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Abstract—In this paper, we introduce PIMAP, an IoT-based
system for continuous, real-time patient monitoring that op-
erates in a fully autonomous fashion, i.e. without the need
for human intervention. To our knowledge, PIMAP is the
first open system that integrates the basic patient monitoring
workflow including sensed data collection, storage, analysis,
and real-time visualization. PIMAP’s open design allows it
to easily integrate a variety of sensors (custom and off-the-
shelf), analytics, and visualization. Other novel features of
PIMAP include its deployment flexibility, i.e., its ability to be
deployed in different configurations depending on the specific
application needs, setting, and resources, as well as PIMAP’s
self-profiling and self-tuning capabilities. While PIMAP can
be applied to various patient monitoring applications and
settings, in this paper we focus on the unsolved problem of
preventing pressure ulcers, or pressure injuries. We describe
how PIMAP’s design addresses autonomous, continuous, real-
time operation to sense, store, analyze, and visualize patient
data from a variety of off-the-shelf as well as custom sensors.
We present our current PIMAP prototype as well as different
PIMAP configuration scenarios, e.g. cloud-based or edge-based
deployment options. We also evaluate PIMAP’s performance
under different workloads and demonstrate its use collecting
wearable pressure sensor data in real-world scenarios from
patients with high risk of forming pressure injuries.

Index Terms—Cloud computing, Software architecture, Digital
Health, Electronic healthcare, Internet of Things

1. Introduction

We present a novel framework for autonomous, con-
tinuous, real-time patient monitoring that can be used in
different settings, e.g. hospital ICUs, clinics, skilled nursing
facilities, and homes. Our research is motivated by our
collaboration with UC San Francisco and UC Davis medical
researchers and their longstanding work on understanding
and treating complex wounds, in particular pressure ulcers,
also known as pressure injuries.

Pressure injuries are open, deep wounds that develop
from the bone outwards caused by a combination of pro-
longed closure of capillaries and lymphatic vessels, is-
chemia, reperfusion, and tissue deformation [1] [2] [3].

They require significant treatment and interventions to avoid
further complications such as infection. Pressure injuries
remain a complex, unsolved, and elusive problem in health-
care. There is general consensus on when they will form,
e.g., prolonged pressure on an area of the body (e.g., the
sacrum), lack of movement from the patient, and best prac-
tices on how to prevent them from forming, e.g., turning the
patient periodically. Pressure injuries are considered “never
events”, they should never occur in healthcare settings ! and,
as an incentive to reduce their occurrence, cost for their
treatment in the U.S. are not reimbursable. Yet, in the U.S.,
pressure injuries still affect 2.5 million patients a year at a
cost of $11 billion [5].

There are two well known problems in pressure injury
prevention. One, periodically turning patients, which is the
current best practice in healthcare facilities [6], is not trivial.
Two, because pressure injuries start their formation from the
bone [1], by the time one can visually see the injury, it
is past the point of prevention, meaning assessing pressure
injury risk is not trivial.

In a recent literature survey on the state-of-the-art in
pressure injury prevention [7], it was found that sensor-
based patient monitoring is a promising approach to assess
risk in an objective and patient-centric fashion. Objective
metrics can then be used by healthcare clinicians to focus
efforts on the highest-risk patients. However, current patient
monitoring solutions are either commercial systems that
are limited to what the commercial entity offers and/or
are one-off solutions that are not discussed in detail and
are not released for use by other researchers. In addition
visualization of the sensor data is usually not discussed at
all even though this is a key aspect of using the sensed data.

To fill this gap, we designed, tested, and evaluated
the Pressure Injury Monitoring And Prevention (PIMAP)
system framework. PIMAP targets both medical research
and clinical use and it is not meant to be a diagnostic tool,
but rather a system to improve quality of care and support
clinicians and caregivers.

One of PIMAP’s main novel features is its holistic
approach to patient monitoring which integrates the basic

1. More than 90% of pressure injuries are a secondary condition, mean-
ing the patient was being treated for a different condition when the pressure
injury formed [4].



patient monitoring workflow components, namely: Sense
which collects sensor data, Store which stores sensed data
as well as analytics, Analyze which processes sensor data
using different algorithms, and Visualize which visualizes
sensed data and resulting analytics.

While PIMAP was originally motivated by pressure
injury management, its system model is generalizable to a
wide range of patient monitoring use cases. PIMAP can be
utilized by researchers to monitor a variety of conditions
as it can incorporate new sensors (custom and off-the-
shelf), different analytics, while leveraging existing sensing,
storage, analysis, and visualization technologies. In addition
PIMAP can be deployed in different configurations (e.g.,
edge and/or cloud) depending on the specific application
requirements and settings.

In summary, the power of PIMAP is twofold. One, any
new sensing, storage, analytics, and visualization technol-
ogy can be incorporated without putting the burden on the
medical researcher or clinician. Two, PIMAP’s ability to
operate autonomously and continuously enables clinicians
to continuously visualize patient sensing data and analytics
in real-time.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work and how our contribution
fits into existing research. In Section 3, we discuss the
motivating factors behind our focus on preventing pressure
injuries and additionally demonstrate how PIMAP can be
used to stratify patients based on risk of forming a pressure
injury in a real-world scenario using data collected in a
clinical trial. In Section 4, we discuss PIMAP’s design, main
functional components. and workflows. Section 5 describes
PIMAP’s current implementation and in Section 6, we dis-
cuss how we evaluated PIMAP. Section 7 concludes the
paper with some directions for future work.

