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A B S T R A C T

In this paper, we introduce a novel algorithm that uses machine learning to dynamically decide whether
to enable or disable IEEE 802.11 DCF’s RTS/CTS. Our algorithm continuously learns current networking
conditions, namely air time, i.e. the ratio between the size of data/control information being transmitted
and transmission rate, and network contention to compare the cost between using RTS/CTS or retransmitting
data, and dynamically switches RTS/CTS on and off accordingly. Simulation results using a variety of WLAN-
as well as wireless multi-hop ad-hoc network scenarios, including synthetic and real traffic traces, demonstrate
that the proposed approach consistently outperforms current best practices, such as never enabling RTS/CTS
or using a pre-specified threshold to decide whether to switch RTS/CTS on or off.
1. Introduction

IEEE 802.11’s Distributed Coordination Function (DCF) is the most
popular MAC protocol used in both wireless LANs and multihop wire-
less ad hoc networks (MANETs). It defines a basic Carrier Sense Multi-
ple Access (CSMA) channel access method which uses physical carrier
sensing and an optional link-layer acknowledgment (ACK) to confirm
correct reception of transmitted data frames. DCF also specifies an
optional mode which employs both physical- (i.e., CSMA) as well as
virtual carrier sensing, or CSMA/CA [1]. CSMA/CA was proposed as a
way to solve the so-called hidden terminal problem by allowing nodes to
reserve the channel before engaging in data communication. They do
so by exchanging short control frames, namely Request to Send (RTS)
and Clear to Send (CTS) ahead of transmitting data. RTS/CTS has been
part of the IEEE 802.11 standard since its early versions and has been
in use since then, including in more recent variants such as 802.11n
and 802.11ac [2]. Since collisions may occur only when the RTS
frame is sent, and are detected by not receiving the CTS, the RTS/CTS
handshake improves network performance by reducing the duration of
a collision when long data messages (relative to the size of the RTS/CTS
frames) are transmitted [3]. Motivated by that, IEEE 802.11 has defined
a configurable parameter named RTS Threshold (RT), or 𝑅𝑇 , which
is used to enable and disable the RTS/CTS exchange. 𝑅𝑇 stipulates
the minimum frame size that requires an RTS/CTS handshake before
transmitting the frame. However, the IEEE 802.11 standard does not
specify or recommend what 𝑅𝑇 value(s) to use.

A number of studies have explored techniques to dynamically set
𝑅𝑇 ’s value based not only on frame size but also on other charac-
teristics (e.g., transmission rate) and conditions (e.g., frame delivery
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ratio). Our work introduces a novel approach based machine learning
to dynamically switch RTS/CTS on or off ahead of data transmission.
The proposed Smart Adaptive Collision Avoidance technique, or SACA
for short, considers a combination of: (1) ‘‘air time’’, i.e. the ratio
between the size of data/control information being transmitted and
transmission rate, and (2) network contention.

This paper builds on our preliminary work reported in [4] and
makes the following additional contributions: (1) We propose a new,
more general approach to evaluate network contention which is carried
out at regular periods instead of measuring contention during the
learning period at the beginning of a time slot, which required that
RTS/CTS be switched off; (2) We use a more accurate cost model
to calculate the overhead incurred by data and RTS/CTS collisions.
These new cost functions are at the core of SACA since they determine
whether RTS/CTS should be turned on or off on a per-frame basis; (3)
We present new simulation results using the revised network contention
measurement approach as well as the new cost functions to assess data
and RTS/CTS collision overhead; (4) In addition to evaluating SACA in
infrastructure-based scenarios, we also conducted simulations to assess
SACA’s performance in multihop wireless ad-hoc networks (MANETs).

The remainder of this paper is organized as follows. Section 2
provides a brief overview of IEEE 802.11 DCF and discusses RTS/CTS’
performance characterization and trade offs. SACA, our network-aware,
adaptive collision avoidance approach to dynamically enable or disable
RTS/CTS is described in Section 3. Section 4 describes our performance
evaluation methodology and Section 5 shows how SACA performs
under different network scenarios when compared to IEEE 802.11. We
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discuss related work in Section 6. Finally, Section 7 concludes the paper
ith directions for future work.

. IEEE 802.11 RTS/CTS handshake

IEEE 802.11 DCF provides two modes of operation, namely the base
ode and the collision avoidance mode. In DCF’s base mode, CSMA [5]

s used by stations that have data to send to check whether the shared
edium is being used. When a station wants to transmit a data frame, it

irst senses the channel to check whether it is idle for a DCF Inter-frame
pace (DIFS) interval. If the channel is sensed idle, the station transmits
he data. Otherwise, it defers transmission using a random backoff
imer. After transmitting data, the station waits for an acknowledge-
ent (ACK). If the ACK is received, the station considers that the data

rame was successfully delivered. Otherwise, it will assume a collision
ccurred and runs a slotted Binary Exponential Backoff (BEB) scheme
o retransmit the frame at a later time.

In collision avoidance mode, stations use CSMA/CA [1], which re-
uires a station that has data to send, still performs carrier sensing to
heck if the channel is busy; and if the channel is idle, the station will
hen reserve it for its own transmission via a two-way handshake using
mall control frames, namely the Request to Send (RTS) and Clear To
end (CTS).

TS/CTS benefits

The main goal of the RTS/CTS handshake is to combat the hidden
ode problem. While the RTS and the CTS frames are themselves still
ubject to collisions, the overhead incurred by an RTS or CTS collision is
sually much lower than a data retransmission, especially for very long
ata frames, which has become a common trend in recent applications.

TS/CTS’s downsides

Although the RTS/CTS mechanism can mitigate collisions caused by
idden terminals, it also presents some drawbacks as described below.

verhead. The RTS/CTS handshake incurs additional overhead by gen-
rating control traffic (i.e., RTS and CTS frames) as well as delaying
ata transmission. In the case of short data frames, the additional delay
eeded to perform the RTS/CTS exchange may not be worthwhile as the
ost of a data frame and a RTS/CTS collision would be comparable.
hat was the motivation behind the RTS Threshold or 𝑅𝑇 , proposed
y the IEEE 802.11 standard and commonly used in IEEE 802.11
mplementations. 𝑅𝑇 specifies the minimum data frame size that will
rigger the RTS/CTS handshake to reserve the channel ahead of a data
rame transmission. If data frames are larger than 𝑅𝑇 , RTS/CTS is
nvoked for that specific frame. Otherwise, DCF’s base mode is used.

locking non-interfering parallel transmission and False Blocking. RTS/
TS may block concurrent transmissions from other nodes that would
ot result in collisions. The RTS may block nodes within the sender’s
ransmission range from transmitting even if their transmission would
ot interfere with the RTS sender’s transmission. Similarly, the CTS may
lock nodes that receive it from receiving from other nodes.

TS/CTS collisions. In crowded areas, where hidden terminals are
revalent, the RTS/CTS handshake is less effective as a collision avoid-
nce technique [6]. This is because RTS and CTS frames are themselves
ubject to collision in the same way as data frames. When the traffic
oad is heavy and the number of hidden terminals is high, the chance
f unsuccessful RTS/CTS handshake increases due to higher channel
ontention and thus higher collision probability. Besides the delay and
verhead incurred by the retransmission of the RTS, the channel would
e unusable for nodes who overhear the RTS and CTS for the time
pecified in the NAV.
2

haracterizing RTS/CTS’s performance

In our previous work [4], we conducted an empirical characteri-
ation of RTS/CTS performance as a function of a number of factors
ncluding frame size, transmission rate (for both data and control
rames), and network contention. We confirmed experimentally some
nalytical well-known results on the performance of RTS/CTS and
howed that network contention, as well as frame size, and transmission
ate must be collectively considered in order to decide whether to
nable or disable 802.11’s RTS/CTS mechanism. In the remainder of
his section, we discuss each of these factors briefly.

ir time. The IEEE 802.11 standard suggests that the RTS/CTS access
ode should be chosen based on the size of the data frame since the

hance of a collision is higher for larger data frames. Additionally, the
ize of data frames should be large enough compared to the RTS/CTS
rame size so that the overhead of transmitting RTS/CTS would be
egligible.

