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Abstract—Characterizing and modeling node mo-
bility is of critical importance in building intelligent
transportation systems and their applications. In this
paper, we discuss the scale-free properties of some im-
portant human mobility characteristics, namely spatial
node density and mobility degree, and show that they
exhibit behavior that can be described by a power-law.
Based on their power law characteristics, we derive
analytical models for the spatial node density and
mobility degree and showed that the data generated
by the proposed analytical models closely approach
empirical data extracted from the real mobility traces.
Another contribution of our work is to use the proposed
analytical models to build a synthetic mobility regime
that is suitable for simulations of intelligent transporta-
tion systems. Finally, through network simulations, we
show that ad-hoc network routing behavior under our
mobility regime closely approximates routing behavior
when the corresponding real trace is used.

I. Introduction
As computing and sensing devices become more preva-

lent and embedded in everything around us and wireless
communication more ubiquitous, they have enabled a
variety of emerging applications such as Intelligent Trans-
portation Systems, or ITS. According to the European
Union’s Directive 2010/40/EU [1], ITS embodies services
that employ "information and communication technologies
in the field of road transport, including infrastructure,
vehicles and users, and in traffic management and mobility
management, as well as for interfaces with other modes
of transport". It also includes the use of information and
communication technologies to improve public- and mass
transit systems’ efficiency and safety.

Understanding how people move in different environ-
ments and at different time scales is thus critical to
enable ITS applications and services. The need for a
deeper understanding of user mobility in wireless network
environments has been well recognized (e.g., [2]) and
has captured considerable attention from the networking
community. CRAWDAD [3] is a notable example of an
initiative funded by the US’ National Science Foundation
(NSF) whose goal is to make real traces of network user
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activity and mobility publicly available. However, even
with such efforts, availability of real human and vehicular
mobility traces is still quite limited and so is availability
of real testbeds. As an alternative, a number of research
efforts focus on extracting features from real mobility
records (e.g., mobility traces) to build realistic mobility
generators that will drive simulation platforms.

One of the main challenges in constructing mobility
generators is developing models that can capture the
complexity of human and vehicular mobility, and their
key features, in real-world settings [4], [5], [6]. Two such
key features are clustering, which can be defined as the
tendency of people to agglomerate [7] and geographical
preference, which refers to people’s preferences for partic-
ular locales. The work in [8] proposes spatial node density,
defined as the number of users located in a given unit area,
as a way to measure the degree of clustering associated
with a given user population. Spatial node density has
considerable impact on fundamental network properties
such as connectivity and capacity, which in turn have
direct influence on core network functions like medium
access and routing. Our prior work [8] showed that users
tend to congregate and form clusters, rather than being
homogeneously distributed over an area.

To date, only a few synthetic mobility regimes have
attempted to model spatial node density. Some examples
include [9], [10] and [11], which propose analytical models
to study spatial node density under Random Waypoint
(RWP) mobility. In [12], spatial node density has been
modeled using first order ordinary differential equations
(ODEs) whose parameters are extracted from real mobility
traces. Using real traces to set values of model parameters
is not ideal especially because of limited trace availability
which may yield parameters that are specific to certain
scenarios. In our previous work [13], we showed empiri-
cally, using real mobility traces collected in a variety of
scenarios, that spatial node density and node mobility
degree (i.e., the number of distinct cells visited by an indi-
vidual node) observed in human mobility can be modeled
by a power law. We then proposed a model to analytically
describe the heavy-tail behavior exhibited by spatial node
density and mobility degree resulting from user mobility,
and confirmed that the proposed model closely approx-
imates empirical spatial density distributions found in
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real mobility traces. As an example application of this
analytical model, we used it to derive a mobility regime
and showed how the proposed mobility regime closely
resembles the real trace and the analytical model.

