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Abstract—As cloud providers scale up their data centers and
distribute them around the world to meet demand, proposing
new job schedulers that take into account data center geo-
graphical distribution have been receiving considerable attention
from the data center management research and practitioner
community. However, testing and benchmarking new schedulers
for geo-distributed data centers is complicated by the lack of
a common, easily extensible experimental platform. To address
this gap, we propose GDSim, an open-source job scheduling
simulation environment for geo-distributed data centers that
aims at facilitating development, testing, and evaluation of new
geo-distributed schedulers. We showcase GDSim by using it to
reproduce experiments and results for recently proposed geo-
distributed job schedulers, as well as testing those schedulers
under new conditions which can reveal trends that have not been
previously uncovered.

Index Terms—data center, job scheduling, geo-distributed

I. INTRODUCTION

Geographic redundancy and physical diversity is an impor-
tant technique used by cloud computing services. By distribut-
ing their data centers around the world, companies such as
Google and Amazon, can not only minimize the chance that
failures will not keep their customers from accessing important
data, but also can reduce normative user-perceived access
time. For example, Google has more than 20 data centers
across four continents [1], Microsoft’s lists more than 50 data
centers [2], and Facebook’s expansion has resulted in over 15
data centers world-wide [3]. But geographic redundancy is not
a cure-all and presents its own problems. The physical distance
separating data centers, coupled with resource limitations of
the network connecting them, make scheduling algorithms that
perform well for centralized data centers, inefficient for their
geo-distributed counterparts. For example, one well-known
algorithm, Shortest Remaining Processing Time, ignores the
extra cost of transferring information (jobs and data) over the
network [4]. As such, job scheduling for geo-distributed data
centers has recently emerged as an active topic of research.

A number of job schedulers for geo-distributed data centers
have been proposed, but the research and practitioner com-
munities are still trying to address the question of how to
evaluate new geo-distributed schedulers and how to compare
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them to existing ones for different data center scenarios,
applications, and workloads. Currently, most existing geo-
distributed schedulers use their own testing environment, e.g.,
custom simulators or sometimes in the form of testbeds that
emulate geo-distributed data centers using geographically dis-
tributed servers hosted by cloud providers such as AWS. This
status-quo makes the task of comparing different schedulers
in a systematic, reproducible, and scientifically sound manner
either unfeasible or very complicated and cumbersome.

Many disciplines that rely on experimental research empha-
size the importance of providing open-source platforms for
evaluating new systems. This is notably the case in computer
architecture [5], [6] and networking [7], [8], for example. In
the specific case of data center job scheduling, few simulators
that can be used for comparative evaluation studies have
been proposed-but they only apply to centralized data center
environments [9]-[13], and thus cannot be used in the context
of geo-distributed data center scheduling with their current
capabilities. This paper presents a simulation platform that, by
specifically targeting job schedulers for geo-distributed data
centers, fills this gap. The proposed platform, GDSim [14],
aims to offer an open-source benchmarking environment avail-
able to researchers and practitioners that allows side-by-side
comparative studies of different schedulers under a variety of
scenarios and conditions. By serving as a level playing field
to test and evaluate geo-distributed data center schedulers,
GDSim will also help advance the state-of-the-art in geo-
distributed data centers by facilitating the development of new
schedulers as data center architecture, usage, and applications
evolve. GDSim can complement testbed-based experimental
evaluation as a low-cost alternative that provides controlled
and reproducible experiments under a wide range of scenarios.

GDSim consists of two main functional components: a
simulator and a workload generator. The workload generator
extends the work of Chen et al. [15] on synthetic workload
generation to generate a wide range of workloads to help
address the limited availability of public data center workloads.
In addition to real workload traces, GDSim simulations can
be driven by its own generated workloads based on different
features (e.g., number of jobs, number of tasks per jobs, etc)
and various geo-distributed data center topologies to evaluate
different job schedulers. GDSim can also be easily extended
to include various job scheduling algorithms.



In this paper, we showcase GDSim by using it to reproduce
results from recently proposed geo-distributed data center
schedulers. In our experiments, we demonstrate GDSim’s abil-
ity to generate synthetic workloads, mimicking real production
workloads. We also show that by exposing schedulers to a wide
variety of workloads, GDSim can reveal trends not previously
identified.