Besides the size of the frame, the amount of time the channel is busy
ransmitting a frame, or the air time, is also dependent on the channel’s
ransmission rate. The air time is thus given by Eq. (1) below.

𝑖𝑟 𝑡𝑖𝑚𝑒 =
𝑑𝑎𝑡𝑎∕𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒
𝑑𝑎𝑡𝑎∕𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒

(1)

A notable practical factor in the performance of RTS/CTS, which is
frequently neglected, is that, in multi-rate WLANs, control frames such
as ACK, RTS, and CTS are transmitted at a fixed basic rate regardless
of the data rate. One of the main reasons is to enable interoperability
and to accommodate legacy devices, since all devices in the network
must be able to receive these frames. Consequently, control frame rate
is another factor when studying RTS/CTS performance trade-offs.

Network contention. Network contention is another key factor to con-
sider when deciding whether to use RTS/CTS. If collisions are not
likely to occur (e.g., in low network load scenarios), there is no need
to use RTS/CTS and incur additional overhead. There are mainly two
situations that cause collisions: If two or more stations transmit at the
same time (e.g., as a result of back off synchronization) or because of
the existence of hidden terminals.

3. Adaptive collision avoidance

In this section, we describe our Smart Adaptive Collision Avoidance
mechanism, or SACA for short, a simple yet efficient technique to
dynamically enable or disable IEEE 802.11’s collision avoidance in
order to automatically adapt to a number of factors such as frame size,
transmission rate (for both data and control frames), and network con-
tention. The main idea behind SACA is to evaluate the cost-performance
trade-off of using RTS/CTS to avoid data collisions. If RTS/CTS is
deemed beneficial, i.e., it avoids collisions or reduces collision duration
when the cost of a data collision is higher than the cost of the RTS/CTS
exchange, then RTS/CTS is enabled; otherwise it is disabled. We discuss
how these costs are defined and calculated in Section 3.2.

Algorithm 1 SACA
Collision estimation timeout:

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛();
Frame transmission:

If (𝐷𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡() ≥ 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡())
then 𝑒𝑛𝑎𝑏𝑙𝑒 𝑅𝑇𝑆∕𝐶𝑇𝑆
else 𝑑𝑖𝑠𝑎𝑏𝑙𝑒 𝑅𝑇𝑆∕𝐶𝑇𝑆

SACA is event-driven and handles two different events, namely: (1)
collision estimation timeout and (2) frame transmission. As illustrated by
SACA’s pseudocode which is shown in Algorithm 1, when the collision
estimation timer expires, a collision estimation timeout event is triggered.
The 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛() procedure is then invoked to measure the
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current collision rate and to compute an estimate of the collision rate
for future use (described in Section 3.1).

When a data frame is ready to be transmitted, a frame transmission
event is triggered and the cost of using and not using RTS/CTS is cal-
culated by 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡() and 𝐷𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡() (described
in Section 3.2), respectively. Based on how the cost of a data collision
compares to the cost of the RTS/CTS exchange, a decision is made
to enable or disable RTS/CTS. In the remainder of this section, we
present SACA in more detail. We describe how SACA measures net-
work contention, then, and how it uses its current network contention
measurements to enable/disable RTS/CTS. Finally, we discuss SACA’s
implementation and overhead.

3.1. Adapting to network contention

As discussed in detail later in this section, network contention can
be measured in a variety of ways. In this paper, we use the collision
probability or collision rate as an indicator of network contention. Each
ode calculates its collision rate locally which captures the overall
ontention in the node’s neighborhood. We measure it by dividing the
umber of failed transmissions, i.e., the number of unacknowledged
rames at the transmitter by the total number of transmissions as shown
n Eq. (2). Other ways to evaluate network contention in a node’s neigh-
orhood include the node’s MAC queue length, mean time to access the
edium, etc. In this work, because we are using a network simulator,
ore specifically ns-3 [7], we use the expression in Eq. (2) because

oth its nominator (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) and denominator
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚 − 𝑖𝑠𝑠𝑖𝑜𝑛𝑠) are readily available in ns-3 and

provide fairly accurate collision measurement since losses that are not
due to collisions are quite rare in the experimental scenarios we use.
As we discuss in Section 3.3, this information is also readily available
in real systems.

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

(2)

In order to continuously adapt to current network contention con-
itions, SACA measures collisions regularly. The frequency at which
etwork contention is measured is one of SACA’s parameters and
eciding how often to measure collisions is discussed in . Network
ontention estimation is accomplished by the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛()
rocedure, which is invoked periodically triggered by the collision
stimation timeout event. 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(), whose pseudo-code
s shown in Algorithm 2, measures current data- and RTS/CTS collision
ates. Based on current collision measurements, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛()
lso estimates near-future collision rates using the SENSE estimator [8]
escribed in Section 3.1 below.

Algorithm 2 Collision_Estimation
Initialization:

𝐷𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 0
𝑅𝑇𝑆∕𝐶𝑇𝑆 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 0
𝐷𝑎𝑡𝑎_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0
𝑅𝑇𝑆_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 0

Collision rate measurement:
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐷𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑅𝑇𝑆∕𝐶𝑇𝑆 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

Collision rate estimation:
𝑆𝐸𝑁𝑆𝐸 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝐷𝑎𝑡𝑎_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
𝑆𝐸𝑁𝑆𝐸 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

Collision rate estimation
Data and RTS/CTS frame sizes,1 as well as data and signaling trans-

mission rates are known at frame transmission time, which are used

1 IEEE 802.11 RTS/CTS frame sizes are 34 bytes.
3

to calculate the air time for both data and RTS/CTS. However, current
network contention conditions must be estimated on an ongoing basis.
As previously discussed, in SACA, collision is continuously measured at
fixed intervals and fed to the SENSE estimator [8] to estimate ‘‘near-
future’’ contention based on previous collision history. SENSE uses a
simple, yet effective, algorithm combining a machine learning approach
known as Fixed-Share with Exponentially Weighted Moving Average
(EWMA). SENSE is briefly described in the remaining of this section.

EWMA based predictors, calculate an exponentially weighted mean
of the data [9]. Eq. (3) shows the EWMA equation where 𝑥𝑡 is the
estimated data and 𝑦𝑡 is the data point that has been observed. 𝛼,
the ‘‘smoothing factor’’, is set between 0 and 1 and controls how
much weight is given to previous estimates (i.e., the ‘‘past’’) versus
new samples (the ‘‘present’’). The challenge raised by EWMA-based
predictors is to find the appropriate value of 𝛼 to use. Low values of
𝛼, favor the ‘‘past’’ over the ‘‘present’’, while with high 𝛼 values, the
‘‘present’’ plays a more important role. Therefore, a-priori knowledge
of the data’s behavior is needed in order to choose an appropriate 𝛼.