2. Related Work

Due to its interdisciplinary nature, our work can be
classified under different areas in the research litera-
ture including: connected health, wireless body area net-
works (WBAN:S), ubiquitous healthcare, remote monitoring,
ehealth, patient monitoring, internet of healthcare things
(IoHT), mHealth, and telemedicine. In this section, we high-
light related works that focus on general patient monitoring
frameworks. The survey presented in [7] provides a more
complete and detailed description of related work specific
to pressure injury prevention.

In order to investigate whether the 6LoWPAN specifica-
tion, which is an adaptation layer that allows IPv6 packets
to be sent over the low-power physical and MAC layer
802.15.4 standard, is able to achieve the necessary through-
put to support medical applications, a system consisting of
Sensor Units, Patient Unit, Remote Processing Unit, and
Server is proposed in [8]. While the paper concludes that
6LoWPAN is able to achieve the necessary throughput for
common case medical applications, the proposed setup is not
released for use by other researchers and does not include
visualization capabilities. Since the system was put together

with a specific goal, it is not clear whether it could be
extended to accommodate different sensing technologies and
analytics.

A system application to store historical common biomet-
ric sensor data that can be analyzed offline was proposed to
address the need to perform historical analysis on medical
sensor data [9]. The framework relies on proprietary medical
devices to gather the sensor data in the clinic and Kafka [10]
to store the data for historical analysis. The analysis pre-
sented was performed by downloading data after collection
from the data storage server.

Several smartphone solutions have been proposed in
the literature. For example, HealthSense is a smarthphone
application developed to facilitate clinical trials [11]. It uses
a web portal to setup a trial, enroll participants, create survey
questions, compute, and store data. The focus is on a clinical
workflow tool that can support both questionnaires as well
as common sensor information that can be gathered from a
smartphone. Another example is an Android interconnection
layer entitled TIROL [12] which was proposed to collect
medical sensor data from a myriad of sensors. The paper
highlights that no health data protocol or standard has
prevailed and typically each vendor has its own method
of generating data. TIROL was developed to address this
issue and was designed such that any standard can be
implemented, but is abstracted by the interconnection layer
so that the overarching application is agnostic to the protocol
used to gather the data.

A medical sensor data collection application entitled
p?Health uses a smartphone app, ModMedApp, to collect
data from vendor servers, Bluetooth or Ant+ sensor devices,
and questionnaires. ModMedApp stores the collected data
into a cloud-based server that clinicians and patients can
interact with [13].

The brain scan community appears to be the furthest
ahead in terms of developing open source software to an-
alyze different aspects of brain activity. In one work the
authors propose an analysis software, MNE Scan, that can
both gather and analyze brain activity data in real time [14].
The authors mention that there is other bran scan software
available in addition to their own that is open source and
capable of real-time analysis. The software framework is
based on sensor plugins, algorithm plugins, and a display
manager. The software is able to gather and display data in
real-time. We did attempt to adapt MNE Scan to meet the
needs of pressure injury monitoring at one point in time,
but the software is very specific to brain scan monitoring
and also based on our investigation is not network based,
meaning the software is run locally on one computer that
can physically connect to the brain scan device. There is a
plugin per device connection.

Another work in the brain scan community discussed
some of the difficulties of connecting data related to neu-
rological analysis [15]. The authors mention that the brain
scan community has software that can collect the data, but
connecting all of this data across multiple sites is still elusive
and a working group to develop an architecture to do so is
in development.



Collecting and analyzing ventilator data is another spe-
cific application example that is the focus of the work
presented in [16]. The framework relies on a very specific
workflow and consequently it is not clear how easy it would
be to adapt this system to other types of sensor data or other
workflows.

As our focus is on pressure injury prevention we have
selected three notable systems that show interesting results
in reducing pressure injuries using sensor information. How-
ever they all use proprietary software. One work used a bed
sized array of pressure sensors to continuously read and
display pressure information to clinicians and found that
patients were more effectively repositioned [17], but the
same group conducted a randomized controlled trial using
the same sensor and software and found that there was no
pressure injury reduction in the group using this sensor [18].

A randomized controlled trial using a wearable inertial
measurement unit, a sensor that detects movement, and
scheduled turning found that patients using this sensor and
associated software had significantly fewer pressure injuries
and turning compliance was higher [19]. Turning compli-
ance is how close the clinicians were able to turn patients
to a desired periodic schedule.

Our work is complimentary to the existing literature and,
to the best of our knowledge, PIMAP is the only open source
patient monitoring system that operates autonomously, con-
tinuously, and integrates sensing, data collection, storage,
data analysis, and visualization in a single system. It allows
different sensors, off-the-shelf and custom, to seamlessly
connect to the system and can integrate various analytics
and visualizations. Additionally, PIMAP is designed to be
deployed in both centralized and distributed configurations
in order to cater to the needs of different deployment set-
tings, including edge, cloud, and hybrid deployments.

3. Case Study: Pressure Injuries and Real-
Time Risk Stratification Using PIMAP

Our main motivation for designing a reliable, easy to
use patient monitoring system for the clinic comes from the
difficulty in preventing pressure injuries. In this section, we
provide some explanation as to why pressure injuries are
still a serious problem in healthcare.

Pressure Injuries

Pressure injuries, recently standardized from the term
pressure ulcers or decubitus ulcers by the National Pressure
Ulcer Advisory Panel [20], are classified colloquially as
“never events”, meaning they should never occur in health
care settings and yet in the U.S. there are over 2.5 million
patients affected every year at a cost of $11 billion [5].
More than 90% of pressure injuries are a secondary condi-
tion, meaning the patient was being treated for a different
condition when the pressure injury formed [4].