The rest of this paper is organized as follows: Section II
describes the job scheduling problem in geo-distributed data
centers and related work in benchmarking data center sched-
ulers; next, we present GDSim in Section III; Section IV
describes our methodology as we showcase how GDSim can
be used to evaluate geo-distributed data center schedulers; our
results and observations are discussed in Section V; Section VI
concludes the paper with directions for future work.

II. JOB SCHEDULING IN GEO-DISTRIBUTED DATA
CENTERS AND RELATED WORK

Job scheduling is the problem of building the ideal execution
schedule for a set of jobs given a limited set of resources.
It is particularly relevant when discussing efficient usage of
computing clusters and data centers [16]-[19]. In addition to
minimizing job completion times, another important consider-
ation is reducing operational costs, especially as data centers
scale to very large numbers of servers, as evidenced by recent
research on reducing data center energy costs [18].

The job scheduling problem can be formulated in many
different ways; however, some elements are common: there
is always a set of jobs that need to be scheduled, each of
which has one or more tasks. Tasks may have each different
expected durations and require a set amount of computing
resources and access to specific files. For simplicity, it is
common to assume that all tasks of the same job have the
same resource requirements. While tasks in a job can also have
internal dependencies, the geo-distributed job schedulers con-
sidered in this paper handle only batches of tasks that can be
scheduled concurrently. If a job has internal dependencies, it
can be broken into multiple jobs, which are then scheduled as
dependencies are resolved. Jobs can either arrive all together,
i.e., in batches, or continuously over time. In the context of
data center scheduling, it is often more realistic to handle jobs
continuously as they arrive.

As previously noted, the problem of job scheduling in geo-
distributed data center has recently captured the attention of
systems and networking researchers and practitioners. Geo-
distributed data centers are data centers that are spread across
long distances. While jobs could be scheduled at any of these
data centers, their data requirements make the decision of
where to schedule jobs more complicated. One approach is
to replicate data across multiple locations, but it is infeasible
and/or impractical to have replicas at all data centers. Failing
to take networking latency into consideration could result
in considerably longer data transfer times before a job can
be executed. This means that, unlike their centrally located
counterparts, geo-distributed data center environments require

job schedulers to also account for data transfer times before
execution.

While geo-distributed data centers can use schedulers ded-
icated to specific applications such as scientific computing
workloads [20], machine learning [21], and data analytics [22],
in this work we are interested in schedulers intended for gen-
eral use workloads. Workload-Aware Geo-distributed Schedul-
ing (SWAG) [23] is one of the earliest algorithms proposed for
job scheduling in geo-distributed data centers. SWAG builds
on the Shortest Remaining Processing Time (SRPT) heuristic,
but restricts the placement of jobs to locations that already
have the data required to execute the job. The reasoning for
this is that, while SRPT offers optimal completion times for a
single queue and single server scenario [24], it fails to perform
optimally with multiple servers [4]. Another early alternative
was Flutter [25], which proposed a scheduler that can yield
an optimal solution using linear programming. GeoDis [26] is
a more recent proposal which adapts SRPT for use in geo-
distributed scenarios by computing processing times that in-
clude data transfer times accounting for data center occupation
at time of scheduling.

A. Performance Benchmarking

A critical step in developing new systems is the evaluation
of their performance against a baseline and the state-of-the-art.
In the specific case of evaluating data center job schedulers,
we need two main components: an environment in which we
can implement the scheduler, and a way to generate workloads
to drive scheduler execution.

To our knowledge, there are no open-source, publicly avail-
able platforms that can be used for testing and validating geo-
distributed data center job schedulers. There are already estab-
lished simulators for non-geo-distributed scenarios, such as the
simulator used in the evaluation of Google’s Omega [27], or
the Yarn Scheduler Load Simulator (SLS) [28]. These simula-
tors have important roles in validating proposals for centralized
data centers, however none of them was designed with geo-
distributed scheduling in mind. Extending these existing sim-
ulators to support geo-distribution would require substantial
modifications to their basic structure, which motivated us to
create GDSim, an experimental platform that is specifically
designed to benchmark job schedulers for geo-distributed data
center environments.

