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Abstract—Pressure ulcers/injuries (PU/Is) are localized damage
to the skin and/or underlying tissue caused by prolonged pressure
to an area of the body. PU/Is affect over 2.5 million individuals
in the United States annually, are associated with increased
morbidity and mortality, and incur a cost of approximately $11
billion to the US healthcare system. Mitigating PU/Is continues to
be a challenging task using traditional methods due to their time-
and labor-intensive nature, and existing technological solutions
tend to be prohibitively expensive, inefficiently implemented, or
ineffective. Thus, there is a clear unmet need for a holistic,
end-to-end, hospital-integrated, patient-centric system for PU/I
prevention. Such a system can monitor pressure at high-risk
areas and uses real-time sensor data, analysis, and visualization to
guide clinicians and caregivers to perform effective preventative
measures. In this paper, we describe a proof of concept of
this system, which integrates: (A) a prototype ”smart wound
dressing” capable of detecting of changes in interface pressure
and patient angle over time, including during routine patient
repositioning maneuvers; and (B) an open software infrastructure
that collects pressure-over-time data, stores, analyzes, and dis-
plays them to clinicians and caregivers. We present preliminary
results obtained using our current prototype which uses machine
learning algorithms to infer a patient’s current position based on
data from the pressure sensor.

Index Terms—Wearable computers, correlation and regression
analysis, medical information systems.

I. INTRODUCTION AND BACKGROUND

Pressure ulcers/injuries (PU/Is) are localized damage to the
skin and/or underlying tissue caused by prolonged pressure
to an area of the body. PU/Is typically develop in low-
mobility individuals (bedridden or wheelchair-confined), over
bony prominences, such as the sacrum, ischial tuberosities, or
heels [1]. Despite widespread attention and regulation, PU/Is
are highly prevalent, affecting over 2.5 million individuals in
the United States annually [2]. These debilitating wounds have
severe downstream implications to patients and healthcare fa-
cilities, are associated with increased morbidity and mortality,
and incur a cost of approximately $11 billion to the US
healthcare system [3]. Treatment of deep tissue PU/Is requires
intensive wound management that can take years, leading to

major disability and increased health and economic burden for
patients, caregivers, and health care facilities. Current standard
practice for preventing PU/Is involve intermittent assessments
by hospital and long-term care facility staff using the highly
subjective Braden scale, and repeated manual repositioning
of the patient; these tactics have low compliance because
of their time- and labor-intensive nature. In one study, 54%
of patients undergoing “standard care” are adequately turned
to clinical standard, only 39% of turns reach the minimum
angle threshold, and 38% of patients remain in the turned
position for more than 15 minutes [4]. Even ”standard turning
by experienced ICU nurses does not reliably unload all areas
of high skin-bed interface pressures” as found by one study,
due to the presence of ”triple-jeopardy areas [that] remain at
risk for skin breakdown and help to explain why PU/Is occur
despite the implementation of standard preventive measures”
[5].

Competitor technological solutions that attempt to address
PU/Is include handheld skin scanners designed to identify ar-
eas at risk of pressure injury formation (which take additional
time from an already busy nurse’s schedule), devices to detect
compliance with patient turning (which do not detect triple-
jeopardy areas), pressure sensing mats (which cannot measure
accumulation of skin pressure since they are placed on the bed,
rather than the patient), and air-fluidized mattresses (which
are noisy and prohibitively expensive). Most commonly, self-
adherent soft foam dressings are used on the skin to distribute
pressure to attempt to prevent pressure injury formation.