𝑥𝑡 = 𝛼 × 𝑦𝑡 + (1 − 𝛼) × 𝑥𝑡−1 (3)

Fixed-Share algorithms [10] are a member of the Multiplicative
Weight algorithmic family. In this family of algorithms, 𝑁 experts are
initialized with values within a target estimation range based on what
they are trying to predict. For example, if the prediction is a value
between 0 and 9, 10 experts can be used and initialized with values 0, 1,
2, . . . , 9. Then, experts are assigned weights which are used to combine
experts’ values to compute the overall prediction. Every iteration of
the algorithm, expert weights are adjusted based on a loss function,
which measures the accuracy of the current prediction compared to
the actual measurement of the variable being estimated. The impact
of each expert on the overall prediction is determined by a weight
associated with each expert. The weight of each expert is updated at
the end of each trial based on the difference between its prediction and
the real data. Although the Fixed-Share algorithm has been shown to
perform well [11], it has some drawbacks. First, a fixed value within
the range of possible values of the data is given to each expert as its
prediction. As such, the data range should be known before using these
predictors. Second, Fixed-Share cannot adjust to abrupt changes in data
fast enough because it takes a long time for the weight of an expert
to either shoot up or down when the expert’s performance suddenly
changes following an abrupt change in the data. Third, the accuracy
of the algorithm is sensitive to the number of experts. More experts
can cover more data from the data set. However, it may also introduce
additional error.

SENSE is a variant of the Fixed-Share algorithm, where, instead of
fixed-value experts, EWMA filters are employed as experts. Algorithm 3
shows SENSE’s pseudo-code and Table 1 summarizes the notation used
in Algorithm 3. During the Initialization phase, each expert is given a
weight, 𝑤𝑖,1 = 1∕𝑁 , where 𝑁 is the total number of experts. Each expert
is also assigned an 𝛼 value between 0 and 1. As shown in Algorithm
3, in the EWMA Experts step each experts’ prediction is calculated as
a weighted sum of the current data (𝑦𝑡) and the previous prediction
𝑥𝑖,𝑡−1. In the Prediction step, SENSE calculates the current prediction
by adding the weighted predictions from 𝑁 experts. The Loss Function
step calculates the absolute difference between the actual data and each
expert’s forecast and normalizes this error with the maximum outcome
𝑦𝑚𝑎𝑥. The loss function is set to either the normalized error or the NULL
function based on the normalized error. The META Learning step sets
𝜂, the ‘‘learning rate’’ which helps to adjust the experts’ weights based
on their recent performance. The less precise an expert’s prediction, the
more severe that expert is penalized. Finally, the Restart Learning step
checks for significant changes in the mean of the observed data (level
shift) and, if so, restarts its experts by only considering data after the

level shift and resetting 𝜂 of each expert.
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Algorithm 3 SENSE
Initialization:
𝑤1,1=...=𝑤𝑁,1=

1
𝑁

EWMA Experts:
𝑥𝑖,𝑡 = 𝛼𝑖 × 𝑦𝑡 + (1 − 𝛼𝑖) × 𝑥𝑖,𝑡−1
Prediction:
�̂�𝑖,𝑡=

∑𝑁
1 𝑤𝑖,𝑡×𝑥𝑖,𝑡
∑𝑁

1 𝑤𝑖,𝑡
Loss Function:
𝑁𝐸𝑖,𝑡=

|𝑥𝑖,𝑡−𝑦𝑡|
𝑦𝑚𝑎𝑥

𝐿(𝑥𝑖, 𝑡)𝑖,𝑡 =

{

𝑁𝑈𝐿𝐿 ,𝑁𝐸𝑖,𝑡 ≤ 𝐸𝐿
𝑁𝐸𝑖,𝑡 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

META Learning:

𝜂𝑖,𝑡 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑚𝑖𝑛(𝜂𝑚𝑎𝑥, (𝜂𝑖,𝑡−1 × 𝛽))
, 𝑁𝐸𝑖,𝑡 > 𝑁𝐸𝑖,𝑡−(𝑗−1) > 𝑁𝐸𝑖,𝑡−𝑗

𝑚𝑎𝑥(𝜂𝑚𝑖𝑛, (
𝜂𝑖,𝑡−1
𝛽 ))

, 𝑁𝐸𝑖,𝑡 < 𝑁𝐸𝑖,𝑡−(𝑗−1) < 𝑁𝐸𝑖,𝑡−𝑗

𝜂𝑖,𝑡−1
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Weight Update:
𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡 × 𝑒−𝜂𝑖,𝑡×𝐿(𝑥𝑖 ,𝑡)𝑖,𝑡
Restart Learning:
If Level Shift is detected then,
𝑤𝑖,𝑡 = 𝑤𝑖,𝑡 × 𝑒

∑𝑡=−𝑇
𝑡=−2𝑇 𝜂𝑖,𝑡×𝐿(𝑥𝑖 ,𝑡)𝑖,𝑡

Table 1
SENSE’s parameters.

Parameter Description

𝑥𝑖,𝑡 Prediction of expert 𝑖 at time 𝑡
𝑦𝑡 Observed data at time 𝑡
�̂�𝑡 SENSE’s prediction for time 𝑡
𝑤𝑖,𝑡 Weight of expert 𝑖 at time 𝑡
𝑁𝐸𝑖 Normalized error of expert 𝑖
𝑁 Total number of experts
𝐿(𝑥𝑖 , 𝑡)𝑖,𝑡 Loss of expert i at time 𝑡
𝑦𝑚𝑎𝑥 Maximum data observed so far
𝜂𝑖,𝑡 Expert 𝑖’s penalty at time 𝑡
𝛽 Determines how much 𝜂𝑖 should be increased or decreased
𝐸𝐿 Error limit (based on user’s desired accuracy)
𝜂𝑚𝑖𝑛 , 𝜂𝑚𝑎𝑥 Limit experts’ weight
𝑗 Time window to evaluate expert’s performance (used to update 𝜂𝑖,𝑡)

Measuring network contention
The question of how to measure network contention is central to

our approach. While we chose to use collision probability, or collision
rate, as an indicator of network contention, there have been a number
of proposals to estimate network contention, such as number of hid-
den terminals [12], mean medium access delay [13], frame delivery
ratio [14], number of RTSs waiting for a CTS [15], to name a few. As
part of our future work, we plan to evaluate how different approaches
to measuring network contention impact the performance of SACA.

Another question that needs to be addressed is how often collision
should be measured. We discuss some alternatives and their pros and
cons below.

In SACA’s preliminary version [4], time is divided into slots and dur-
ing a learning period at the beginning of each slot, RTS/CTS is disabled
and collision rate when data is transmitted is measured. Based on these
measurements, SENSE estimates the data collision rate for the remain-
der of the slot. The advantage of using the learning period to measure
collision rate is that, overall, it incurs less overhead. However, since col-
lision rate is calculated only during learning periods, information about
network contention may be out of date by the time the collision rate is
used to decide whether to switch RTS/CTS on/off. Another problem is
4

that, if contention is high, turning off RTS/CTS during the learning pe-
riod may result in degraded performance. Additionally, sudden changes
in network contention during the time slot will not be captured until the
next learning period. Considering all the pros and cons discussed above,
in SACA’s current version, which is described in this paper, we decided
not to include a learning period and measure the contention every 𝑡
econds. To validate SACA’s new contention measurement approach,
e ran simulation experiments comparing it against the approach used

n [4] and confirmed its superior performance.
There is a clear trade-off in setting the value of 𝑡. Using a smaller

may allow SACA to better capture variations in contention condi-
ions; however, it will incur higher overhead by invoking 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_
𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛() more often. Another drawback of setting 𝑡 too small is to

apture short-lived variations in contention conditions. On the other
and, setting 𝑡 too large results in less computation at the expense
f running the risk of not adequately capturing network contention
ynamics. But 𝑡 also needs to be set large enough such that sufficient
rame transmissions can be observed. Therefore, setting the value of 𝑡
hould also consider the underlying link speed and frame size. In order
o set the value of 𝑡 for our experimental evaluation of SACA, we ran
everal preliminary simulations with different values of 𝑡, namely 0.5,
, 2, and 3 s and did not notice any significant differences in the results
btained. In the results reported in Section 5, we use 𝑡 equal to 1 s.