Existing schedulers, including the ones considered in our
study, have been evaluated either using custom simulators,
or on relatively small geo-distributed data center testbeds
(e.g., through services such as AWS [29].) While testing on
real testbeds provides more realistic results, it is usually a
more costly option that is harder to scale, limits the range of
conditions under which the system can be tested/validated,
and does not provide an experimental environment that is
conducive to reproducibility.

B. Workloads

Evaluating schedulers requires comparing their performance
under production-like conditions. Since researchers often do



not have access to production data centers, they usually do not
have full knowledge of their workloads. Instead, they rely on
workload traces that have been made publicly available, some
of which by large computing companies for research purposes.
However, there are only a few of those traces available and
usually they include limited information as described below.

In our work, in addition to using real, publicly available
workloads, we also use synthetic workloads generated by
GDSim’s workload generator. The real workloads we use in
our experiments to evaluate geo-distributed job schedulers
include traces published by Facebook [15], Google [30],
[31], and Alibaba [32]. The first two traces were selected
because they were used in previous studies that evaluated the
schedulers considered here and thus allow us to validate results
obtained by GDSim. The third trace was chosen to illustrate
that GDSim is trace-agnostic, i.e., it can be driven by different
types of traces, including synthetic workloads. While there
are other traces available, our goal here is to showcase how
GDSim can be used to study the performance of different geo-
distributed data center job schedulers, rather than conducting
a performance study comparing different schedulers.

Each of the three real workload traces provides informa-
tion collected from job executions in computing clusters of
the corresponding companies after anonymization. They are
provided in different formats and with different amounts of
information, so we have to make some adjustments to be able
to use them. For our use we want to extract from the traces
a list of submitted jobs, each job containing submission time,
computing resource requirements, required data (including size
and initial location, which might change during execution),
number of tasks and expected duration of each task. Most
notably, the Facebook trace was synthetically generated based
on real Facebook data, which is not publicly accessible nev-
ertheless. The trace also lacks task information, which we
ended up extrapolating based on distributions presented in
other works [23], [26]. None of the traces included full data
file information either, e.g., size of the required data file or
even the file name.

The information GDSim uses to schedule consists of the
following: job arrival (submission) times, computational (CPU
core) requirements, size of required data, data location, number
of tasks per job, task execution times, and jobs to data mapping
(i.e. the constraint that several jobs require access and contend
for the same data). The Facebook trace included file name
information, but not file size information, which is also absent
from the other traces. For the purpose of using these traces we
estimated file size from the input transfer size information, and
when file names were absent we used user names as a proxy.
None of the traces included information about data locations
that could provide a baseline on how data is distributed in
those data centers. We should also note that the Google and
Alibaba traces were provided as task event traces, that is, the
traces describe events related to task such as task submis-
sion, launching, or completion. Each event also has related
resource usage information, from which we extract CPU and
file size requirements. That means we had to reconstruct job

descriptions from the events, so the resulting jobs might not
be completely accurate. The results are however good enough
for the purpose of comparing different schedulers, as we can
test with different traces and observe how their differences are
reflected in the resulting performance of the schedulers.
Although there are now more publicly available workload
traces, their number and variety is still relatively small, and,
as a result, they may not be able to subject geo-distributed
job schedulers to sufficient variation in conditions such as job
arrival (submission) times, computational (CPU core) require-
ments, size of required data, data location, number of tasks
per job, task execution times, and jobs to data mapping (i.e.
the constraint that several jobs require access and contend for
the same data). For this reason, we looked into approaches to
generate synthetic workloads, e.g., the work described in [15]
which proposes synthetic workload generation by sampling of
jobs from existing workloads. Their approach would, however,
preserve existing patterns of behavior, which was their original
intention. In our work, we wanted to explore more diverse
patterns that are still based on real data, so we developed
our own method to generate synthetic traces based on real
workload data, which is described in Section III-A.

II1I. GDSmM

In this section, we start by providing an overview of GDSim
and then describe its components, namely its workload gener-
ator and simulation engine in detail. GDSim aims at providing
an experimental platform to allow first-level benchmarking of
geo-distributed data center job schedulers. It also serves as a
platform to run controlled, reproducible experiments, comple-
menting real distributed data center testbed experimentation.
GDSim’s current features allow us to reproduce experiments
comparing the performance of existing geo-distributed job
schedulers, while GDSim’s ongoing and future development
will aim at extending its features to study dependency dynam-
ics between jobs and the underlying network.

