at constant bitrate. However, MM

applications typically employ variable bitrate transmission.

One way to address this is to simply have MAPE use the

flow’s average bitrate, which can be determined during

transmission. Another approach to handle dynamic traffic

patterns is to provide MAPE with updated data rate infor-

mation whenever significant transmission rate changes are

detected in the video coding process. In this work, we use

the average bitrate of each video trace as input to MAPE.

As part of future work, we plan to add support to variable

bit rate flows.

4. Evaluation methodology

We evaluated MAPE against two types of discrete-event

simulators—stochastic (ns-3) and deterministic (AFTER).

We chose ns-3 because it is widely used by the network

researchers and practitioners since it provides an adequate

model of the network, and thus provides reliable estimates

of network performance. We use AFTER as the example

of a deterministic simulator and demonstrate that MAPE

can achieve better accuracy by being able to model SPRs,

i.e., it simulates each flow transmitting at specified MM

bitrates. In this section, we describe the experimental

methodology we use to evaluate MAPE, including the

topologies and traffic models considered, as well as how

the experiments were carried out.

4.1. Experimental topologies

We evaluate MAPE using two different IoT wireless net-

work topologies akin of IoT scenarios and whose para-

meters are summarized in Table 1. The Random Indoor

topology aims to replicate smart building scenarios and

was generated by placing nodes randomly within an indoor

environment. The Grid Outdoor topology tries to mirror

smart city scenarios consisting of grids of neighborhood

blocks and streets in an urban region. More specifically,

we reproduced an area of the city of Niterói in the state of

Rio de Janeiro, Brazil, using an 83 7 grid in which two

Table 1. Simulation scenarios.

Parameters Topologies

Random Indoor Grid Outdoor

Deployment area (m2) 100× 100 360× 490
Number of nodes 30 55
PHY/MAC technology 802:11g 802:11g
Link speed 18 Mb=s 18 Mb=s
Mac queue size 10 p 10 p
Packet lifetime 1000ms 1000ms
Traffic control queue size 1 p 1 p
Network queue size 1 p 1 p
Propagation model Shadowing Cost231
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consecutive nodes are spaced by 60 and 70m on a given

row and column of the grid, respectively.

For a fair performance comparison, we use the

same link speeds, queue sizes, and packet lifetime policy

in ns-3, AFTER, and MAPE. The Shadowing and Cost231

propagation models25 were chosen to more realistically

reproduce indoor and urban environments. All simulations

use the same MAC and PHY technology and the same link

speed, which was chosen to support MM application

scenarios.

In order to estimate link quality (an information that is

required by MAPE), a series of preliminary simulations

were performed using the ns-3 simulator. For all nodes in

each topology, we executed a simulation transmitting

20, 000 packets to extract the long-term quality of each

link.

4.2. Traffic models

In addition to link quality, MAPE requires per-flow trans-

mission rate information. In our experiments, we use a mix

of three different rates (as shown in Table 2) to represent

different levels of video quality. The EvalVid framework26

was used to generate traces of the same video clip with

these three rates, and the resulting average bitrate of each

video trace was used as input to MAPE. Additional traffic

generation parameters and their values used in our simula-

tion experiments are listed in Table 2.

Experiments which used MM traffic employ a publicly

available and commonly used video clip, namely, ‘‘Hall

Monitor,’’3 which was converted to H.264 format with a

rate of 30 frames per second. Considering real-time trans-

mission delay and human tolerance, the play-out buffer is

set to 300ms to mitigate potential out-of-order packets;

packets with delay longer than 300ms are discarded at the

decoder.

In video traffic, transmission rates may vary according

to the coding technique used. For example, more

important video frames (e.g., MPEG I-frames) are often

transmitted at higher rates than the target compression

bitrate, while less important frames (e.g., MPEG P-frames

and B-frames) are transmitted at lower rates. In our experi-

ments, MM traffic target bitrates used by MAPE are based

on long-term average bitrates calculated at the video

source encoder. Because MAPE currently models variable

bit rate flows using their long-term average rates, we also

ran experiments with constant bit rate (CBR) traffic in our

ns-3 simulations in order to assess how short-term fluctua-

tions of the video traffic bitrate affect MAPE’s estimates.