.2. RTS/CTS on–off

As shown in Algorithm 1, when a frame is ready for transmis-
ion, based on the collision estimation from 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛() and
he information from the frame itself, i.e., frame size and transmis-
ion rate which is used to calculate the frame’s air time, the cost of
etransmitting data and the cost of the RTS/CTS handshake are cal-
ulated by 𝐷𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡() and 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡(), respec-
ively. RTS/CTS is enabled (by setting 𝑅𝑇 = 0) for that specific frame
f the data retransmission cost is higher or equal to the RTS/CTS
andshake cost; otherwise RTS/CTS is disabled (by setting 𝑅𝑇 to a large
alue). 𝐷𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡() and 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡() are described
n Section 3.2 below.

ata collision versus RTS/CTS handshake
In an ideal scenario when there is no contention, a node can

void RTS/CTS handshake since there is no risk of collisions. But in
ongested environments, packets transmitted by different nodes which
tart to transmit at the same time may collide. Also, frames transmitted
y hidden terminals may collide at the receiver even if the sender’s
ransmission does not start exactly at the same time. In these situations,

node can decide to use RTS/CTS to reserve the channel and avoid
ata frame collisions. However, performing the RTS/CTS handshake
head of data transmission will incur additional overhead. In order
o determine if enabling RTS/CTS is beneficial, SACA compares the
ost of the RTS/CTS exchange (calculated by 𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡()) against
he cost of data retransmission in case of collision (computed by
𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡()). Basically, for every data frame transmis-

ion, the sender calculates the cost of retransmitting the frame in case
f collision and compares it against the RTS/CTS overhead. The idea is
o make this decision based on current network conditions as well as
rame size and transmission rate.

ost of data frame collision. The cost of a data frame collision, i.e., the
ost to retransmit a frame until successfully received is calculated as:

𝑎𝑡𝑎 𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑜𝑓 𝑜𝑛𝑒 𝑓𝑟𝑎𝑚𝑒 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ×

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (4)

To calculate the overhead of data frame retransmission, we consider
EEE 802.11’s base mode which uses only CSMA (no RTS/CTS). As
llustrated in Fig. 1, which shows the transmission sequence of base
ode according to the IEEE 802.11 standard, either the data frame
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will be transmitted successfully and will not incur any retransmission
overhead, or the frame will collide which will require retransmission.
Fig. 1 illustrates a scenario with two hidden terminals, 𝑆𝑒𝑛𝑑𝑒𝑟1 and
𝑒𝑛𝑑𝑒𝑟2, in which Sender 1’s first transmission to 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 is successful,
ut the second one collides with 𝑆𝑒𝑛𝑑𝑒𝑟2’s transmission.2 When a col-
ision happens, the total amount of time spent retransmitting the frame
ncludes: the 𝐷𝐼𝐹𝑆, the average backoff time (𝐵𝑂), the data frame

retransmission time (i.e., the data frame’s air time) (𝐷𝑎𝑡𝑎), plus the ACK
timeout which is 𝑆𝐼𝐹𝑆 plus 𝐴𝐶𝐾 time. Therefore, the overhead of one
rame retransmission is:

𝐼𝐹𝑆 + 𝐵𝑂 +𝐷𝑎𝑡𝑎 + 𝑆𝐼𝐹𝑆 + 𝐴𝐶𝐾 (5)

here the backoff time (𝐵𝑂) is calculated by:
𝑖𝑛𝑓
∑

𝑘=0
(1∕2) ∗ 𝑚𝑖𝑛((2𝑘 ∗ (𝐶𝑊𝑚𝑖𝑛 + 1) − 1, 𝐶𝑊𝑚𝑎𝑥) ∗ 𝑃𝑑𝑐𝑘 ∗ (1 − 𝑃𝑑𝑐)) (6)

Note that in IEEE 802.11, 𝐶𝑊𝑚𝑖𝑛 is typically set to 2𝑎−1, 𝑎 = 2, 3, 4.
s a result, the term 2𝑘 ∗ (𝐶𝑊𝑚𝑖𝑛 + 1) − 1 becomes 2(𝑘+𝑎) − 1.

Meanwhile, the average number of retransmissions is calculated by:

𝑖𝑛𝑓
∑

𝑘=0
𝑘 ∗ (𝑃𝐷𝐶 )𝑘 ∗ (1 − 𝑃𝐷𝐶 ) = 𝑃𝐷𝐶∕(1 − 𝑃𝐷𝐶 ) (7)

here 𝑃𝐷𝐶 is the probability of data packet collision.
From Eqs. (4), (5), and (7), we derive Eq. (8):

𝐷𝑎𝑡𝑎_𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝐶𝑜𝑠𝑡() =

(𝐷𝐼𝐹𝑆 + 𝐵𝑂 +𝐷𝑎𝑡𝑎 + 𝑆𝐼𝐹𝑆 + 𝐴𝑐𝑘) × (
𝑃𝐷𝐶

1 − 𝑃𝐷𝐶
)

(8)

ost of RTS/CTS handshake. To calculate the RTS/CTS overhead, we
onsider IEEE 802.11’s operation in congestion avoidance mode as
llustrated in Fig. 2, which shows the transmission sequence of conges-
ion avoidance mode according to the IEEE 802.11 standard. In this
ode, either the RTS/CTS will be transmitted successfully and then
ill be followed by data and ACK frames or there is a possibility that

he RTS frame collides with a frame from another node. In this figure,
e show the case of RTS collision from two hidden nodes, 𝑆𝑒𝑛𝑑𝑒𝑟1
nd 𝑆𝑒𝑛𝑑𝑒𝑟2, but RTS collisions can also happen between two non-
idden nodes if they start transmission at the same time. When RTS and
TS frames are successfully transmitted, the overhead incurred includes
TS air time (𝑅𝑇𝑆), 𝑆𝐼𝐹𝑆, CTS air time (𝐶𝑇𝑆) and another 𝑆𝐼𝐹𝑆.
owever, when an RTS collides, the overhead includes 𝐷𝐼𝐹𝑆, 𝐵𝑂,
𝑇𝑆, and CTS timeout which is 𝑆𝐼𝐹𝑆 plus 𝐶𝑇𝑆. RTS collision cost

s much less than data frame collision cost since RTS and CTS frames
re typically much smaller than data frames. Similarly to previous work
e.g., [16]), we use the number of CTS timeouts as an indicator of the
umber of RTS collisions. We denote by 𝑃𝑅𝐶 the probability of an RTS
ollision. In the case of RTS/CTS transmission:

𝑇𝑆∕𝐶𝑇𝑆 𝐶𝑜𝑠𝑡 = 𝑅𝑇𝑆∕𝐶𝑇𝑆 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 +

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑜𝑓 𝑅𝑇𝑆∕𝐶𝑇𝑆 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ×

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑇𝑆∕𝐶𝑇𝑆 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
(9)

where the RTS/CTS successful transmission overhead is:

𝑅𝑇𝑆 + 𝐶𝑇𝑆 + 2 × 𝑆𝐼𝐹𝑆 (10)

The overhead of RTS/CTS retransmission is:

𝐷𝐼𝐹𝑆 + 𝐵𝑂 + 𝑅𝑇𝑆 + 𝑆𝐼𝐹𝑆 + 𝐶𝑇𝑆 (11)

2 Note that, as mentioned earlier, there is the possibility of collisions with
on-hidden nodes as well which is not illustrated in this figure.
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and the average number of RTS/CTS retransmissions is:
𝑖𝑛𝑓
∑

𝑘=0
𝑘 ∗ (𝑃𝑅𝐶 )𝑘 ∗ (1 − 𝑃𝑅𝐶 ) = 𝑃𝑅𝐶∕(1 − 𝑃𝑅𝐶 ) (12)

From Eqs. (10), (11) and (12), we derive Eq. (13) for the overall
TS/CTS cost:

𝑅𝑇𝑆∕𝐶𝑇𝑆_𝐶𝑜𝑠𝑡() = (𝑅𝑇𝑆 + 𝐶𝑇𝑆 + 2 × 𝑆𝐼𝐹𝑆)+

[(𝐷𝐼𝐹𝑆 + 𝐵𝑂 + 𝑅𝑇𝑆 + 𝑆𝐼𝐹𝑆 + 𝐶𝑇𝑆) × (
𝑃𝑅𝐶

1 − 𝑃𝑅𝐶
)]

(13)

.3. SACA’s implementation and overhead

As illustrated in Algorithms 1, 2, and 3, simplicity and low over-
ead were among SACA’s main design goals. Additionally, SACA was
esigned so that each node can run independently of other nodes and
nly needs information about local conditions, i.e., contention in its
eighborhood. In other words, each node evaluates network contention
t has been experiencing in recent past and, for each frame to be
ransmitted, decides to enable or disable RTS/CTS regardless of other
odes. That allows SACA to be able to coexist with legacy devices.
ACA can be implemented as a separate module that is invoked by
02.11 on a per-frame basis.