Biomechanically, pressure injuries are caused by pro-
longed pressure to an area of the body. Through a com-
bination of prolonged closure of capillaries and lymphatic

vessels, ischemia, reperfusion, and tissue deformation the
affected tissue dies [1] [2] [3]. Typically this occurs at the
bony prominences, such as the sacrum or heels in a patient
lying down. The result is an open wound that descends to
the bone, which must be further treated to avoid infection.

Pressure injuries have an impact on quality of life as they
cause severe pain, treatments increase discomfort and pain,
and impact the social life of the patient [21] [22]. Pressure
injuries are generally developed while patients are being
treated for a different condition, but the resulting pressure
injury can affect treatment options [22].

The current pressure injury standard of care is to evaluate
a patient’s risk of developing a pressure injury based on
the Braden Scale [23] which assigns a risk designation (or
ranking) based on a healthcare personnel assessing factors
such as the patient’s activity, age, nutrition, etc. The Braden
scale is well studied [24], but has come into question as it
has not proven to be effective at predicting pressure injuries
due to its inherent subjectivity in assessing patient risk [24].

The combination of the Braden Scale not being effective
at predicting pressure injuries and that additional measures
beyond nursing interventions may be needed [25] to reduce
pressure ulcer prevalence motivates PIMAP’s design as a
tool to persistently and autonomously monitor patients and
help assess their risk of developing pressure injuries. As
proof-of-concept, we show how PIMAP can be used to strat-
ify patients in real time according to their risk of acquiring
pressure injuries.

Real-Time Risk Stratification Using PIMAP And
Data From A Clinical Trial

Objective Mobility [26] was proposed as an objective
metric to quantify a patient’s mobility using data from a
novel pressure bandage. Mobility or the lack thereof has
been associated with the risk a patient has of developing
a pressure injury. The novel pressure bandage contains a
four by four grid of pressure sensors and was used in a
clinical trial to collect data on five patients with high risk
of forming pressure injuries based on the Braden Scale [23].
Trial enrollment criteria was that a patient must score a 1
(the lowest score) for activity, mobility, and friction/sheer
on the Braden Scale, i.e., patients with the highest risk of
developing a pressure ulcer.

We use the pressure bandage data collected during its
clinical trials to demonstrate how PIMAP can be used to
objectively assess pressure injury risk. We fed the pressure
data to PIMAP as if it were being collected in real time.
PIMAP then calculated patient Objective Mobility over time
and displayed the results in real-time.

While in the original trial five patients were monitored
at non-overlapping times, we instead simulated the patients
as if they were being monitored simultaneously and hav-
ing their risk assessed in real-time. The original pressure
bandage patient data has gaps when the bandage became
disconnected (this is often intentional if the patient needs to
be moved to a different location). In order to present data
that is closest to reality we ran the experiment for 7 hours as



TABLE 1. OBJECTIVE MOBILITY FOR REAL-TIME RISK STRATIFICATION

A B C D E Average
PID | Movements PID | Movements PID | Movements PID | Movements PID | Movements PID | Movements
Per Minute Per Minute Per Minute Per Minute Per Minute Per Minute
4 0.05 1 0.00 5 0.03 4 0.00 1 0.00 4 0.10
5 0.09 3 0.13 2 0.25 3 0.05 4 0.01 1 0.12
1 0.16 4 1.68 4 0.28 1 0.07 5 0.25 5 0.19
3 0.19 2 2.41 1 1.03 5 0.42 3 0.40 2 0.27
2 1.22 5 3.02 3 1.46 2 1.06 2 1.57 3 0.32

this was the amount of time that all patients had consistent
pressure bandage data.

We present the results in Figure 1. Figures la, 1b, Ic,
1d, and le display the amount of movement (the higher the
spike, the stronger the movement) over the length of the
experiment. Figure 1g displays The Movements Per Minute
metric for all patients over the length of the experiment. The
Movements Per Minute metric is a real-time risk assessment
of which patients are moving the least, regardless if the
movement was clinic-assisted. The y-axis is inverted such
that the patient at the top of the graph is the most at risk
of forming a pressure injury as they are making the least
amount of movements. As can be seen the risk changes
over time and there is no one patient that is always most
at risk, which is how the status quo Braden Scale assesses
patients. The patient data used had an enrollment criteria
that all patients must score a 1 (the lowest score) for
activity, mobility, and friction/sheer on the Braden Scale.
Even though all patients had similar Braden Scale risk scores
our metric is able to further distinguish patients in real-time
based on their movement.

In Figure 1g we label five moments in time, labelled A-
E. In Table 1 we rank the patients at each respective moment
in time based on the Movements Per Minute metric. We
demonstrate that a real-time risk assessment can highlight
at any moment in time which patient is most at risk. This
is invaluable to clinicians in a busy clinical setting as the
healthcare staff can focus their efforts on the patients that
are most at risk and not waste time blindly rotating a patient
periodically that is moving on their own. In addition in Table
1 we highlight the average Movements Per Minute over the
length of the experiment by patient. It is clear that this this
fixed value does not provide the insight that the risk a patient
has of forming a pressure injury changes over time. The
real-time assessment that we present does not need clinician
interference and can be used in addition to any tools or
standard of care.