In those experiments, we adopt the same bitrates used as

input for AFTER and MAPE as listed in Table 2. As part

of our future work (see section 8), we will modify

MAPE’s current variable bit rate traffic model to be able

to account for shorter-term transmission rate variations.

4.3. Experiments

Simulation experiments were conducted as follows. For

each topology, we computed the five best paths (based on

the quality of their links) for 500 source–destination pairs

generated randomly. Selecting one path for each pair, out

of their five best, we generated random instances for sce-

narios with 3, 6, 9, and 12 pairs (or flows), which are used

to transmit concurrent video flows with three different lev-

els of quality—a third of the flows use each of the three

transmission rates listed in Table 2. For instance, in a sce-

nario with six flows, we have two sources transmitting at

256 kb=s, two sources transmitting at 512 kb=s, and two

sources transmitting at 1024 kb=s. We left out the evalua-

tions of scenarios with more than 12 flows because the net-

works become saturated. These scenarios do not provide

satisfactory support for video applications, so they are not

relevant for this work.

Finally, all scenarios were also executed in the ns-3

simulator for both the CBR and MM traffic models using

a simulation time of 120 s. For each scenario, execution

time, per-flow throughput, end-to-end delay, and packet

loss were computed by averaging results over all runs.

4.4. Evaluation metrics

We evaluate MAPE’s performance according to execution

time and prediction accuracy. Since ns-3 is a well-known,

open-source packet-level simulation platform widely used

by the networking research and practitioner community,

we use its throughput, packet loss, and end-to-end delay

statistics as the ground truth in our performance study.

Throughput is calculated as the ratio between the number

of packets delivered to the destination and simulation

time. End-to-end delay is the time interval between when

a packet is transmitted by the source node and when that

packet is delivered at the destination, averaged over all

packets received, and packet loss is calculated as the

Table 2. MM and CBR traffic parameters.

Parameters Values

MM traffic
Video Hall monitor
Encoding H.264/MPEG-4 AVC
Frame rate 30 Hz
Format YUV CIF, 352× 288
Number of frames 3600
Target bitrate 256, 512, 1024 kb=s
Packet size 1024 bytes

CBR traffic
Bitrate 261, 485, and 836 kb=s
Packet size 1024 bytes

MM: multimedia; CBR: constant bit rate.
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percentage of packets transmitted that were not delivered

to the destination.

We expect MAPE to achieve predictions close to those

of ns-3, but in a reproducible manner and at a fraction of

the required execution time. We also use the Structural

Similarity Index Measure (SSIM)27 and another metric

called classification inversions—as defined in Passos and

Albuquerque,23 and further explained in section 6.2—to

evaluate video quality and demonstrate the practical suit-

ability of MAPE to the problem of route selection for MM

applications.

5. MAPE’s accuracy evaluation

Our experimental evaluation aims at demonstrating

MAPE’s ability to accurately estimate per-flow through-

put, delay, and packet loss in a timely manner when com-

pared to estimates provided by existing stochastic and

deterministic simulators. To this end, we compare MAPE

against ns-38 and AFTER23 by considering the trade-off

between execution time and throughput, delay, and packet

loss estimate accuracy.

5.1. Execution time

We measure average execution time for AFTER, MAPE,

and ns-3 for each scenario considering the 95% confidence

intervals. All mean times are in milliseconds, and simula-

tions were performed on a dedicated server with an Intel

i7-860 processor running at 2.8 GHz and 32 GB of RAM.

As shown in Figure 2, MAPE and AFTER report execution

times that are at least two orders of magnitude lower than

those of ns-3 for different scenarios.