GDSim’s workload generator builds synthetic workload
traces reproducing behavior seen in real workloads and be-
yond. As described in detail in Section III-A, by providing
"knobs" that allow varying workload features such as number
of jobs, number of tasks per job, etc., the workload generator
can produce workloads that will subject schedulers to wide
range of conditions that may not be possible with existing
traces. It uses an extractor that reads existing traces and col-
lects information that is used to generate synthetic workloads.
Recall that GDSim experiments can also be driven by real
traces as shown in Sections IV and V.

The goal of GDSim’s simulator is to drive the execution of
job schedulers being evaluated using as input real or synthetic
workloads and data center configuration/topology definition.
It then generates a job schedule based on the rules of the
scheduler being studied.

A. Workload Generator

Our synthetic workload generation uses attribute sampling,
i.e., it considers the main attributes of a workload trace and



Original trace:

(Jobl | J1Attrl | J1Attr2 J1Attr3]
(Job2 [ J2Attrl | J2Attr2 | J2Attr3 |
(Job3 [ J3Attrl | J3Attr2 | J3Attr3 )
(Joba [ JaAttrl | J4Attr2 | J4Attr3
(Job5 [ J5Attrl | J5Attr2 | J5Attr3 |
(Job6 [ J6Attrl | J6Attr2 | J6Attr3 |
(Job7 [ J7Attrl | J7Attr2 | J7Attr3 )
(Job8 [ JBAttrl [ J8Attr2 | J8Attr3 |
Job sampling:

(Job7 [ J7Attrl T J7Attr2 T J7Attr3 )
(Job3 [ J3Attrl | J3Attr2 | J3Attr3 |
(Job6 [ J6Attrl | J6Attr2 | J6Attr3 |
Attribute sampling:

(Newjob1 [ J8Attrl | J6Attr2 | J5Attr3 )
(Newjob2 | JaAttrl | J1Attr2 | J7Attr3 |
(Newjob3[ J8Attrl | J8Attr2 | J2Attr3 |

Fig. 1. Workload generation via job sampling versus attribute sampling.

sample from them individually, instead of sampling the entire
job set (or job sampling). While this means that we do not
have the same job profiles as the original data, it allows for
greater variation of behavior, as well as combining trends from
different traces. As data centers and their applications evolve,
our goal is to expose scheduling algorithms under evaluation to
a wider diversity of scenarios, beyond what existing traces may
present, but preserving existing tendencies instead of using
completely random data.

Fig. 1 illustrates how our workload generation approach
differs from [15]. When a synthetic trace is created through
job sampling, it copies entire jobs from the original trace.
This preserves relations between attributes even if they had
not been explicitly identified. For example, it is possible that
in a given trace all jobs with few tasks have long lasting tasks,
and that relationship would be preserved. Attribute sampling,
on the other hand, creates jobs by sampling each attribute
from previously observed values. This preserves individual
distributions for each attribute, but may lose relationships
between attributes, such as the correlation between number
of tasks and their duration. Nevertheless, this allows us to
combine patterns observed in different traces, so for example
if one trace has all its jobs made up of few long tasks, and
another has jobs made up of many short tasks, we can create
traces with jobs consisting of many long tasks and traces with
few short tasks.

GDSim’s workload generator works as follows: first, an
extractor reads real workload traces whose characteristics we
want to reproduce, then the generator creates a predefined
number of jobs through sampling the desired characteristics
of each workload. The generator can also be configured to
use traditional statistical distributions, such as Pareto or Zipf,
if this is more suitable for certain workloads.
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Fig. 2. Job inter-arrival time distribution in original traces and new synthetic
trace showing that the synthetic trace’s job inter-arrival time behavior is closer
to that of the Facebook trace.

Combining Workloads: To demonstrate how the workload
generator allows us to create synthetic traces that combine
characteristics of different workloads, we created a synthetic
trace of one thousand jobs that reproduces the interarrival
times of the Facebook trace, the number of tasks and task
durations of the Alibaba trace, and is similar to the Google
trace in the remaining characteristics. As an example, Fig-
ure 2 shows how the synthetic trace reproduces the statistical
behavior of the Facebook trace in regard to interarrival times.