Figure If presents the end to end latency from when
the data was sent in this experimental setup to when the
data in Figures la, 1b, lc, 1d, and le were displayed.
These metrics are set with a five sample delay per patient
at one sample/s. The average latency of this experiment to
display the movement data across all patients is 3.05s, which
includes the time it takes to process the data and the time
it takes to send the data over the network. See Table 4 for
the configuration and Sections 4, 4.2, 5 to fully understand
the configuration.

In an ideal scenario with zero network and processing
latency we would anticipate a 2s latency from the five
sample delay that it takes to calculate and visualize the
data. For purposes of explanation let us assume that PIMAP-
Analyze-Objective-Mobility, which is described in Section
5.3, receives sample 1 at time Os, sample 2 at time 1s,
sample 3 at time 2s, sample 4 at time 3s, and sample 5
at time 4s, at which point the movement metric is created
stored, retrieved, and visualized. Retaining the ideal scenario
criteria that there is zero network and processing delay
sample 1 would have latency of 4s, sample 2 would have a
latency of 3s, sample 3 would have a latency of 2s, sample
4 would have a latency of 1s, and sample 5 would have a
latency of O0s. When we average these results the resulting
latency is 2s. From this experiment we see on average a
1.05s network and processing latency.

We also see in Figure 1f a clear increase in latency
approximately an hour into the experiment as Movements
Per Minute metrics begin to be generated. The metric
Movements Per Minute is calculated after 3,600 movement
metrics per patient are calculated and is a sliding window,
so after a 3,600 gradient metric delay (approximately a one
hour delay) every new movement metric a new Movement
Per Minute metric is calculated.

4. PIMAP Design

There are a wide variety of applications for patient mon-
itoring from services as non-critical as location monitoring
to critical applications such as pressure injury monitoring.
Nevertheless, PIMAP’s premise is that the typical data flow
for most patient monitoring applications is essentially the
same with a few variations.

Data generally starts from a sensor device, for example a
GPS sensor or a pressure sensor, and is sampled periodically.
This data is then typically stored somewhere for future
analysis. Data is then read from this storage and analyzed
as the raw data is often hard to interpret, and then stored
back into storage. Finally the analyzed data is read from
storage and visualized, which may be for clinicians or for a
report to correlate this information with the condition being
monitored. This general workflow is illustrated in Figure 2a.

There are variations to this data flow such as not using
storage and instead going from the sensed data to analysis
and analyzed data to visualization. However, it is generally
better practice to store the data for historical analysis. Oth-
erwise this data is lost and the entire experiment must be
redone to perform new analysis.
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Figure 1. Objective Mobility Real-Time Risk Stratification

PIMAP is designed with these concepts in mind and
concentrates on four components appropriately named based
on the general data flow discussed prior: PIMAP-Sense,
PIMAP-Store, PIMAP-Analyze, and PIMAP-Visualize. All
data passed between components we define to be
lists of PIMAP-samples, PIMAP-metrics, and/or PIMAP-
commands, which are all self-contained, meaning all data
needed to process a PIMAP data type is contained within
itself.

Given the sensitive nature of patient data, PIMAP is
designed with both security and privacy in mind. Mecha-
nisms to ensure secure and privacy-preserving operation are
discussed in Section 4.4.

4.1. PIMAP Data Types

We define three types of data that are passed through
the PIMAP system: PIMAP-samples, PIMAP-metrics, and
PIMAP-commands. All three pieces of data are self-
contained, which means that they can be interpreted on
their own and they do not need some sort of exchange or
handshake to interpret.

Typically PIMAP-samples contain raw sensor data. For
example a pressure sensing device could send data to a
PIMAP-Sense component, e.g. via UDP, at which point
PIMAP-Sense creates a PIMAP-sample that contains the
raw pressure values. A PIMAP-metric is data generated
by analyzing PIMAP-samples. A PIMAP-command can be
used to actuate on a sensing device, e.g. to change its
sampling frequency.



(a) General patient monitor-

ing data flow scenario

(b) Clinic-Sense data flow

(c) Cloud-Sense data flow
scenario

Figure 2.

4.2. PIMAP Functional Components

Examining the general data flow in a patient monitoring
application we develop four main components as mentioned
earlier in Section 4: PIMAP-Sense, PIMAP-Store, PIMAP-
Analyze, and PIMAP-Visualize.

In this section we define the four main PIMAP com-
ponents. Each of these components are abstractions and
are not associated with a specific technology. For example
PIMAP-Sense could be sensing UDP packets or Bluetooth
packets. Our goal is to enable PIMAP to integrate different
underlying technologies in a seamless fashion while still
maintaining the same structure and functionality.

If it is not entirely clear why we would want to treat
these components as abstract objects we will provide an
example. The PIMAP-Store is probably the simplest of these
objects from an interaction perspective. If you write to it
the data is stored and you can read back any data that was
previously written. But, in practice a data-store is not trivial
to implement, the simplest data-store could be a text file, but
it is not immediately clear in what format data should be
written and how to retrieve data quickly. What if we want to
switch to using a database? By treating the data-store as an
object, which at this point in time is a well-established prac-
tice, all that we need to know is that we write either PIMAP-
samples or PIMAP-metrics and we read PIMAP-samples or
PIMAP-metrics. The implementation can change, but the
interface will not. To make this even more concrete for the
current implementation we rely on Kafka [10], which is a
distributed data-store based on the publish-subscribe model,
but when interacting with the PIMAP-Store the developer
does not need to know how to interact with Kafka as this
is all abstracted when using the PIMAP-Store object.