SACA uses collision probability as an indicator of network con-
ention in order to dynamically decide whether RTS/CTS should be
sed or not. To do that, each node keeps track of the total number of
uccessful- and unsuccessful transmissions (see Eq. (2)), both of which
re usually readily available in real systems, along with frame size
nd transmission rate (available from the frame’s header). We should
lso point out that there is a tradeoff between how frequent network
ontention (in our case collision probability) is measured/estimated
nd the resulting overhead. In Sections 6 and 3.1, we note that, unlike
ur prior work [4] which measures collision probability only once at
he beginning of a slot, our current approach estimates collision proba-
ility every 𝑡 seconds. Clearly, the more frequent collision probability is
easured, i.e., using lower values of 𝑡, the more up to date information

n current conditions is, but the higher the overhead. In fact, the value
f 𝑡 can be automatically adjusted depending on the dynamics of the
nderlying network/system, which is one of the future work directions
e plan to pursue.

In our prior work [17], we have implemented the Fixed-Share
lgorithm in the Linux kernel and ran ‘‘live’’ experiments in a testbed,
onfirming that SACA can be implemented and run on real devices. As
art of future work, we use our Linux implementation of Fixed-Share
o conduct SACA experiments in a real testbed.

. Experimental methodology

We evaluate SACA through extensive simulations using a variety
f infrastructure-based as well as ad-hoc network scenarios and show
hat it can automatically adjust to changes in network contention
hile accounting for airtime to decide whether to enable or disable

he RTS/CTS handshake. In this section, we describe our experimental
etup and performance metrics. Our results are presented in Section 5.

In our simulations, we used the ns-3 network simulator [7] and its
mplementation of the IEEE 802.11n. We use ns-3’s Matrix Propagation
oss Model and set the propagation loss between each pair of nodes
o make them hidden or not hidden from each other. According to
s-3’s channel model, if the propagation loss between two nodes is
reater than 200 dB, they are considered hidden from one another.
or example, if we set the propagation loss between nodes 𝐴 and 𝐵
o a very high value, then 𝐴 becomes hidden from 𝐵, and vice-versa.
or the infrastructure-based network simulations, 50 nodes were placed
andomly within the transmission range of an Access Point (AP) in a
00 × 500 m area. The ad-hoc network simulation scenarios also used
0 nodes randomly placed in a 500 × 500 m area but without any
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Fig. 1. Successful and unsuccessful data transmission in IEEE 802.11 base mode.
Fig. 2. Successful and unsuccessful data transmission in IEEE 802.11 collision avoidance mode.
Table 2
Simulation parameters.

Area 500 × 500 m2

Total number of nodes 50
Routing protocol AODV (ad-hoc simulations only)
Traffic type CBR
DIFS and SIFS 50 and 10 μs
802.11 version 802.11 n
Propagation loss model Two-ray ground

communication infrastructure (e.g., APs). As such, the ad-hoc network
scenarios used the AODV protocol [18] to perform routing and forward-
ing. We used the Two-Ray Ground channel propagation loss model in
our simulations in order to account for multipath effects in wireless
communication. Note that the effect of node location is captured by
both the channel propagation model as well as the perceived contention
in the node’s neighborhood. Table 2 lists simulation parameters and
their values used in our simulations.

4.1. Traffic traces

We use three different traffic traces to drive our simulations, namely
a synthetic data trace as well as traces collected in real networks. In the
synthetic data trace, we vary frame size and the number of senders,
and consequently collision rate, every 5 s (total simulation time is
50 s) to evaluate how closely SACA is able to track network contention
fluctuations. Table 4 summarizes the synthetic trace we use showing
the sequence of frame sizes and number of senders as they vary every
5 s. In all cases, sender- and receiver nodes are selected randomly from
the set of participating nodes.

We also drive SACA using real traffic traces captured in a public
hot spot and a company campus using a wireless sniffer. Data rates
and frame sizes provided in the Radiotap Header are used to calculate
a frame’s airtime. Table 3 summarizes the real traffic traces used in
our simulations. For the hot spot trace, we captured 10 flows3 between
users and the access point (AP) for 20 min and feed the flows to
the ns-3 simulator. In the 10-sender scenario, each of the 10 flows is
assigned to a single sender–destination pair, while in the 30- and 50-
sender scenario, each flow is assigned to 3- and 5- sender–destination
pairs, respectively. Each flow has a slightly different start time to avoid
excessive contention at the start of the simulations. For the company
campus trace, 5 individual flows were captured and each flow was
assigned to 1, 2, 6, and 10 senders in the 5-, 10-, 30-, and 50-sender
scenarios respectively. Each experiment is run 10 times using different
seeds.

3 A flow refers to traffic between the same source–destination pair.
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Table 3
Hot-spot and Company campus network traces.

Trace name Hot-spot Company campus network
Location Coffee shop Company campus
Time Around noon –
Number of flows 10 5
Duration 20 min 30 min
Frame size range 34–2150 bytes 34–11 000 bytes
802.11 version 802.11n 802.11n
Data rate range 6–300 Mbps 6–450 Mbps

4.2. Performance benchmarks and metrics

We evaluate SACA by comparing its performance against IEEE
802.11’s base mode and congestion avoidance mode with different 𝑅𝑇
values. We should point out that we use these different comparison
baselines to represent existing RTS/CTS control mechanisms, e.g., [12].
In our prior work [4], we show that network contention, as well
as frame size, and transmission rate must be collectively considered
in order to decide whether to enable or disable 802.11’s RTS/CTS
mechanism. As discussed in Section 6, SACA is the first approach that
uses a combination of air time (which is the ratio between frame size
and transmission rate) and information about local network congestion
to dynamically enable or disable the RTS/CTS handshake.

As performance metrics, we use average throughput and average
throughput improvement, which are calculated as follows. Average
throughput is the number of bits per second received at each node
(also known as ‘‘goodput’’), then averaged over all nodes; average
throughput improvement is calculated as the difference in throughput
between SACA and the other approach divided by the other approach’s
throughput. For infrastructure-based scenarios, we also examine the
contention an AP experiences when all nodes are hidden from each
other as well as when all nodes are exposed to one another.

5. Results

Results from our performance evaluation study comparing SACA
against IEEE 802.11 are presented in two parts, namely: infrastructure-
based scenario and ad-hoc scenario results.

5.1. Infrastructure-based scenarios

Average throughput
In these simulation experiments, we compare SACA’s average

throughput against IEEE 802.11’s DCF base mode (i.e., no RTS/CTS),
IEEE 802.11’s DCF congestion avoidance mode (i.e., RTS/CTS always
enabled), and when using statically configured values for the RTS

Threshold 𝑅𝑇 , namely 200-, 500-, 1000-, 1500-, and 2000 bytes. In all
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Fig. 3. Average throughput with the synthetic trace in infrastructure-based scenario. 95% confidence intervals are shown.
Table 4
SACA’s slot-by-slot behavior using the synthetic trace with different data rates in infrastructure-based scenario illustrating how one of the sending nodes dynamically switches
between Basic (B) and RTS/CTS (R/C) modes based on air time and perceived congestion.