Note that execution times for ns-3 vary from tens to

hundreds of seconds for the scenarios considered. While

we observe a slight increase in MAPE’s time complexity

when compared to AFTER’s for scenarios with only a few

flows, that difference becomes negligible when the

number of flows increases. In any case, MAPE is able to

compute per-flow network performance estimates in real-

time which can be used to inform core network services

such as routing. MAPE and AFTER are fast because,

unlike stochastic simulators, they do not need to simulate

nearly as many events to reach steady state.

As expected, execution times increase with the number

of flows. However, AFTER and MAPE’s execution times

increase more significantly with the number of path hops

because that increases the number of transmission and

reception events needed to deliver the flows’v_packets to

the destination node. This explains the slightly higher

times measured with the Grid Outdoor topology, which

typically requires paths with more hops because of the

greater distances between nodes.

5.2. Estimated throughput

We measure throughput estimate accuracy as the ratio

between the per-flow estimate returned by AFTER or

MAPE and the per-flow throughput obtained by ns-3.

Differently from other common ways to measure accu-

racy, such as the mean squared error, the way we evaluate

accuracy conveys whether the estimate is an underestimate

or overestimate of the reference value, which is the value

reported by ns-3. Figures 3 and 4 show MAPE’s and

AFTER’s throughput estimate accuracy for CBR and MM

traffic in both the Random Indoor and the Grid Outdoor

topologies, respectively. The red line represents the

‘‘ideal’’ ratio of 1, i.e., a perfect match between the esti-

mates and ns-3’s measured throughput.

We observe that AFTER’s throughput estimates are

significantly less accurate when compared to MAPE

because AFTER’s simulated flows attempt to transmit at

the highest supported rate, typically resulting in overesti-

mates. This is particularly pronounced for scenarios with

few flows in which there is low inter-flow interference

and, consequently, more residual network capacity to

(a) (b)

Figure 2. Execution time (log scale) for different number of flows (a) Random Indoor topology and (b) Grid Outdoor topology.

Bhering et al. 7



support higher transmission rates. As more flows are

added, AFTER’s prediction improves because, with more

flows sharing the network’s capacity, there is less room

for each flow’s transmission rate to increase beyond the

real transmission rate.

This prediction discrepancy between AFTER and

MAPE also quantitatively demonstrates the impact that

not accounting for specific flow transmission rates may

have. It also illustrates that MAPE is able to significantly

improve prediction accuracy for scenarios with few flows

(in our experiments, three- and six-flow scenarios).

MAPE’s accuracy decreases in scenarios with more

flows—with a bias toward overestimates due to some sim-

plifications inherited from AFTER. For instance, AFTER

does not take into account packet losses due to collision,

which may influence network throughput when there are

more flows transmitting simultaneously. Instead, in its

inter-flow interference model, AFTER implements a

medium access scheduler based on an interference graph

of the topology. In future work, we plan to address this

issue by improving how flow interference is modeled.

Note that MAPE yields higher accuracy for CBR traffic

(Figures 3(a) and 4(a)). That is because its scheduler also

generates v_packets at constant rates. For MM traffic sce-

narios (Figures 3(b) and 4(b)), however, transmission rate

variations cause MAPE to overestimate the throughput.

This is because bursts of the more important video packets

cause losses due to buffer overflow and packet collisions,

while less important video packets which have lower trans-

mission rates are delivered more reliably.

We also evaluate the per-flow throughput prediction

accuracy considering the different classes of flows based

on their transmission rates. Figure 5 summarizes the results

for six flows using CBR and MM traffic in both the indoor

and outdoor topologies. We also ran these experiments for

3, 9, and 12 flows, but we omit those results since they

(a) (b)

Figure 4. Estimated throughput accuracy relative to ns-3 in the Outdoor Grid topology (a) CBR traffic and (b) MM traffic.

(a) (b)

Figure 3. Estimated throughput accuracy relative to ns-3 in the Indoor Random topology (a) CBR traffic and (b) MM traffic.
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show similar trends. The red reference lines represent the

ideal throughput based on the average bitrate generated for

each video trace.