In this paper, we extended our previous work as follows:
(1) We show how our mobility regime can be used to
generate synthetic mobility traces for scenarios motivated
by ITS applications; (2) We evaluate the fidelity of our mo-
bility regime by comparing mobility features (i.e., spatial
node density and mobility degree) from synthetic traces
generated by the model against mobility traces generated
using a well-known mobility trace generator; (3) We also
evaluate how accurately our mobility regime reproduces
user mobility characteristics, i.e., spatial density and mo-
bility degree by conducting a comparative study using
four well-known mobility regimes, namely: Random Way-
point mobility (RWP), Natural [14], Clustered Mobility
Model (CMM) [15], and Self-similar Least Action Walk
(SLAW) [16]. Our results show that our mobility regime is
the one that most closely approximates the real trace; (4)
Additionally, we expand our study of node mobility degree
behavior and show that, similar to a campus scenario,
mobility degree in a vehicular scenario also follows a Power
Law; (5) We conduct a comparative study of the proposed
mobility regime when evaluating network routing and
show that routing exhibits comparable performance under
our mobility regime when compared to the real trace. We
also show that our model’s fidelity to the real trace is
considerably higher when compared to existing mobility
regimes.

The remainder of this paper is organized as follows: the
next section describes the mobility datasets used in our
study. In Section III, we present our empirical study on
the power law properties of human mobility. Section IV
introduces our analytical model for spatial node density
and mobility degree and verifies that it matches well the
same metrics extracted from real mobility datasets. In
Section V, we present the Scale-Free Mobility Regime
(SFMR), a waypoint-based mobility regime capable of
generating mobility traces whose spatial node density and
mobility degree resembles closely the ones measured in
real human mobility scenarios. In Section VI, we describe
the experimental methodology we use to evaluate SFMR’s
performance and in Section VII, we present SFMR’s per-
formance results. Section VIII shows how to use SFMR
to generate mobility traces for ITS-inspired scenarios and
Section IX concludes the paper with some directions of
future work.

II. Mobility Traces
In our study, we use real traces which are summarized in

Table I in terms of number of users/nodes, trace duration,
and data sampling period . These traces were collected
in scenarios that are quite diverse: (1) Quinta [17] was
collected is a city park in Rio de Janeiro, Brazil; (2)
Dartmouth [18] logs user access to Dartmouth College’s
campus WLAN in the form of AP association and dis-
association events (denoted as "A/D events" in Table I’s

Data Sampling column); (3) SF Taxis [19] refers to the
vehicular mobility trace collected in the city of San Fran-
cisco, California, USA, where a fleet of approximately 500
taxi cabs was equipped with GPS trackers and had their
positions logged for a period of 24 days. Note that two of
the traces, i.e., Quinta and SF Taxis were collected using
GPS devices, while the third one, textitDartmouth, logs
user activity in a WLAN environment.

Trace # users # Cells Duration Sampling
Quinta [17] (GPS) 97 16 900s 1s
SF Taxis [19] (GPS) 483 1600 24 days 1 to 3 mins
Dartmouth [18] (WLAN) 6524 1776 60 days A/D events

TABLE I
Summary of user mobility traces considered in our study.

a) Cells: The area in which mobile users move is
divided into equal sized squares, or cells. When considering
infrastructure-based wireless LAN (WLAN) traces, such
as the Dartmouth trace, every cell corresponds to an
AP. We employ similar criteria (AP average transmission
range) for the GPS traces and in our experiments we used
140m-by-140m cells.

b) Spatial Node Density and Mobility Degree:
Spatial node density is defined as the number of nodes
located in a given cell while Mobility degree is the number
of cells visited by a node.

c) Node Speed and Pause Time: We compute
node speed as d

∆t where d is the distance traveled between
two consecutive entries in the GPS trace at times t1 and t2
and ∆t = t2 − t1. Pause time is calculated for the Quinta
trace 1 as P = ∆t, if d < threshold, or zero otherwise. We
use threshold= 0.5m since, in the Quinta trace, data is
sampled every 1sec and pedestrians do not typically move
much in 1sec.

III. Power Law and Human Mobility
In this section, we show that both spatial node density

and mobility degree resulting from human movement in
different scenarios exhibits heavy tail behavior. Power
laws are expressions of the form P (x) ∝ x−α, where α
is a constant parameter and x are the measurements of
interest. Few physical phenomena follow a power law for all
values of x [20]. Usually, only the tail of the distribution,
i.e., starting from a given minimum value, xmin, follows a
power law. Thus, given a set of values that correspond to
the observed data and the hypothesis that the data was
extracted from a distribution that follows a power law, we
want to verify if this hypothesis is plausible.