4.2.1. PIMAP-Sense. PIMAP-Sense is how PIMAP inter-
acts with sensor devices. For example if a new novel sensor
is created and is sampled via some sort of microcontroller
as is typical, in all cases this data must be sent somewhere.
One option is to save it locally and then transfer this data to
a computer for post-analysis. But, a more favorable practice
is to send the data to a computer in real-time over a network
or physical wire for real-time analysis. PIMAP-Sense is the
component of PIMAP that gathers and/or senses this sensor
data.

PIMAP-Sense can accommodate a variety of sensing
devices communicating over different network protocol stan-

dards. For example an actual implementation of PIMAP-
Sense is PIMAP-Sense-UDP, which on each call reads UDP
packets that are sent to its interface. One can imagine run-
ning a clinical trial with several devices on several different
patients sending data via UDP to an endpoint. Using PIMAP
PIMAP-Sense-UDP is this endpoint. It is even possible to
have many different PIMAP-Sense components running in
parallel and in many different locations. In addition PIMAP-
Sense can send PIMAP-commands back to the sensor device
(this is in exploratory development).

The core interaction of PIMAP-Sense is that a call or
query to PIMAP-Sense, PIMAP-Sense.sense() returns a list
of PIMAP-samples sent to this endpoint and subsequent
calls return any new PIMAP-Samples sent. A PIMAP-
command is sent using PIMAP-Sense.send(list of PIMAP-
commands).

4.2.2. PIMAP-Store. PIMAP-Store is responsible for
data access in the PIMAP system. PIMAP-Store can
store PIMAP-samples, PIMAP-metrics, or even PIMAP-
commands. To store PIMAP-data only the PIMAP-data itself
needs to be provided to PIMAP-Store, but to retrieve data ei-
ther the sample_type, metric_type, command_type must
be provided. PIMAP itself is basically a publish subscribe
model as we are dealing with time series data. So when data
is retrieved from PIMAP-Store data is returned in order of
the timestamps.

To store data, it is simply PIMAP-Store.store(list
of PIMAP-samples/metrics) and to retrieve PIMAP-
Store.retrieve(sample_type, metric_type, or
command_type), which returns a list of PIMAP-samples
or PIMAP-metrics respectively. It is not guaranteed that all
data will be retrieved in one call, but instead to retrieve all
data PIMAP-Store.retrieve() should be continuously called
until PIMAP-Store.retrieve() returns an empty list.

PIMAP-Store is not coupled to a particular technology
and any implementation of PIMAP-Store must adhere to the
simple guidelines as provided. This may make some data-
store technologies more or less difficult to implement.

4.2.3. PIMAP-Analyze. PIMAP-Analyze creates PIMAP-
metrics from PIMAP-samples. Analysis is often specifically
associated with a specific type of PIMAP-sample. This is
unavoidable as there are very few types of analysis that
can be performed on all types of data that is also useful.



TABLE 2. PIMAP PROFILE OF THREE COMPUTERS

iMac 2010 | System 76 Oryx Pro | Raspberry Pi 2
PIMAP-Sense-UDP.sense() 3,555 49,000 1,217
PIMAP-Store-Kafka.store() 38,780 100,200 3,527
PIMAP-Store-Kafka.retrieve() 102,700 90,840 4,275
PIMAP-Analyze-Objective-Mobility.analyze() In 3,588 10,000 15.20
PIMAP-Analyze-Objective-Mobility.analyze() Out 7,192 20,010 35.00
PIMAP-Visualize-Plt-Graph.visualize() 6,053 1,329 338.0

PIMAP-samples/metrics a second

For example Objective Mobility analysis is performed on
Pressure Bandage PIMAP-samples. It is nonsensical to per-
form Objective Mobility Analysis on other types of PIMAP-
samples.

From experience with using PIMAP-Analyze there are
several different common ways to convert PIMAP-samples
to PIMAP-metrics. The most straightforward is a one to one
conversion, meaning one PIMAP-sample can be analyzed
and used to create a PIMAP-metric. We say this is the most
straightforward because in this scenario PIMAP-Analyze
has no memory, if you feed in ten PIMAP-samples you will
get ten PIMAP-metrics.

Another type of analysis that is also somewhat common
is a many to one ratio of PIMAP-samples to PIMAP-metrics,
for example if one is analyzing the amount of movements
per minute of many PIMAP-samples. In this type of analysis
a history or state is kept and then using a time window
PIMAP-metrics can be generated using multiple PIMAP-
samples.

A less common scenario, but one that we employed in
our analysis, is a many PIMAP-sample to many PIMAP-
metric ratio with a time delay. We employed this strategy
when analyzing the gradient. You need multiple PIMAP-
samples to calculate the gradient, but when calculated each
PIMAP-sample used in calculation has a gradient value.
In this analysis a time window is used to gather PIMAP-
samples and then PIMAP-metrics are generated when this
threshold is reached.

The varieties of analysis that can be supported is rich
and the only guideline we enforce for the PIMAP system
is that PIMAP-metrics must be generated, but this can be a
one-to-one relationship, many-to-one, or many-to-many with
a time delay. And there may be other types of analysis that
we have not yet discovered that are also supported.

The primary interaction with PIMAP-Analyze is
PIMAP-Analyze.analyze(list of PIMAP-samples), which re-
turns a list of analyzed PIMAP-metrics.

4.2.4. PIMAP-Visualize. PIMAP-Visualize is the com-
ponent of PIMAP that gives feedback to the clini-
cian/researcher/developer. PIMAP-Visualize takes in either
PIMAP-samples or PIMAP-metrics and based on instanti-
ation displays the data. A common type of visualization
is displaying the time series data, where the x-axis is the
timestamp and the y-axis is the data being displayed. But,
other types of visualization are also supported, such as heat
maps.