The figure shows that AFTER tends to overestimate all

three classes of flows. Moreover, as the source–destination

pair is chosen randomly regardless of the transmission rate

of the flow, the average throughput estimated by AFTER

tends to be roughly the same for all three classes.

Conversely, by knowing the transmission rate of each

flow, MAPE is able to more accurately estimate per-flow

throughput. Note, however, that it slightly overestimates

MM’s throughput. This issue, which is more pronounced

in the outdoor topology due to its higher link reliability, is

due to the fact that MAPE’s current implementation uses

AFTER, and thus, it inherits the mechanism used by

AFTER to estimate packet loss. It considers two possible

sources of packet loss: buffer overflow and link-layer

transmission losses. If all links that compose a path have

perfect delivery rates, losses computed by AFTER are

only due to buffer overflow. In practice, however, there

are other sources of losses, such as collisions, and as a

result, MAPE and AFTER tend to overestimate flows’

throughputs.

5.3. Estimated delay and packet loss

We also evaluate MAPE’s delay and packet loss estimates.

Figure 6 shows the average end-to-end delay, considering

the 95% confidence intervals for different number of

flows in both experimental topologies. When compared to

the results obtained by ns-3, MAPE shows similar delay

increase trend as the number of flows increases. Note that

MAPE overestimates the end-to-end delay for scenarios

with 12 flows in both topologies. This is due to MAC

layer congestion as more flows share the same nodes/links

increasing contention and consequently increasing

(a) (b)

Figure 5. Average throughput for scenarios with six flows (a) Random Indoor topology and (b) Grid Outdoor topology.

(a) (b)

Figure 6. Average end-to-end delay for different number of flows (a) Random Indoor topology and (b) Grid Outdoor topology.
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MAPE’s time to reach steady state, which, in turn, may

cause MAPE’s execution to end before reaching steady

state. Although MAPE’s estimate is less accurate com-

pared to ns-3 when it does not reach steady state, we will

demonstrate in section 6 that these results are still useful

to inform the route selection process ahead of MM flow

transmission.

Figure 7 plots the average packet loss rate. It also

shows a discrepancy between MAPE’s and ns-3’s esti-

mates in both topologies. But here, instead of overestimat-

ing, losses are generally underestimated by MAPE. The

culprit is the absence of a collision packet loss counter in

MAPE, which causes it to be more prone to estimate lower

overall loss rates. These results also help explain the rea-

son for instances in which MAPE overestimates the

throughput—a consequence of fewer packets being dis-

carded at the MAC layer. Furthermore, as expected, packet

losses for MM traffic were even more impacted by the

bursty nature of the video packet flows. As part of our

future work, we plan to improve how MAPE models

packet losses due to collision.

Despite those discrepancies, the results shown in

Figures 5–7 demonstrate MAPE’s ability to capture the

overall trend in throughput, delay, and packet loss for MM

flows in different application scenarios. Furthermore, we

note that the discrepancies for 9 and 12 flows are mostly

caused by network congestion and MAPE estimates being

generated before steady state are achieved.

In order to confirm this hypothesis, in Figure 8 we

show a scatter plot for the 9-flow runs using the Random

Indoor topology representing which instances did and did

not reach the steady state and their respective delays dis-

crepancies when comparing MAPE to ns-3—i.e., the

difference between MAPE’s and ns-3’s average delay esti-

mates. Note that we show results for the 9-flow Random

Indoor topology experiments because, with 9 flows (and

above), the network gets more congested and consequently

the number of instances that do not reach steady state

increases, which, as previously discussed, results in higher

delay and packet loss discrepancies.

As the plot shows, when steady state is reached, MAPE

yields adequate estimation accuracy, with discrepancies

concentrating around less than 100ms. However, MAPE

tends to overestimate end-to-end delay for instances that

do not reach steady state, causing higher discrepancies.