B. Simulator

GDSim’s event-driven simulator is responsible for modeling
events as they happen, including their actions, and the changes
they cause in the simulated system. Its main parameters are
the scheduler being simulated and the scheduler hook, which
determines how the scheduler is called. It takes as input
the data center topology/configuration descriptions and the
workload in the form of jobs that will arrive and the files
they need and where they are stored. It is also responsible for
logging job execution information so that later it can report
performance metrics.

a) Events: Events in our simulator can be categorized
in terms of their dependence on the network. As an example
of that, consider the scheduling of a job’s computing task.
The event that defines the start of that task may depend on
network activity if there are files that have to be transferred to
the chosen data center before the task can start, but once the
task has started, the conclusion of that same task is an event
that does not depend on network activity. The purpose of this
distinction is to allow us to separate network-dependent events
so that the underlying network can be modeled separately.
As illustrated in Fig. 3, the simulation loop then consists of
identifying the time of the next network-independent event,
verifying if any network dependent events happen before that
time, and finally evaluating the earliest event to update the
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Fig. 3. GDSim’s simulator main loop.

state of the simulation. The main network-independent events
model job arrivals, scheduler calls, and task conclusions. A
job arrival event represents the submission of a job to the
scheduler, and results in an update on the scheduler state. A
scheduler call event results in the execution of the scheduling
algorithm, which in turn updates the state of simulated data
centers to represent execution tasks and creates correspond-
ing task conclusion events at the appropriate times. A task
conclusion event then causes another update to the state of
the simulated data centers, representing the ending of the
corresponding execution, and updates the corresponding job
execution information.

When it first starts, the simulator creates the state to be
tracked from the input, job arrival events for each job present
in the workload trace, as well as the first scheduler call event.
Future scheduler call events will be created according to the
scheduler hook, which, in our current implementation can be
configured as either online or window-based mode. In online
mode, a scheduler call is set for after the arrival of each
group of jobs with the same timestamp, while in window-
based mode, each scheduler call happens periodically based
on a pre-specified time window for as long as there are jobs
to schedule. These different approaches represent a trade-off
between responsiveness and scheduler processing overhead. In
other words, while an online hook can result in less wait for the
job to be scheduled, it will cause more calls to the schedulers;
the window-based hook, on the other hand, reduces scheduler
calls but can result in wasted resources as the jobs are not
running while waiting to be scheduled. We implement these
modes, as well as the means to implement other modes, to
allow for better exploration of how the schedulers would be
used, although we must note that the simulator does not model
the execution time of the scheduler itself and that could impact
the results if care is not taken when preparing the simulation.

The simulator processes events until there are no more jobs
to schedule and all tasks have concluded. Then it outputs
the job execution information that can be used to calculate
the desired performance metrics. Fig. 3 illustrates GDSim
simulator’s main loop.

b) Data Center Model: Since the simulator cannot fully
reproduce multiple data centers executing real computing jobs,
we have to make some assumptions to model geo-distributed
data centers.

We assume that the data center topology will stay constant
throughout the simulation period, and that the scheduler has
access to information describing the state of the data center and
its distributed sites at any time. The former is a simplification
that is reasonable as infrastructure tends to change little during
short windows of time, and even inter-data center bandwidth
can be managed through establishment of private WANs [33].
The latter is an important aspect of geo-distributed schedulers
and is itself subject of further research [34]-[36].

Internally, data centers are assumed to serve jobs in a
First Come First Serve (FCFS) fashion, in line with current
literature models [23]. Each data center contains multiple
nodes of possibly different configurations. We abstract away
possible hardware resource differences between servers in a
data center and focus on their maximum capacity using a “slot”
to represent the capacity for serving simultaneous tasks, while
allowing a task to consume more than one slot for execution,
depending on the task’s resource requirements.

c) Job Model: When modeling jobs, we assume that all
tasks in a job require access to the same data. While this is not
realistic, it is also a common assumption and is consistent with
the fact that this information is typically absent in publicly
available traces. In a similar way we assume that all tasks
in a job are independent from each other, all jobs are also
independent from each other.