In this paper, we describe a system that addresses PU/Is
without succumbing to the pitfalls mentioned above. The
system integrates: (A) a prototype ”smart wound dressing”
capable of detecting of changes in interface pressure and
patient angle over time, including during routine patient repo-
sitioning maneuvers; and (B) an open software infrastructure
that collects pressure-over-time data, stores, analyzes, and
displays them to clinicians and care givers in real time. As an
inexpensive device that passively collects data (rather than re-



quire active interaction from nurses), and a form factor already
used (wound dressing), this system can be smoothly integrated
into nurses’ workflow. This system, critically, can measure
both accumulation of pressure directly on the patient’s skin,
as well as real-time pressure points (such as triple-jeopardy-
points). We present preliminary results obtained using our
early prototype which uses machine learning algorithms to
infer a patient’s current position based on data from the
pressure sensor. We also discuss our future work plans to
upgrade the system to provide an automated, comprehensive,
individualized patient repositioning guidance for both nurses
as well as non-trained care givers.

II. PROPOSED SYSTEM

This section presents our patient-centric repositioning guid-
ance platform for PU/I prevention and its two functional
components, A) the pressure sensing dressing and B) the
patient monitoring IoT software infrastructure.

A. Pressure Sensor

1) System description and readout electronics: The sensing
patch is comprised of an electronics engine and an array of
48 force sensing resistors (FSR). The electronics is composed
of an operational amplifier (in non-inverting configuration)
and two multiplexers (MUX) for scanning 48 FSRs and an
acceleration sensor. The electronics core is controlled by
an embedded Bluetooth-enabled microcontroller (nRF52832),
which algorithmically reads each individual sensor and con-
verts the raw value to a corresponding force measurement,
which is stored in a temporary register. The data transmission
between the patch and mobile/PC device is handled via BLE
communication. The system function block diagram is shown
in Fig. 1.

2) Patch Integration: Creation of the large area conformal
patch through conventional flexible electronics manufacturing
methods is challenging and uneconomical. To overcome this
issue, instead of conventional PCB fabrication process, the
patch was realized using printed electronics technology. The
patch layout was processed with roll-to-roll screen printing
line. EMS CI-1036 was the conductive ink used. The FSRs
were electrically bonded to the layout using anisotropic con-
ductive adhesive (ACA) film (3M 9703). A printing speed of
2 m/min and a drying temperature of 120°C were used. After
assembly of the FSRs on the printed layout, the patch was
converted using skin friendly tapes and films on both sides.
On the top side, the printed tracks and FSRs were covered by
a 100 um TPU film, and on the bottom side, the patch was
covered using a non-woven medical tape. The stack structure
diagram and the fully assembled patch are shown in Fig. 2
and Fig. 3 respectively.

3) FSR Benchtop Characterization: Several commercial
FSRs were screened to select the most optimal pressure
sensing element for the patch. The main selection criteria were
resistance drift (over time), accuracy and repeatability of the
sensors. A set of benchtop tests was conducted to extract force-
resistance curves of the sensors. The characterization tests

Fig. 1. Hardware system function block diagram.

Fig. 2. Stack structure diagram.

were performed using precision reference weights (0.5-1 kg)
as well as strain tester device. The sensors were sandwiched
between two layers of a Mepilex Border Sacrum (Molnlycke,
Sweden) wound dressing to simulate the real-life application.
The characterization data suggested Ohmite FSR06 as the
optimal sensor. The sensor’s thickness is 0.375 mm with an
active area of 14.70 mm which can detect force within the
range of 1.5-50 N.

B. Patient Monitoring IoT Software Infrastructure

The data collected from the pressure sensing dressings
feeds into a novel IoT patient monitoring software platform
described in more detail in [6]. Our patient monitoring soft-
ware system integrates and automates the basic components of
the patient monitoring workflow, namely: (1) data collection
from off-the-shelf and custom sensors; (2) data storage and
(3) data analytics to, respectively, store and process sensor
data streams and patient-specific health information; and (4)
real-time data visualization mechanisms that can display to
clinicians and care givers relevant information in real time.
The system includes four main software components, namely:
Sense, Store, Analyze, and Visualize, as illustrated in Fig. 4.

Fig. 3. Fully assembled patch.



Fig. 4. Software components of the IoT patient monitoring system.