(a) (b)

Figure 7. Average packet loss for different number of flows (a) Random Indoor topology and (b) Grid Outdoor topology.

Figure 8. Difference between MAPE’s and ns-3’s average delay
predictions considering MAPE’s steady and non-steady instances
for scenarios with 9 flows in the Random Indoor topology.
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Figure 9 confirms this observation—it shows a scatter

plot of the path average throughput according to ns-3 for

instances that reached the steady state and those that did

not as a function of the delay estimate discrepancies for

the 12-flow experiments in the Random Indoor Topology

(since they showed the highest discrepancies). As the plot

shows, higher throughput paths are concentrated around

the smallest discrepancies, while the largest discrepancies

happen with paths that present poor network performance

and are, thus, not suitable for MM flows. Note that

instances with higher throughput were those in which

MAPE was able to reach steady state, unlike runs that

exhibit higher discrepancies, which, again, are the ones

where steady state was not reached.

As a tool to guide real-time route selection decisions

for IoT MM applications, low throughput routes—likely

because of congestion—are generally undesirable, as they

are often unable to meet the requirements of MM flows.

As such, overestimating delay for those paths should not

negatively impact path selection. That is, MAPE’s delay

overestimates when compared to ns-3’s correspond to

paths that are undesirable for video traffic anyway, and

therefore should not be selected by routing.

6. Video quality evaluation

The ability to estimate network performance is essential to

ensure adequate network support for many IoT MM appli-

cations. In the case of applications involving video trans-

mission, for instance, timely and fresh estimates of the

current state of the network can significantly help routing

protocols to rapidly identify paths that satisfy QoS con-

straints, as well as promote load balancing and network

resource utilization. To examine how MAPE’s perfor-

mance estimates can be used to improve overall video

quality, we use a well-known QoE metric called SSIM27

measured by the EvalVid video transmission and quality

evaluation framework.26 In our experiments, we used an

EvalVid module available for the ns-3 simulator which

evaluates the quality of the video transmitted through the

selected paths. This is another reason we employed ns-3 as

the baseline simulator for our performance study. In the

second part of this section, we evaluate the quality of the

video transmitted using the route selected based on

MAPE’s estimates.

6.1. Video structural similarity

The SSIM measures video structural distortion which is

known to correlate with video quality as perceived by the

end user.27 This metric combines luminance, contrast, and

structural similarity of the frames to compute the correla-

tion between the original frame and the (possibly distorted)

displayed one. SSIM values vary between 0 and 1, with

higher values meaning better quality.

To show how MAPE estimates can be used to improve

video quality, we run experiments transmitting the ‘‘Hall

Monitor’’ video clip (as described in section 4.2) and com-

pute the SSIM by comparing all transmitted and received

video frames.

Figure 10 plots the average SSIM of the instances for

different numbers of flows in the Random Indoor topol-

ogy. According to the delay discrepancy ranges observed

in Figure 8, we group experimental run instances in two

classes, where the first class exhibits delay discrepancies

greater than 100ms (called larger delay discrepancy) and

the second class exhibits delay discrepancies equal to or

less than 100ms (called smaller delay discrepancy) when

compared to the results obtained with ns-3. From Figure

10, we observe that larger delay discrepancy instances

were not found in scenarios with three flows; however, for

the 6-, 9-, and 12-flow experiments, larger delay discre-

pancy instances resulted in lower video quality.

Consequently, as previously discussed in section 5, since

MAPE’s larger delay discrepancies correlate with poorer

video quality, MAPE estimates could be used to discard

paths which would result in inadequate performance for

video transmission as they do not currently match the

video transmission requirements. For example, in real-time

video applications, MAPE could be used to identify paths

that provide a minimum threshold latency that preserves

adequate video quality.