From experience it tends to be more useful to dis-
play PIMAP-metrics than PIMAP-samples as the reason
why PIMAP-metrics are generated is because the PIMAP-
samples are often hard to interpret, but an example of where
this may not be the case is data such as room temperature.

Visualizing time series data is common to most types of
data, but there may be cases where specialized visualization
is necessary and this is supported with PIMAP-Visualize.
For example to visualize a graph one could use PIMAP-
Visualize-Graph and to visualize a heat map one could use
PIMAP-Visualize-Heat-Map. The only guideline is that a
PIMAP-Visualize component must take in a list of PIMAP-
samples or PIMAP-metrics and visualize these in some
way. The main interaction of PIMAP-Visualize is PIMAP-
Visualize.visualize(list of PIMAP-samples/metrics).

4.3. PIMAP Workflows

The interaction among PIMAP’s components are gov-
erned by three main PIMAP workflows:

1) Sense PIMAP-samples and store the PIMAP-
samples (sense and store).

2) Retrieve PIMAP-samples, analyze the PIMAP-
Samples, and store the respective PIMAP-metrics
generated by PIMAP-Analyze (retrieve, analyze,
and store).

3) Retrieve PIMAP-metrics and visualize the PIMAP-
metrics (retrieve and visualize).

The three workflows are separate, but interlinked, and
can be run in parallel and in multiple distributed configu-
rations. For example we present two scenarios, which we
entitle Clinic Sense and Cloud Sense to demonstrate two of
many scenarios in which PIMAP can be configured.

The Clinic-Sense scenario, illustrated in Figure 2c, has
one location, the clinic, which could be a hospital room. In
this scenario one or more sensor devices send sensor data
to a PIMAP-Sense component located in the clinic. The
sense and store workflow, the retrieve, analyze, and store
workflow, as well as the retrieve and visualize workflow are
all located in the clinic. PIMAP is run entirely in the clinic,
but makes no assumptions about the underlying technologies
at work, for example although PIMAP-Store is running in
the clinic, the underlying data-store technology, say Kafka,
could be running remotely.

The Cloud-Sense scenario, illustrated in Figure ??, has
two general locations, the clinic and the Cloud and are



accessible to each other via a network. In this scenario
one or more sensor devices are located in the clinic and
send data to a PIMAP-Sense component. The sense and
store workflow, the retrieve, analyze, and store workflow are
located in the Cloud, and the retrieve and visualize workflow
is located in the clinic. This scenario allows for more
resources and power to be applied to sensing, analyzing, and
storing/retrieving data by utilizing the Cloud. The visualize
component would be in the clinic so that clinicians can see
the patient’s data. To address data security and privacy issues
in this data flow scenario, PIMAP-Sense would incorporate
data security and integrity mechanisms such as encryption

4.4. Privacy and Security

Privacy and security are obviously very important is-
sues to consider when designing any software system and
especially when it comes to handling healthcare informa-
tion, even if sensor information by itself is a is not self-
identifiable to a patient. The current implementation of
PIMAP as of this writing has not handled any patient
identifiable information, but we expect that in the future
we may change and will require private information to be
stored and transferred securely. As such, PIMAP will be
able to integrate standard security and privacy mechanisms
such as authentication and end-to-end encryption.

5. PIMAP Implementation

PIMAP was designed to be easily extensible to ac-
commodate different sensing devices, analytics, and visu-
alization methods. As proof-of-concept, we implemented
the following PIMAP component instances in Python:
PIMAP-Sense-UDP, PIMAP-Store-Kafka, PIMAP-Analyze-
Objective-Mobility, and PIMAP-Visualize-Plt-Graph, each
of which is described in detail below. PIMAP components
can adapt to application requirements, e.g. to accommodate
both low and high throughput scenarios as well as server
and network load.

In Section 6 we will evaluate how PIMAP performs
under the different conditions and workloads.

To enable PIMAP to dynamically adapt to different
application requirements, system conditions, and evaluate
these limitations we developed a profiling methodology. We
profile PIMAP by analyzing the throughput each component
can handle in isolation. The profile is not an absolute limit,
but instead an estimate. In the discussion of the implementa-
tion decisions made for each component we will also discuss
our methods on profiling each component. All throughputs
are reported in PIMAP-samples/metrics per second.

In addition we realize there is a benefit for the PIMAP
system to monitor itself so that it can adapt to different
situations. For this reason each component has a parameter,
system-samples, that can be set to generate PIMAP-samples
that report on information relevant to each component.

5.1. PIMAP-Sense-UDP

User Datagram Protocol (UDP) is part of the Internet
protocol standard and therefore we leverage existing tools
to make the PIMAP-Sense-UDP component. UDP is a non-
reliable communication protocol and therefore is not appro-
priate for scenarios where every piece of data is critically
important. We recognize this and in future development
plan to support reliable communication protocols such as
TCP. The PIMAP-Sense-UDP component is a multi-process
server that listens on a given host and port. The amount of
processes is user configurable, but for evaluation purposes
we use three server processes as we did not find a benefit
to increasing this number on the systems we profiled. We
demonstrate this configuration’s adaptivity in Section 6.1.

To profile PIMAP-Sense-UDP we run one process that
sends PIMAP-samples as quickly as possible. In a separate
process we initialize PIMAP-Sense-UDP to output system-
samples that report the throughput and call PIMAP-Sense-
UDP.sense() as quickly as possible.