Through its ability to collect, analyze, and visualize patient-
generated data, the software monitoring system aims to guide
repositioning protocols objectively and effectively. It can also
continuously assess and display a patient’s risk of developing
PU/Is in real-time and alert healthcare staff when patients need
to be repositioned. In addition, the system’s design allows
for deployment in various settings and configurations e.g.,
local, edge, and cloud-based setups that can support hospital,
long-term, and home care applications. For this study, the
system was tailored to incorporate pressure and accelerometer
data gathered from the pressure sensing dressings in order to
better understand patient positioning and eventually be used
to monitor patient turning effectiveness.

III. EXPERIMENTAL METHODOLOGY

A. Volunteer Study Design

We performed a preliminary observational, descriptive,
healthy-volunteer study with 5 volunteers at a tertiary care,
university-affiliated hospital. After obtaining Institutional Re-
view Board (IRB) approval, adult volunteer subjects were
recruited with informed consent. An experienced ICU nurse
and nurse educator performed all turning procedures following
standard-of-care protocol.

B. Study Protocol

All volunteers donned gowns used by patients at the hos-
pital. The lower back and sacral area of each volunteer was
padded with 3 adjacent Mepilex silicone-adherent foam dress-
ings. On top of this layer, the pressure sensor was attached
using medical adhesive tape, with the printed circuit board
(PCB) containing the accelerometer and Bluetooth transmitter
consistently attached to the left hip of each volunteer.

Each volunteer was placed supine on a Hill-Rom ICU bed
with head of bed at 0 degrees, and with a pillow placed under
the head and each arm, as standard-of-care for ICU patients.
At the beginning of data collection, the volunteer remained
supine for 2 minutes. After 2 minutes had passed, the ICU
nurse and an assistant turned the volunteer using the standard
ICU protocol of tilting the volunteer to the left and wedging
pillows under the right side of the volunteer. This left position
was maintained for 2 minutes. After 2 minutes had passed,
the volunteer then turned to the right side using the same ICU
turning technique. Lastly, the volunteer was returned to the
supine position. The head of bed was then raised to 30 degrees,

and the supine, left, and right repositioning cycle was repeated
for 2 minutes in each position. Pressure and accelerometer
data were continuously collected from placement of the patch
through removal of the patch.

C. Data Analysis Methodology

The data gathered from the experiments described above
were analyzed with the goal of identifying patient position,
again in the three discrete categories, namely supine, left
lateral decubitus, and right lateral decubitus. This preliminary
analysis was done using a simple logistic regression model
trained on the volunteer data.

To prevent biased results, model training and evaluation was
performed the same number of times as there are volunteers,
i.e., for each iteration, a volunteer was selected as the “valida-
tion” volunteer and their data were excluded from the training
data set. Furthermore, all remaining volunteers had 20% of
their samples, selected at random, excluded as “test” data. The
remaining data, the “train” data, were used to train the model
The performance was then evaluated on all sets of data. The
“test” and “train” datasets allow us to see whether the model
can fit the data and whether it is over-training to the noise in
the data. “Validation” data allows us to infer how the model
would perform in the field, i.e., for patients whose data had
never been seen by the model. This is important since it will
determine whether the model can be generalized for practical
use.

The training data were transformed into several features
before being used for training purposes. As we used a logistic
regression model [7], the choice of features was critical for
expressing nonlinear relationships between the data and the
result. It also served the dual purpose of combating over-fitting
of the model to noise patterns present in each patient’s data. As
the ratio of volume of data to number of volunteers was quite
high, with just raw training data or poorly chosen features
over-fitting quickly impacts performance of the validation
step. Some choices of features for the pressure data include
Objective Mobility [8] and normalized mean pressure along a
three-way horizontal split of the bandage. For the acceleration
data, feature selection was not needed as the data were much
more condensed already (three x,y,z acceleration values versus
48 pressure values). We also added a metadata feature which
provided the patients height and weight, something which
would be readily available in clinical use.

While the training data was labeled during the experiments,
it contained a significant amount of noise around transition
points when the patient was turned. To this end, we explored
the unsupervised “cleaning” of the training data to remove
extraneous samples. We used an approach based on Isolation
Forest model [7] for data cleaning. To prevent bias, no data
cleaning was done to “test” or “validation” data in each
iteration, only to “train” data.