Figure 9. Path average throughput (according to ns-3) as a
function of the difference between MAPE’s and ns-3’s average
delay predictions for scenarios with 12 flows in the Random
Indoor topology.
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6.2. Classification inversions

To evaluate how MAPE can be used to inform path selec-

tion for video transmission, we use the concept of classifi-

cation inversions23 defined as follows. Consider two

different paths a and b. Suppose that video transmissions

using path a yield higher SSIM than if path b was used. If

MAPE’s throughput estimate indicates that path b will

outperform path a, that constitutes a classification inver-

sion using throughput as metric; otherwise, if path a is

selected, there is no inversion.

To better understand how classification inversions can

be used in practice, let us consider the route selection prob-

lem in multipath forwarding, where a set of paths needs to

be selected for the transmission of multiple flows based on

low transmission rate. In this example, the most important

aspect is to get the relative ranking of the paths correctly in

order to make adequate flow-to-path assignments.

Figure 11 shows a comparison between MAPE and

AFTER in terms of classification inversions for both the

Random Indoor and the Grid Outdoor topologies as a func-

tion of the number of flows. We evaluate the quality of

paths using SSIM metric. For MAPE, we consider three

possible scenarios: using the average throughput, packet

loss, or end-to-end delay as metrics to compare the set of

paths of all instances. Since AFTER does not estimate

delay or packet loss, we only show results when through-

put is used to calculate classification inversions based on

AFTER estimates. MAPE results in lower percentages of

classification inversions (lower than 20%) in all scenarios.

AFTER, however, yields three to six times higher classifi-

cation inversion rates, as it ignores flow transmission rates.

Note that MAPE’s packet loss and delay estimates

result in lower classification inversions for 9 and 12 flows

when compared to classification inversions based on

throughput. This demonstrates that both delay and loss

should be considered when selecting paths for video trans-

mission, especially when the network becomes saturated.

These results are relevant because they confirm that

MAPE’s estimates, which can be computed in quasi real-

time, can be used to select paths that improve user QoE in

terms of perceived video quality.

7. Route selection for IoT MM
applications

In this section, we discuss how MAPE can be deployed to

inform route selection in IoT MM applications. Our experi-

ments use surveillance system scenarios in smart cities

Figure 10. Average SSIM according to the instances with larger
and smaller delay discrepancies for scenarios with different
number of flows in Random Indoor topology.

(a) (b)

Figure 11. Percentage of classification inversions in terms of SSIM for different numbers of flows (a) Random Indoor topology and
(b) Grid Outdoor topology.
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where multiple sources transmit multiple video flows

simultaneously to a single monitoring center (sink) as illu-

strated in Figure 12. In these scenarios, each source may

generate video flows with different bitrates according to

the video resolution and encoder used. These flows are

transmitted from each source node through selected paths.

At the destination, i.e., the monitoring center, the video

decoder is responsible for synchronizing and merging the

flows received and for rendering the resulting video.

Depending on the application scenario, the system can also

handle multiple sinks by specifying the sink for each

source.

Since video sources may generate flows with different

bitrates, route decisions must account for the flow’s bitrate

to balance network load and reduce packet losses and

delays. Therefore, MAPE can be used to assist routing

decisions by estimating path costs based on current net-

work topology knowledge and the flows’ bitrates. For

instance, in deployments that use centralized network con-

trol (the software-defined networking (SDN)), the control-

ler evaluates a set of paths over which video flows can be

transmitted and then selects appropriate routes based on

MAPE’s estimates. The controller then updates the nodes’

routing tables so that flows are forwarded according to the

selected paths. As discussed in section 3.3, when network

control is decentralized, source nodes can execute MAPE

to make informed routing decisions based on network

topology information obtained and disseminated by a

proactive link-state algorithm (e.g., OLSR24). In this case,

flows could be forwarded along selected paths using a

source routing technique in which the source includes

complete path information in the packet header.

Regardless of whether a centralized or distributed rout-

ing solution is used, paths must be found in a timely man-

ner since the time required for this task contributes to the

overall video acquisition delay. As shown in Figure 2,

while execution times for MAPE and AFTER are in the

order of tens of milliseconds, ns-3 takes tens of seconds to

execute, i.e., two orders of magnitude higher execution

time.