We monitor the generated system-samples and average
the reported throughput over the length of profiling. The
results of profiling can be seen in Table 2.

5.2. PIMAP-Store-Kafka

We leverage Kafka [10] in our initial PIMAP-Store
implementation. Kafka is a publish-subscribe data model,
where a producer publishes data to a topic and a consumer
can subscribe to a topic to eventually receive every mes-
sage that was published to the given topic. The PIMAP-
Store component is divided into two interfaces, PIMAP-
Store.store() and PIMAP-Store.retrieve(), which fits natu-
rally into Kafka as PIMAP-Store-Kafka.store() corresponds
to a producer and PIMAP-Store-Kafka.retrieve(topic) corre-
sponds to a consumer. Kafka has the added benefit that data
can be distributed across multiple sites (multiple brokers).
As PIMAP is written in Python we leverage the confluent-
kafka API [27]. A Kafka broker must be setup independently
of PIMAP, but this is relatively easy for a developer to setup
or a paid cloud-based service can be used instead.

PIMAP-Store-Kafka uses the sample_type or
metric_type as the Kafka topic and the PIMAP-
sample/metric as the Kafka value. We create a consumer
per topic requested. Kafka consumers have two parameters
that greatly affect the throughput, the number of messages
and timeout. When a consumer requests a topic from Kafka
it will return after the given number of messages is reached
or a given timeout is reached. To make PIMAP-Store-
Kafka.retrieve() adaptive we fix the timeout to 100ms and
decrease the number of messages parameter if a timeout
occurs, otherwise we increase the number of messages
parameter. We demonstrate how this configuration can
dynamically adapt as system conditions change in Section
6.1.

To profile PIMAP-Store-Kafka.store() we initialize
PIMAP-Store-Kafka to output system-samples and store
as many PIMAP-samples as possible in a single process.



We monitor the generated system-samples and average the
reported throughput over the length of profiling.

To profile the PIMAP-Store.retrieve() interface we re-
trieve the samples that were sent previously in the profile of
PIMAP-Store.store(), monitor the system-samples generated
and average the throughput reported over the length of
profiling. The results of profiling can be seen in Table 2.

5.3. PIMAP-Analyze-Objective-Mobility

Objective Mobility [26] has been proposed as a metric
to quantify patient mobility based on pressure readings
collected by a custom wearable pressure bandage. Using
the four by four grid of pressure sensors embedded into the
bandage Objective Mobility reports an approximate angle of
the patient on a bed and based on the angle variations in
time calculates the amount of movements a patient makes.

PIMAP-Analyze-Objective-Mobility is written in Python
and takes advantage of numpy’s [28] libraries as well as
Python’s map utility to perform parallel calculations as
often as possible. To enable PIMAP-Analyze-Objective-
Mobility to dynamically adaptive to current workload and
network conditions we added an aggregation buffer that
adjusts based on a timeout. If a timeout occurs we increase
the aggregation buffer until we reach a maximum buffer
length based on a maximum processing delay tolerance. If
aggregation increases past the maximum processing delay
tolerance we cut the aggregation buffer in half. Section 6.1
reports on PIMAP-Analyze’s ability to dynamically adapt to
the underlying system dynamics.

To profile the analyze component we send as many
pressure bandage PIMAP-samples as possible in a single
process. We monitor the system samples generated and
average the throughput over the length of profiling The
results of profiling can be seen in Table 2.

5.4. PIMAP-Visualize-Plt-Graph

For our initial visualize component we leverage the mat-
plotlib [29] Python library, a common library used to display
data. We focus on graphing data over time. Often when we
visualize data in this way we can observe phenomena that
would otherwise be unnoticed when looking at a singular
value. An example of this is the difference between a time-
lapsed photograph and video of the night sky. In the time-
lapsed photograph the stars appear as streaks in the sky,
whereas a video depicts the stars moving across the sky (of
course the reality is the stars are actually not moving from
the vantage point of the Earth, but that is besides the point).

To make PIMAP-Visualize-Plt-Graph adaptive we use
an aggregation buffer similar to PIMAP-Analyze-Objective-
Mobility, a limit on the amount of data that can be displayed,
and an update period, which determines how often data is
displayed. If the time to process data is above a threshold
we decrease the size of the aggregation buffer otherwise we
increase the aggregation buffer. If the time it takes to visu-
alize data is greater than the update period we downsample
the data to be displayed. This will decrease the resolution,

but the only alternative is to increase the update period. We
demonstrate this configuration is adaptive in Section 6.1.

To profile the visualize component we visualize as many
PIMAP-samples as possible in a single process. We monitor
the system-samples generated and average the throughput
over the length of profiling. The results of profiling can be
seen in Table 2.

TABLE 3. SETUP FOR THROUGHPUT EXPERIMENTS

Application Location run
Low throughput pressure bandage data, iMac 2010
1 sample/s via UDP

Medium throughput pressure bandage iMac 2010
data, 100 sample/s via UDP

High throughput pressure bandage data, iMac 2010
2,000 sample/s via UDP

PIMAP-Sense-UDP iMac 2010
PIMAP-Store-Katka iMac 2010
Katka iMac 2010
PIMAP-Analyze-Objective-Mobility iMac 2010
PIMAP-Visualize-Plt-Graph,  update iMac 2010
period 1s

Network Local network

6. PIMAP Evaluation

To evaluate PIMAP’s features and performance, we ran
a variety of experiments including: (1) we evaluate PIMAP’s
performance in low-, medium-, and high throughput scenar-
ios to demonstrate that PIMAP has low end-to-end latency
from the time data is sampled to the time data is visual-
ized regardless of throughput; (2) we demonstrate PIMAP’s
ability to integrate new sensors, in particular a custom skin
health sensor; (3) we connect PIMAP to a sensor network
simulation platform (COQOJA [30]); and (4) demonstrate how
PIMAP can be used to analyze and visualize data in real-
time by playing back data obtained from a wearable pressure
bandage.