Time (s) Frame size (bytes) Number of senders Collision 54 Mbps 24 Mbps 11 Mbps 5.5 Mbps 2 Mbps

0 to 5 1500 5 5% B B B B B
5 to 10 500 8 9% B B B B R/C
10 to 15 2000 14 26% B B R/C R/C R/C
15 to 20 200 20 38% B B B B R/C
20 to 25 1000 24 47% B R/C R/C R/C R/C
25 to 30 2000 30 59% R/C R/C R/C R/C R/C
30 to 35 500 35 66% B R/C R/C R/C R/C
35 to 40 200 38 71% B B R/C R/C R/C
40 to 45 1500 43 78% R/C R/C R/C R/C R/C
45 to 50 500 45 83% B R/C R/C R/C R/C
,
i

8
s
e

simulations (unless otherwise specified), half of the nodes are hidden
from other nodes. For example, in the 10-sender scenario, 5 senders are
hidden, i.e., they can see the AP but they cannot see any other sender.
The other senders, which are not hidden, can see the AP as well as the
other senders. Each experiment is run for 10 times using different seeds
and nodes are selected to be hidden or not hidden randomly.

Synthetic trace. To show how SACA adjusts to network dynamics,
we periodically changed the frame size and number of senders (see
Table 4). Note that by varying the number of simultaneous transmitters,
we vary network contention and consequently collision rate. In order
to observe the impact of data rates on performance, we ran this exper-
iment with data rates of 54-, 24-, 11-, 5.5-, or 2 Mbps, while signaling
transmission rate is kept at 2 Mbps.

Fig. 3 shows SACA’s average throughput compared against IEEE
802.11 DCF’s base mode (‘‘Basic’’) and IEEE 802.11’s DCF congestion
avoidance mode with different 𝑅𝑇 values. We observe that SACA
outperforms all other approaches for all data rates. As expected, for
lower data rates, ‘‘Basic’’ has the lowest performance because frame
transmission takes longer and therefore collision rate is higher. At
lower data rates, RTS/CTS enabled with lower 𝑅𝑇 values provides
better performance. As the data rate increases, performance of 𝑇ℎ = 0
(i.e., RTS/CTS enabled all the time) improves and eventually outper-
forms ‘‘Basic’’. For example, for 24 Mbps, RTS/CTS with mid-range
𝑅𝑇 values provide better performance than both ‘‘Basic’’ and RTS/CTS
with larger 𝑅𝑇 values. The reason is that throughput improves when
larger frames are ‘‘protected’’ by RTS/CTS at this data rate while,
for smaller frames, throughput is higher without RTS/CTS. Our pro-
7

posed algorithm performs consistently well because it can dynamically s
decide when to enable or disable RTS/CTS based on current condi-
tions, i.e., frame size, transmission rate, and contention. Note that the
95% confidence intervals confirm that our simulations have reached
stationary behavior.

Table 4 shows how one of the senders uses RTS/CTS during the
experiment as contention and frame size change every 5 s. These
results confirm that, in addition to frame size and network contention,
data transmission rate plays an important role in determining whether
RTS/CTS should be used or not. For example, in seconds 10 to 15,
where frames are 2000 bytes and collision rate is 26%, when data
transmission rate is 54- and 24 Mbps, RTS/CTS is disabled. However,
at 11-, 5.5-, and 2 Mbps, RTS/CTS is used. This is because, for lower
data rates, using RTS/CTS is more advantageous.

Hot-spot trace. We ran similar simulations using the hot-spot trace with
10-, 30-, and 50 senders using ns-3’s IEEE 802.11n. Since there are
10 individual flows in our trace, each flow is assigned to 1-, 3-, and
5 senders in the 10-, 30-, and 50-sender scenarios, respectively, with
each flow starting at slightly different start times. Similarly to the
synthetic trace simulations, we compare SACA’s average throughput
against IEEE 802.11’s base mode (no RTS/CTS), as well as statically
configured 𝑅𝑇 values of 0 (RTS/CTS always enabled), 200-, 500-, 1000-

1500-, and 2000 bytes. Fig. 4(a) show SACA’s average throughput in
nfrastructure-based scenario with 10-, 30-, and 50 senders.

In the 10-sender scenario, since there is less contention, using IEEE
02.11’s base mode or higher 𝑅𝑇 values is more beneficial. With 30
enders, which results in higher contention, using lower thresholds,
.g., 200- and 500 bytes, yields better performance. In the 50-sender

cenario, RTS/CTS should be used all the time because of the high
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Fig. 4. Average throughput using hot-spot and company campus network traces in infrastructure-based scenario. 95% confidence intervals are shown.
ontention. In all cases, SACA outperforms all other methods because
f its ability to automatically adjust to network contention and airtime.
ote that, while in the 10-sender experiment, ‘‘Basic’’ yields similar

hroughput when compared to SACA, in the 50-sender scenario, ‘‘Basic’’
s the worst performer. In other words, SACA outperforms the best
erformer among the static methods in all cases.

ompany campus trace. Similarly to the hot-spot trace, data rates pro-
ided in the Radiotap Header are used to calculate airtime. We ran
imulations with 10-, 30-, and 50 senders by assigning each captured
low to 2-, 6- and 10 senders, respectively. Compared to the hot-spot
race, the average frame size and data rate are considerably higher.
s shown in Fig. 4(b), SACA outperforms all other methods in all

scenarios, which is consistent with the results observed in the hot-
spot simulations. This is due to SACA’s ability to dynamically adjust
to frame size, transmission rate, and network contention. For instance,
even though contention is not high in the 10-sender scenario, since the
ratio of frame sizes to the data rates is larger on average, enabling
8

RTS/CTS yields higher average throughput when compared to Basic.
As the number of senders increases, the optimal 𝑅𝑇 value decreases.
So in the 50-sender scenario, RTS/CTS should be used all the time.

SACA’s throughput improvement
To further explore SACA’s performance, we ran simulations varying

not only the number of senders but also the percentage of hidden
terminals and measure SACA’s throughput improvement.

Synthetic trace. The set of simulation experiments driven by the syn-
thetic trace used two different data rates, lower and higher, namely,
2 Mbps and 54 Mbps. Fig. 5(a) and (b) show SACA’s throughput
improvement over IEEE 802.11 DCF’s collision avoidance mode with
RTS/CTS always on for 2- and 54 Mbps, respectively. As expected,
when the number of senders and hidden nodes increase, the benefits of
using RTS/CTS all the time increase. However, SACA is still performing
better in all cases. For lower data rates (Fig. 5(a)), SACA’s improvement
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Fig. 5. SACA’s average throughput improvement compared to IEEE 802.11 DCF’s
congestion avoidance mode (RTS/CTS ON) for synthetic trace.

is not as pronounced compared to higher data rate. The reason is that,
at higher data rates (Fig. 5(b)), the cost of using RTS/CTS all the time
is relatively more expensive since control frames are sent at lower data
rate (i.e., 2 Mbps).

We also evaluate SACA’s throughput improvement over IEEE 802.11
DCF’s base mode (i.e., no RTS/CTS) for data rates of 2- and 54 Mbps.
is getting more by increasing the number of nodes and hidden nodes.
Fig. 6(a) and (b) show almost the exact inverse behavior when com-
pared to Fig. 5(a) and (b). In other words, SACA’s throughput improve-
ment is more accentuated at lower data rates when compared to higher
data rates. This is because SACA, in some cases, enables RTS/CTS and
RTS/CTS’ cost is lower at lower data rates.