In order to showcase MAPE’s ability to account for

flows with different bitrates, we compare video transmis-

sion quality when route selection is based on MAPE’s and

AFTER’s estimates. For that, we evaluated 30 random

outdoor grid topologies with 60 nodes mirroring the sce-

nario illustrated Figure 12. In these experiments, we con-

sider four sources transmitting two video flows each to a

sink node. For each video flow, a path was selected among

100 candidate paths. For each source, we generate offered

loads between 1 and 8 Mb/s—where offered load is

defined as the sum of the bitrates of all flows transmitted

simultaneously (Note that most current encoders have

variable bit rates due to compression. Hence, for this

experiment, we considered the average bitrate requested as

the target when generating the video traffic.).

Figure 13 shows the SSIM (mean and 95% confidence

intervals) for different offered loads when MAPE and

AFTER estimates are used to select routes. As expected,

video quality decreases with increased offered load, since

flows with higher bitrates result in higher contention and

consequently more collisions and longer queuing delays.

However, our results show that route decisions based on

MAPE outperform those by AFTER for all offered loads.

Moreover, the performance gap grows for scenarios with

higher offered loads. This can be explained by the fact that

since MAPE’s network performance estimation strategy

accounts for flows with different bitrates, MAPE is able to

select paths that are able to accommodate the flows’ dif-

ferent resource requirements and make better use of the

network’s available resources. This result is also consistent

Figure 12. Example of a wireless video surveillance system
with multiple video sources transmitting to a monitoring center.

Figure 13. SSIM for different offered loads when path selection
is informed by MAPE and AFTER estimates.
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with our previous observation that MAPE is able to deliver

adequate real-time performance estimation under challen-

ging network conditions and more stringent application

requirements.

8. Conclusion

This paper introduced the MAPE, a per-flow estimator

based on a deterministic discrete-event simulation

approach. MAPE estimates the throughput, packet loss,

and end-to-end delay of individual flows using their aver-

age transmission rate as input. To the best of our knowl-

edge, MAPE is the first performance estimator that is able

to both account for inter-flow interference and accommo-

date rate-heterogeneous flows, which is essential to more

realistically model the behavior of MM traffic.

We evaluated MAPE in terms of execution time, pre-

diction accuracy, and ability to classify sets of paths

according to the video quality at the receiver. Our results

indicate that MAPE yields comparable throughput, packet

loss, and delay estimate accuracy when compared to sto-

chastic network simulators such as ns-3 at a fraction of the

execution time. When compared to AFTER, through its

ability to consider SPRs, MAPE yields higher accuracy at

comparable execution times. We also show in practice that

by adopting video coding rates as input, MAPE is able to

obtain estimates similar to the ones obtained by ns-3 when

driven by MM traffic.

In this work, we also demonstrated how MAPE’s real-

time throughput and delay predictions can be used to make

routing decisions for MM applications. In particular, our

results showed that MAPE’s path selection decisions

results in superior video quality for over 80% of the cases,

including saturated network scenarios. Finally, our experi-

ments using surveillance system scenarios showed that

route decisions based on MAPE, which account for multi-

ple sources generating flows with different bitrates,

increase video quality for different offered loads.

As part of future work, we plan to refine MAPE’s

packet loss and delay models which will help improve its

estimation accuracy. While our current implementation

uses IEEE 802.11, we also plan to extend MAPE so that it

can also be used with other IoT communication technolo-

gies such as IEEE 802.15.4 networks. We also intend to

further explore the correlation between routing metrics

and video quality (e.g., based on the SSIM) and to incor-

porate into MAPE alternate ways to model variable bitrate

streams, including traffic patterns representative of promi-

nent adaptive bitrate streaming traffic, e.g., by simulating

video frame packets bursts. Our overarching goal is to pro-

pose a cross-layer framework that integrates MAPE with

video coding for improved QoE.
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