IV. PRELIMINARY RESULTS AND ANALYSIS

To evaluate the choice of hyper-parameters for a model,
such as choice of training features and whether to clean train-



ing data, we considered the mean of all “validation” accuracies
for that model. We believe that this is the most adequate metric
representing the model’s expected performance in clinical use.
We performed a grid search over all combinations of hyper-
parameters, and we were able to achieve mean validation
accuracies of 55% and test and train accuracies of 95%-99%
(though test and train accuracies are not necessarily indicative
of performance in real world settings) using raw acceleration
and patient metadata. Validation accuracy of 53% was attained
using raw acceleration data, patient metadata, and pressure
data after data cleaning. While it may be surprising that the
addition of pressure data reduced accuracy, we believe this is
merely due to limited training data availability and the model
overfitting to the pressure data as a result. We expect that,
as we acquire additional training data from different subjects,
the model will be able to detect patterns in the pressure data
that will enable more accurate predictions. More importantly,
this indicates that even with minimal data we are still able to
make somewhat accurate patient position predictions. The data
cleaning pre-processing step produced noticeable accuracy
improvements for certain feature choices, further indicating
that more data is required to generalize the model and produce
higher accuracy predictions.

V. CONCLUSION AND FUTURE DIRECTION

The significant human and financial costs associated with
pressure ulcers and the current inefficiencies and hurdles in
implementing successful prevention tactics make this area an
ideal target for improvement using pervasive computing and
IoT principles. In this paper, we introduce a holistic, end-to-
end IoT system that uses pressure sensor and accelerometer
enhanced wound dressings to objectively evaluate the efficacy
of repositioning efforts in redistributing pressure. This has the
potential to greatly improve clinical outcomes in pressure ulcer
care and prevention. The novel IoT-based approach to patient
monitoring demonstrated in this paper integrates (A) off-the-
shelf sensors consolidated into a form factor adequate for
clinical use with (B) a software platform that continuously and
autonomously collects, stores, analyzes, and displays sensor
data in real time can be easily incorporated into the clinical
workflow without causing risk to the patient or increasing
the burden on the clinician. We demonstrate how printed
electronics can be used to create a wearable patch that can
easily be attached to existing clinical wound dressings. The
patch is able to measure pressure and accelerometer data
across five volunteers in a clinical setting, providing real-time
continuous data. This data was collected by our patient mon-
itoring software, stored, and analyzed. We have demonstrated
that even with a small sample size, a simple model can be
generated to predict a patient’s position using pressure and
accelerometer data. We anticipate that the accuracy of this
model will increase as more volunteer data are collected.

In the future, this real-time data can not only be used
to further train the model, but also to provide clinicians
valuable visualization of the patient’s pressure profiles and
to better guide repositioning efforts in ensuring pressure is

adequately relieved. As more data are collected, we expect
the posture detection model to more accurately characterize
an unknown patient’s position. While the initial goal of this
model is to help clinicians determine whether a patient has
been turned according to the clinical standard of 30 degrees
for an adequate duration, data collected from the pressure
sensors on volunteers undergoing “perfect” turns by a trained
ICU nurse can be used to train a model for “ideal patient
turning.” We intend to generate a large data set of pressure
profiles collected from volunteers undergoing these “ideal”
turns to characterize whether an unknown patient undergoing
repositioning fits within the parameters of these “ideal” turns,
or if the repositioning effort needs to be modified.

Ultimately, we envision a system that derives a pressure
injury prevention protocol unique to each patient by using
objective factors that include real-time sensor data, labs and
vitals, and the patient’s medical history. This system can
continuously monitor a patient’s risk of pressure injury within
the hospital, at long-term care facilities, and at home. This
continuous monitoring in conjunction with objective clinical
risk factors can be used to provide actionable information,
which in turn enables caregivers to intelligently and effectively
prevent pressure injuries from occurring altogether.
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