As much as possible, we aimed to keep our assumptions in
line with current practices as described in the literature. Firstly,
we assume that it is possible to estimate the duration of a
submitted task. This is a common assumption that holds well
for recurring tasks [37] and we can also justify it by assuming
that instead of using the real duration, the scheduler can use
the specified deadline in its calculations. The geo-distributed
job schedulers considered also assume no preemption, task
failures, or rescheduling.

C. Schedulers

GDSim currently includes the implementation of three
schedulers: Global-SRPT, a modification of the traditional
Shortest Remaining Processing Time algorithm adapted to
multiple data centers; SWAG [23], one of the first schedulers
for geo-distributed data centers; and GeoDis [26], representing
the current state-of-the-art. They were also chosen to validate
GDSim based on the performance results presented by Hung,
Golubchik and Yu [23] and by Convolbo, Chou, Hsu and
Chung [26].

Global-SRPT selects the job with the least remaining pro-
cessing time and schedules that job’s tasks to run on data
centers with available computing capacity that have the best
expected time to retrieve the data. Workload-Aware Geo-
distributed Scheduling (SWAG) uses a similar idea, but re-
stricts placement of tasks to data centers that already have the
data tasks need to execute. It does not allow data migration



TABLE I
TOPOLOGY CAPACITY

Data Center | Computers ~ Cores per Computer

1 13 24
2 7 12
3 7 8
4 12 8
5 31 32
6 31 32
7 10 16
8 8 12

between data centers to facilitate scheduling, and instead of
using total processing time, it uses expected completion time
for the job, given the current status of all data centers, and
assuming there are no other jobs to schedule. For each job
to be scheduled, SWAG calculates the expected completion
time by estimating when the last task in the job would finish,
based on an assumption that no other jobs will arrive within
the service time. GeoDis extends SWAG by attempting to take
advantage of replication and factoring it into the calculation
of the scheduling weight of each job and then scheduling jobs
in the order of their weights.

IV. EXPERIMENTAL METHODOLOGY

In order to showcase GDSim and how it can be used
as a benchmarking platform for geo-distributed data center
schedulers, we use run experiments to evaluate the schedulers
currently implemented using real- and synthetic workloads and
different data center topologies.

One of our goals was to validate GDSim by showing that it
can reproduce experimental results similar to those previously
observed. To this end, we run experiments comparing GeoDis
and SWAG against an adaptation of SRPT for use with geo-
distributed data centers.

Next, we experimented with other workloads and topologies
to show how GDSim allows us to explore more scenarios,
which can reveal behavior not yet observed and lead to new
findings and insight on designing efficient geo-distributed
schedulers.

We reproduced the topology used in Convolbo, Chou, Hsu
and Chung [26] with same number of computers, computing
cores per computer and the same bandwidth between data
centers. Table I shows the capacity of each data center, and
Table II shows the bandwidth between data centers.

We also created a smaller topology to illustrate how the
topology itself is an important parameter when evaluating
schedulers. The smaller topology has the same number of data
centers, but each data center has only one computer and all
computers but one have only one core. The last computer has
32 cores to allow larger jobs to run. This topology uses the
same inter-data center bandwidth values as shown in Table II.

We also varied how files are distributed across the data
centers. To this end, we distributed the files randomly using
a Zipf distribution with the following values for the skew

TABLE II
BANDWIDTH (MBPS)

| 1 2 3 4 5 6 7 8

1 - 931 376 822 99 677 389 935
2 | 931 - 97 672 381 82 408 93
3| 376 97 - 628 95 136 946 175
4 | 822 672 628 - 945 52 71 50
5 99 381 95 945 - 822 685 535
6 | 677 82 136 52 822 - 69 639
7 | 389 408 946 77 685 69 - 243
8 | 935 93 175 50 535 639 243 -

parameter: [1.01,2,5,10]. The higher the skew parameter is,
the more likely files are co-located.

To measure schedule performance, we use two main met-
rics: schedule makespan and mean job latency. The schedule
makespan measures the time from the arrival of the first job
to the conclusion of the last job. This is a more traditional job
scheduling metric, but is not as representative in the context
of scheduling in a data center that is servicing requests from
multiple independent sources. The mean job latency, on the
other hand, measures average job latency, which is the time
difference between the job submission and the completion of
its last task, averaged over all jobs. This metric does a better
job of capturing the overall effectiveness of the scheduler in
terms of its per-job impact.