Hot-spot trace. We conducted similar simulations using the hot-spot
trace and evaluated SACA’s improvement over IEEE 802.11 DCF’s
congestion avoidance mode (RTS/CTS on) and IEEE 802.11 DCF’s
base mode (RTS/CTS off). From Fig. 7(a), we observe that SACA
performs much better than IEEE 802.11 DCF’s congestion avoidance

ode when chance of collision is low. However, by increasing the
umber of senders and hidden nodes, SACA’s throughput improvement
s less pronounced. Fig. 7(b) shows SACA’s throughput gain over IEEE
02.11 DCF’s base mode (RTS/CTS off). We observe that as network
ontention and number of hidden nodes increase, so does SACA’s
verage throughput improvement over RTS/CTS off. The reason is that
9

Fig. 6. SACA’s average throughput improvement compared to IEEE 802.11 DCF’s base
mode (RTS/CTS OFF) for synthetic trace.

SACA turns on the RTS/CTS dynamically when contention is high,
which decreases the collision rate and, as a result, improves overall
throughput performance. In all cases, SACA outperforms both IEEE
802.11 DCF’s base- and congestion avoidance modes.

Company campus network trace. We observe similar behavior for the
company campus network trace. As shown in Fig. 8(a), when there is
less contention and no hidden nodes, there is no need to use RTS/CTS.
Therefore, SACA disables RTS/CTS and, as a result, throughput goes
up compared to having RTS/CTS on all the time. Although the per-
formance of both techniques are closer in higher contention scenarios,
SACA still performs better since it switches RTS/CTS off considering
airtime in addition to contention. From Fig. 8(b), we observe that, since
RTS/CTS is always off, in scenarios that exhibit higher contention and
number of hidden nodes, SACA’s throughput improvement is more pro-
nounced, while SACA’s throughput improvement decreases in scenarios
with lower contention and lower number of hidden nodes.

SACA’s network contention adaptation
In this section, we examine SACA’s ability to adapt to network

contention in more detail. More specifically, we investigate how well
SENSE estimates contention based on its collision rate measurements

and then how SACA uses that information to enable/disable RTS/CTS.
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Fig. 7. SACA’s average throughput improvement for hot-spot data.

To do that, we collect collision rate measurements as well as
ENSE’s collision rate estimates (see Section 3.1). We collect data at an

AP with 20 senders transmitting according to the public hot-spot and
company network datasets. Collision rates were collected with RTS/CTS
disabled in order to measure ‘‘raw’’ network contention.

Based on SENSE’s collision rate estimates, SACA decides whether
to enable/disable RTS/CTS. Then, we also show the AP’s RTS/CTS
usage time series, where ‘‘1’’ indicates that RTS/CTS is enabled and
‘‘0’’ that RTS/CTS is disabled. We ran simulations for two scenarios,
namely when all nodes are hidden from each other when all of them
are exposed.

Company campus network trace. For the company campus trace,
ig. 9(a) shows the collision rate and SENSE’s collision rate estimates
t the AP when all nodes are hidden from each other. As expected, in
he presence of hidden nodes, collision rates can be quite high (in this
ase, as high as 90%) and we observe that SENSE’s estimates are able
o follow real collision rate measurements quite closely with a mean
quared error (MSE) of 0.2%. Because of the relatively high average
ollision rate, as shown in Fig. 9(b), RTS/CTS usage in the company
etwork trace is triggered around 40% of the time.

In Figs. 10(a) and 10(b), respectively, we show collision rate mea-
surements, SENSE’s collision rate predictions, and RTS/CTS usage for
the company campus trace where all nodes can see each other. Again,
SENSE’s predicted collision rate follows real collision rate measure-
ments quite closely with a mean squared error (MSE) of 0.7%. As
10
Fig. 8. SACA’s average throughput improvement for company campus data.

expected, collision rates are considerably lower when compared to the
case where nodes are hidden (Fig. 9(a)) and, as a result, RTS/CTS is
used less (around 8% of the time).

We should point out that we ran similar simulations using the hot-
spot traffic trace and observed similar behavior to the company campus
trace. These results are not shown due to space limitations.

5.2. Ad-Hoc network scenarios

Simulation experiments similar to the ones conducted for
infrastructure-based topologies were run for ad-hoc scenarios using the
parameters summarized in Table 2. As previously noted, unlike the
infrastructure-based simulations which need not use routing, ad-hoc
scenarios employed the AODV routing protocol [18].

Average throughput
We compare SACA’s average throughput against that of IEEE

802.11’s DCF base mode (RTS/CTS always off) and congestion avoid-
ance mode (RTS/CTS always on) in a variety of ad-hoc scenarios. We
also show average throughput when using statically configured values
for the RTS Threshold, 𝑅𝑇 , namely 200-, 500-, 1000-, 1500-, and 2000
bytes.
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Fig. 9. Collision rate measurements, SENSE’s collision rate prediction, and RTS/CTS usage for AP in company campus network trace when all nodes are hidden from one another.
Fig. 10. Collision rate measurements, SENSE’s collision rate prediction, and RTS/CTS usage for AP in company campus network trace when all nodes are exposed to one another.
11



Ad Hoc Networks 124 (2022) 102721Y. Edalat et al.

S
n
t
n
a
t
t
r

8
d
s
t
h
a
𝑅
p
e

Fig. 11. Average throughput using the synthetic trace in ad-hoc scenario.95% confidence intervals are shown.
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ynthetic trace. To show how our algorithm adjusts to network dy-
amics, we periodically changed frame size and number of nodes
ransmitting in our synthetic data trace. Note that by varying the
umber of simultaneous transmitters, we vary network contention
nd consequently collision rate. We ran each experiment with data
ransmission rates of 54-, 24-, 11-, 5.5-, and 2 Mbps, while signaling
ransmission rate is kept at 2 Mbps. We ran each experiment 10 times
andomly selecting senders and their receivers.

Fig. 11 shows SACA’s average throughput as well as that of IEEE
02.11 DCF’s base mode (‘‘Basic’’), and RTS/CTS enabled based on
ifferent 𝑅𝑇 values. Consistent with results from infrastructure-based
cenarios, we observe that our algorithm outperforms all other methods
ested for all data rates used. As expected, for lower data rates, ‘‘Basic’’
as the lowest performance because frame transmission takes longer
nd therefore collision rate is higher. In the low data rate cases, lower
𝑇 values provide better performance. As the data rate increases,
erformance of ‘‘Basic’’ (RTS/CTS disabled all the time) improves and
ventually outperforms ‘‘Th = 0’’. For example, for 24 Mbps, RTS/CTS

with mid-range 𝑅𝑇 values provide better performance than both ‘‘Ba-
sic’’ and RTS/CTS with larger 𝑅𝑇 values. The reason is that throughput
improves when larger frames are ‘‘protected’’ by RTS/CTS at this data
rate while, for smaller frames, throughput is higher without RTS/CTS.
SACA always performs well because it can dynamically decide when to
enable or disable RTS/CTS based on current conditions, i.e., frame size,
transmission rate, and contention.

Table 5 shows the usage of RTS/CTS at a specific node as contention
and frame size changes every 5 s. It confirms that, in addition to frame
size and network contention, data transmission rate plays an important
role as well. For example, in seconds 10 to 15, when frames are 2000
bytes and collision rate is 21%, at 54 and 24 Mbps, RTS/CTS is disabled.
However, in 11, 5.5 and 2 Mbps, RTS/CTS is used. This is because, for
lower data rates, using RTS/CTS turns out to be more advantageous.