6.1. Low, Medium, And High Throughput Scenario
With Low End To End Latency

To demonstrate PIMAP’s ability to adapt to different
throughput scenarios, we evaluate PIMAP’s end-to-end la-
tency, i.e., the time between when the data is sampled to the
time it is visualized. We also monitor how PIMAP adapts
to low, medium, and high throughput scenarios.

TABLE 4. OBJECTIVE MOBILITY EXPERIMENTAL SETUP

Application Location run
Patient data (x5) sent at 1 sample/s via iMac 2010
UDP

PIMAP-Sense-UDP iMac 2010
PIMAP-Store-Kafka iMac 2010
Kafka Remote Server
PIMAP-Analyze-Objective-Mobility iMac 2010
PIMAP-Visualize-Plt-Graph, ~ update iMac 2010
period 1s

Network Internet
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Figure 3. Evaluating PIMAP’s adaptiveness

We deploy all components of PIMAP locally on one
computer (see Table 3 for the experimental configuration
used). Based on the profiling information listed in Table 2
the limiting throughput is PIMAP-Sense, which is a little
over 3,500 PIMAP-samples/s. Based on this limit we ex-
periment with a low throughput scenario of 1 sample/s, a
medium throughput scenario of 100 PIMAP samples/s, and a
high throughput scenario of 1,000 PIMAP samples/s. We ran
each experiment for ten minutes and calculated the average
end-to-end latency for the low throughput scenario to be
20.0ms, for the medium throughput scenario to be 203ms,
and for the high throughput scenario to be 411ms. From
these results, we observe that PIMAP’s latency does not
scale linearly with sample rate and is closer to logarithmic
scaling, and even at a high sample rate of 1,000 samples/s,
PIMAP stays below 500ms.

To showcase how PIMAP can adapt to the dynamics of
the application and underlying network, we ran an additional
experiment where we dynamically adjust the sample rate.
We use the same setup as in the previous experiment and
for two and a half minutes we send at a low throughput
of 1 sample/s, the next two and a half minutes we send
at a medium throughput of 100 samples/s, the next two
and a half minutes we send at a high throughput of 1,000
samples/s, and for the final two and a half minutes we send
at a low throughput of 1 samples/s. The results can be seen
in Figure 3 and it we can observe how the system is able
to adapt as we increase sample rates.

6.2. Support For Different Sensor Types

An important consideration when designing PIMAP was
to allow for various types of sensors. If we only support
one type of sensor the system does not provide value to
the majority of the community and as discussed in Section
2 the literature tends to provide such one off systems,
which makes it difficult to reuse existing implementations.
To support a large variety of types of sensors we provide
very loose guidelines on what type of data can be sent in
a PIMAP-sample. So far in our development we have not
encountered data that we cannot encode in a PIMAP-sample
or PIMAP-metric.

To reiterate the sensor information of a PIMAP-sample
is stored in the sample field. In our implementation this
field is a string representation of a dictionary. For example

pressure bandage data with no pressure applied, used in
Objective Mobility analysis [26], can be converted to a
string and will look as follows:

”sample: {"pressure_bandage’:’[[0,0,0,01,[0,0,0,0],
[0,0,0,01,[0,0,0,0]]’, *pressure_bandage_units’:’mmHg’ }”

To unpack the sample one can use the built-in ast
(Abstract Syntax Trees) Python library that can convert a
syntactical grammar into its corresponding type. Another
way data can be passed and converted is using the builtin
pickle Python library, by pickling data when inserting as
a sample and unpickling when reading the PIMAP-sample
and analyzing.

To demonstrate PIMAP’s ability to incorporate new
sensors we setup an environment in which we gathered,
analyzed, and visualized the impedance spectroscopy data
from a single Sentinel bandage [31], which we obtained
through our collaboration with UCSF. All tests were run
on a single Linux laptop and on a local network. The Sen-
tinel bandage generating impedance spectroscopy data was
plugged into the laptop via USB and a custom PIMAP-Sense
component was used to read the serial data and convert it
to a PIMAP-sample. The PIMAP-samples were analyzed
using a custom PIMAP-Analyze component that converted
the data into a PIMAP-metric that can be displayed using
a heat map. Finally we created a custom PIMAP-Visualize
component that can display the heat map data.

7. Future Work And Conclusion

In this work we presented PIMAP, an IoT system for
continuous, autonomous, real-time patient monitoring that
can be deployed in a clinical and long-term care facilities as
well as at home. As a holistic patient monitoring system, it
integrates the basic patient monitoring workflow, i.e., sensed
data collection, storage, analytics and visualization. We
demonstrated how PIMAP can be use in real-world settings,
in particular acquiring and processing pressure data from a
custom pressure sensor, and based on the assessed mobility
levels of the patients, determining their risks of developing
pressure ulcers, and presenting that information to clinicians
in real time. We also evaluated PIMAP’s performance and
showed that it yields adequate end-to-end latency in both
low throughput and high throughput scenarios. We also show
that PIMAP is able to integrate new sensors. PIMAP is
planned to be released under an open source license.
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