A. Schedulers

As previously noted, we used three existing geo-distributed
job schedulers in our experiments: global-SRPT, SWAG and
GeoDis. We selected these schedulers due to their relatively
simple implementation as well as the fact that they are well-
known and considered the state-of-the-art in the field, which
allows us to validate our own results. In the remainder of
this section, we describe our implementation of these three
schedulers.

1) Global-SRPT: Shortest Remaining Processing Time is a
traditional scheduling algorithm that provides optimal schedul-
ing in terms of makespan in the single-server-single-queue
scenario [24]. Global-SRPT is a variant of that mechanism
for use in a multiple-servers-multiple-queues scenario. This is
not a proposed scheduler from literature, but instead a simple
adaptation of the existing algorithm for use in a new scenario,
and as such we do not expect it to perform well. Its main
purpose is to serve as a baseline for comparison of the other
two algorithms.

For our implementation the scheduler keeps track of all
jobs with unscheduled tasks and the total sum of the expected
duration of all tasks of each job. Then if there is space available
at any data center it schedules the longest task of the job
with the shortest total processing time to a data center that is
available and has the lowest time to download any required
data. This process continues until there are no more data
centers available or tasks to schedule.

2) SWAG: Workload Aware Geo-Distributed Scheduling
(SWAG) was one of the first algorithms proposed for geo-



distributed scheduling. It was created to address the short-
comings of SRPT when applied to that same scenario, and
uses a similar idea. One of SWAG’s main distinguishing
feature is that it restricts task placement to data centers that
already have the required data. With that restriction in place,
SWAG operates like Global-SRPT, but instead of selecting
the job with the shortest total processing time, it selects the
job with the shortest makespan, as if it were the only job
being scheduled. The makespan is calculated as follows, with
W, . as the wait time to execute a task ¢ on data center c,
D, . as the duration of task ¢ on data center ¢, and X, . as
the time to transfer required data for task ¢ to data center c:
maXge job (miDCEC,Xt,CZO Wt,c + Dt,c)

3) GeoDis: GeoDis was proposed as an improvement over
SWAG for job scheduling in geo-distributed data centers.
GeoDis takes advantage of data transfers between data centers
by accounting for data when calculating the expected com-
pletion time of a job, thus removing the restriction on task
placement. Its implementation is similar to that of SWAG, but
the removal of the locality restriction requires a modification
of the expected completion time of each. Now the expected
completion time considers not only current availability of all
data centers, but also the duration of data migration to a data
center that originally does not have the required data to execute
a task. This results in the following formula for the expected
completion time: max;e jop (Mincec Wic + Dy e + Xt c)

B. Experiments

Our experiments were designed to reproduce existing re-
sults and thus validate GDSim’s operation. We compared the
performance of Global-SRPT, SWAG, and GeoDis to verify
the relations presented by Hung, Golubchik and Yu [23] and
by Convolbo, Chou, Hsu and Chung [26]. We also compared
our method for generation of synthetic data mixing features
of different jobs against only sampling from existing jobs as
proposed by Chen, Ganapathi, Griffith and Katz [15]. Each
combination of parameters that we wanted to evaluate was
executed with twenty four different slices of the three traces
we used to verify consistency of the observed results. This
amount was limited mainly by the size of the Facebook trace,
which was the smallest of the three.

For the comparison experiment, we scheduled jobs using
each of the three schedulers on each of the two topologies
we described, using data from either of the three data sets
we presented earlier. The purpose of this experiment was to
verify that the performance improvements presented in their
corresponding papers are still reproducible with our simulator.
Namely, SWAG should perform better than using Global-
SRPT, and GeoDis should perform better than SWAG when
data co-location is factored in. We also repeated this experi-
ment using the synthetic trace that we created in Section III-A
to observe if it behaves as expected.