Hot-spot trace. For the hot-spot trace, we employed a similar strategy
as in the infrastructure-based scenarios. In order to vary network con-
tention, we used 10-, 30-, and 50 senders and assigned each flow to 1-,
3-, and 5 senders, respectively. Flows have slightly different start times.
Similarly to the synthetic trace simulations, we compare the average
throughput when using SACA against IEEE 802.11’s base mode (no
RTS/CTS), as well as statically configured 𝑅𝑇 values of 0- (RTS/CTS
12

always enabled), 200-, 500-, 1000-, 1500-, and 2000 bytes. w
Table 5
SACA’s slot-by-slot behavior using the synthetic trace with different data rates in the
ad-hoc scenario illustrating how one of the sending nodes dynamically switches between
Basic (B) and RTS/CTS (R/C) modes based on air time and perceived congestion.

Time (s) Frame
size
(bytes)

Collision 54 Mbps 24 Mbps 11 Mbps 5.5 Mbps 2 Mbps

0 to 5 1500 2% B B B B B
5 to 10 500 7% B B B B R/C
10 to 15 2000 21% B B R/C R/C R/C
15 to 20 200 33% B B B B R/C
20 to 25 1000 39% B B R/C R/C R/C
25 to 30 2000 52% R/C R/C R/C R/C R/C
30 to 35 500 59% B B R/C R/C R/C
35 to 40 200 63% B B B R/C R/C
40 to 45 1500 67% R/C R/C R/C R/C R/C
45 to 50 500 71% B B R/C R/C R/C

As shown in Fig. 12(a), in the 10-sender scenario, since there is
less contention, using the base mode (‘‘Basic’’) or higher 𝑅𝑇 values
is more beneficial. By adding more nodes and, as a result, increasing
contention, lower RTS thresholds like 200- and 500 bytes perform
better. In the 50-sender scenario, RTS/CTS should be used all the time
because of the high contention. In all cases, SACA outperforms all
other methods because of its ability to adjust to network contention
and airtime. While in the 10-sender experiment, ‘‘Basic’’ yields similar
throughput when compared to our approach, in the 50-sender scenario,
‘‘Basic’’ is the worst performer. In other words, SACA can beat the best
static method in all cases.

Company campus network trace. Similarly to the hot-spot trace, data
rates provided in the Radiotap Header are used to calculate the airtime
in the company campus network trace. We ran simulation experiments
with 10-, 30-, and 50 senders by assigning each captured flow to 2-
, 6- and 10 senders, respectively. Compared to the public hot-spot
trace, average frame sizes and data rates are considerably higher in this
dataset (see Table 3). As shown in Fig. 12(b), in all scenarios, SACA
utperforms all other methods since it adjusts dynamically to frame
ize, transmission rate, and network contention. For instance, even
hough contention is not high in the 10-node scenario, since frames are
arger on average, enabling RTS/CTS yields higher average throughput
hen compared to ‘‘Basic’’. As the number of nodes increases, the



Ad Hoc Networks 124 (2022) 102721Y. Edalat et al.

o

Fig. 12. Average throughput using hot-spot and company campus traces in ad-hoc scenario. 95% confidence intervals are shown.
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ptimal 𝑅𝑇 value decreases. So in the 50-node scenario RTS/CTS
should be used all the time.

6. Related work

Improving the performance of IEEE 802.11 has been the subject of
a considerable body of work from both academia and industry. Due to
space limitations, in this section we present a brief overview of research
efforts directly related to our work on dynamically enabling/disabling
IEEE 802.11’s congestion avoidance mechanism.

We categorize these efforts in two groups. The first group investi-
gates throughput performance when using or not using RTS/CTS and
argue that the problems introduced by the RTS/CTS mechanism tend
to counterbalance its benefits. For example, the work reported in [19]
13

shows that in some situations, the interference range is much larger c
than the transmission range, which prevents the RTS/CTS mechanism
to completely prevent interference. In [20], the maximum throughput
in IEEE 802.11 DCF networks with RTS/CTS enabled is evaluated
and argues that as the number of RTS/CTS control frames increases,
RTS/CTS collisions occur more frequently. In [13] and [21], RTS/CTS
performance was evaluated under different data rates and concluded
that RTS/CTS does not show much benefit at higher data rates.

The second group examines performance under different values of
the RTS Threshold, 𝑅𝑇 . For instance, in [22], it was shown that, when
the network is under ‘‘stress’’, e.g., high node density, high traffic load,
the value of 𝑅𝑇 can significantly impact performance in terms of end-
o-end delay, medium access delay, retransmission attempts, network
oad, and throughput. Other efforts explore how to enable/disable
TS/CTS dynamically. The work in [15] proposes a mechanism to
ount the number of ‘‘Waiting for CTS’’ timeouts. If that number goes
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above a certain threshold, RTS/CTS is enabled; otherwise, it is disabled.
In [12], an adaptive RTS/CTS control method based on the existence
of hidden terminals is introduced and uses a fixed threshold to deter-
mine whether to switch RTS/CTS on or off. The algorithm proposed
in [14] dynamically adjusts 𝑅𝑇 based on frame delivery ratio and
hows performance improvements over both IEEE 802.11 base mode
nd collision avoidance mode. In [23], 𝑅𝑇 is set based on recently
bserved frame size distribution in the network. 𝑅𝑇 is set to a value

such that some specific percentage of frames size’s fall below its value.
In [13], 𝑅𝑇 is adjusted dynamically according to the data rate and
number of stations. The work reported in [24] proposes an analytical
expression deriving the optimal RTS threshold based on 5 parameters,
namely the number of nodes, the transmission rate, the basic rate, the
initial backoff window size, and finally the cutoff phase. The latter four
parameters were assumed to be constant while the number of nodes
which would be reported by the Access Point.

To the best of our knowledge, SACA is the first approach to use the
combination of air time and local network congestion to automatically
and dynamically enable or disable the RTS/CTS handshake. In our prior
work [4], time is divided into slots and network contention is evalu-
ated only at the beginning of a slot. Then, decision to disable/enable
RTS/CTS is made based on the estimated collision and transmission air
time. In SACA, we use a more general contention assessment approach
which measures collisions periodically over time, allowing us to capture
network contention fluctuations more accurately. Additionally, unlike
our previous approach, which only considers the cost of data collisions,
SACA also accounts for the overhead incurred by RTS/CTS collisions.

7. Conclusion

This work proposed and evaluated a novel algorithm that em-
ploys machine learning to dynamically decide whether to enable or
disable the RTS/CTS handshake used by IEEE 802.11 DCF’s conges-
tion avoidance mode to reserve the communication channel ahead of
data transmission. The proposed Smart Adaptive Collision Avoidance
algorithm, or SACA for short, continuously learns current network-
ing conditions, namely air time, i.e. the ratio between the size of
data/control information being transmitted and transmission rate, and
network contention to compare the cost between using RTS/CTS or
retransmitting data, and dynamically switches RTS/CTS on and off
accordingly. This work builds on our previous work [4] and goes a step
further by making three main contributions as follows. The first one is
that SACA’s current approach continuously tracks network conditions
rather than relearn them periodically from scratch. The second one is
that SACA’s new learning mechanism employs a refined cost function
that reflects the overhead of data and RTS/CTS transissions more
accurately. Finally, to validate SACA, we evaluate it on a variety of
WLAN as well as wireless multi-hop ad-hoc network scenarios, driven
by synthetic and real traffic traces. Our simulation results demonstrated
that SACA consistently outperforms current best practices, such as
never enabling RTS/CTS or using a pre-specified threshold to decide
whether to switch RTS/CTS on or off.

As part of future work, we will evaluate SACA using data rate
adaptation algorithms, in particular the ones currently available in the
ns-3 simulator (e.g., ARF, AARF, CARA, and RRAA). We also plan to
explore how SACA can be applied to improve the performance of other
aspects and variants of the IEEE 802.11, as well as protocols at other
layers of the network stack, including routing and transport.
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