The purpose of our second experiment is to observe how
our method of generating new traces compares to that of
generating traces based on sampling existing jobs only. We
schedule jobs from the Facebook trace by randomly sam-
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Fig. 4. Makespan with 95% confidence interval for SWAG and Global-SRPT
for different file distribution skews in the larger topology using the Facebook
trace.

pling jobs and their characteristics independently and cross-
generating the output accordingly. For all cases, we use the
three aforementioned schedulers demonstrated in the smaller

topology.
V. RESULTS AND DISCUSSION

In this section we will first look at the results from the
experiments reproducing the reported performance for SWAG
and GeoDis. We will follow with an examination of the results
found when using synthetic data created according to the
method we described in Section III-A.

A. Results Using Real Traces

We compare SWAG and Global-SRPT using the Facebook
traces. Our results in Fig. 4 show SWAG performing better
than Global-SRPT for most configurations as reported in
SWAG’s original paper [23]. However, when data files are
more concentrated in fewer locations, SWAG’s makespan
deteriorates and, in some cases, is outperformed by Global-
SRPT, a trend not revealed previously [23].

When comparing GeoDis and SWAG, we expect that
GeoDis would yield superior performance thanks to data
migration [26]. Fig. 5 shows results from executions in the
larger topology using the Facebook trace. We observe that, as
expected, SWAG’s latency deteriorates as data files have fewer
replicas, but under certain conditions, SWAG’s makespan was
similar to that of GeoDis. Reflecting on how SWAG compares
to GeoDis, we observe that GeoDis performs better with
regards to job latency when there is high concentration of
per-job data within the same location, which is consistent
with what was reported in the GeoDis paper [26]. When data
files are spread out across more data centers, however, both
schedulers exhibit similar behavior, i.e., they yield similar job
latencies, which has not been previously reported [26].

B. Results Using Synthetic Traces

Using synthetic traces generated according to Section III-A,
we observe again that GeoDis outperforms SWAG and Global-
SRPT with regards to makespan when there is high resource
utilization and less file replication, as shown in Fig. 6, with
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across different file distributions skews in the larger topology using the
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Fig. 6. Makespan with 95% confidence interval for Global-SRPT, SWAG and
GeoDis across different file distribution skews in the smaller topology using
the synthetic trace.

similar results when considering job latency as shown in
Fig. 7.

We also run experiments to show the difference between
job sampling and attribute sampling when generating synthetic
traces. Fig. 8 compares GeoDis’ makespan performance using
the original Facebook trace against synthetic versions of the
same trace generated via job sampling and attribute sampling.
Our results show that attribute sampling yields higher devia-
tion from the results obtained when using the original trace.
This is an expected consequence of using attribute sampling
since it aims at generating a wider variety of workloads yet
preserving realistic features.

In summary, our experiments allowed us to validate GDSim
by reproducing results reported in [23] and [26]. Additionally,
we also show that, by being able to subject schedulers to a
wide range of scenarios and workloads, GDSim can reveal
behavior and performance trends not previously observed.

VI. CONCLUSION

This paper introduced GDSim, an open-source job schedul-
ing simulation platform for geo-distributed data centers.
GDSim’s main goal is to provide a level playing field environ-
ment for evaluating different geo-distributed job schedulers to
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Fig. 7. Mean job latency with 95% confidence interval for Global-SRPT,
SWAG and GeoDis across different file distribution skews in the smaller
topology using the synthetic trace.

trace

8000 1 mmm Attribute Sampling
I Original

7000 1 mmm Job Sampling

6000

5000

4000 A

makespan

3000 A

2000 4

1000 A

Fig. 8. Comparison of GeoDis performance in terms of makespan using the
Facebook trace and two synthetic traces.

facilitate benchmarking, comparative evaluation efforts as well
as development of new schedulers. Like any simulation plat-
form, GDSim is meant to complement testbed experimentation
as a tool to fast track evaluation in controlled and reproducible
environments and can be instrumental to help guide the design
of new geo-distributed job scheduling policies.

To showcase and validate GDSim, we used it to repro-
duce results from two existing scheduler proposals, namely
SWAG [23] and GeoDis [26]. We also proposed a mechanism
for generating synthetic traces from existing ones with the
ability of mixing different workload characteristics, which
allows exposing schedulers to a richer set of conditions and
thus can uncover previously unknown behavior and trends.

As future work, we plan to implement other schedulers,
further develop the job model to allow more distinct scenarios,
and integrate GDSim with a network simulator in order to
more realistically account for network dynamics.
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