We fit the data from our mobility traces into a power
law and compute its parameters by following the statistical
framework described in [20]. We then apply a goodness-of-
fit test also from [20], which generates a p value, used
to test whether a distribution follows or not a power
law distribution. In other words, the test checks if a
distribution following a power law is a plausible fit for the
empirical data. This test computes the distance between
the empirical data distribution and the hypothesis of the

1We compute pause time for the Quinta trace as we will use for the
experiments reported in Section VII-B. The Quinta trace was post-
processed to account for possible GPS errors, as indicated in [17].
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model. This distance is computed through the statistical
test of Kolmogorov-Smirnov (KS), and is compared with
the distance of measurements taken from a set of synthetic
data drawn from the same model. The value of p is defined
as a fraction of the distance of the synthetic data that is
greater than the empirical distance. We use p < 0.1 [20]
to reject the hypothesis that the empirical data follows a
power law.

A. Spatial Node Density
This section presents the hypothesis test that the spatial

node density is well represented by a power law distribu-
tion. Figures 1(a), 1(b) and 1(c) shows the cumulative dis-
tribution functions (CDFs) of spatial node density for the
Quinta, Dartmouth, and the San Francisco Taxis traces
respectively, along with the fitting of the data according to
a power law. For the sake of comparison, these figures also
plots the fitting of the same data using the exponential and
log-normal distributions, as suggested in [20]. This is done
in order to ensure that not only a power law distribution
is a good fit for the data, but also provides better fit when
compared to other distributions.

Additionally, the graphs in Figure 1 show the values for
the parameters of the fitted curves. It also shows the values
of p for the power-law fit for all three traces studied. We
observe that p is well above the reference threshold of 0.1
used in [20] for all three traces, validating the hypothesis
that the spatial node density distribution follows a power
law with parameters α and xmin approximately equal to
2.5 and 10− 20% of the upper density, respectively.
As pointed out in the previous section, the value xmin

which determines where the heavy tail behavior begins
is sometimes imprecise. In our experiments we found
that this value ranges from 10% to 20% of the upper
density (i.e., the maximum value of density measured).
These findings are consistent with the well known “80/20”
rule [21].

Here, the exponent α represents the slope of the curve,
and can be extracted from the observed data by using the
following formula [20]: α = 1 + n[

∑n
i=1 ln xi

xmin
]−1, where

xi are the measured values of x, and n is the number of
samples above xmin.
The parameters of the exponential and log-normal dis-

tributions were extracted from the data set by fitting
the best curve that minimizes the distance to the real
data, using Matlab’s fitting toolbox. Table II compares
the fitting errors between the different distributions (i.e.,
power law, exponential, and log normal) and the traces.
The power law distribution fitting yields errors at least
2 orders of magnitude smaller than the fittings using the
other distributions.

B. Mobility Degree
Node mobility degree, or the number of different loca-

tions or cells that a node visits, is another important factor
in mobile networks. For example, in disruption-tolerant
networks (DTNs) or social networks, a node’s degree of

mobility will directly affect the node’s node ability to
relay messages since a node that visits a greater number
of locations would potentially have more opportunities of
contacts with other nodes. Thus, mobility degree can be
used to decide whether a node is a good candidate to act
as a message relay and/or how many copies of a message
the node should carry.

Distribution SF Taxis Quinta Dartmouth
(density) (density) (density)

Power Law 2.6306e-06 5.7428e-04 7.8624e-06
Exponential 0.0173 0.0390 0.00380
Log-normal 0.0154 0.0192 8.4840e-04

TABLE II
Mean square error resulting from power-law, exponential,
and log-normal fitting of the traces’ spatial node density.
By applying the same method used in Section III-A, we

show that the cumulative distribution of the number of
distinct locations visited by a node also presents a heavy
tail behavior, i.e., the hypothesis that node mobility degree
follows a power law distribution is also plausible.

Figure 1 shows the CDFs of the distributions of the
number of cells visited by users for the Dartmouth (Fig-
ure 1(d)) and SF Taxi traces (Figure 1(e)), along with the
fitting of the data according to a power law, exponential,
and log-normal distributions 2. Here we can also observe
that the curve that approaches the real data the most
is the power law fit, which attests to the fact that most
users tend to have low mobility or be stationary, while a
small portion of users are highly mobile and visit a large
number of locations. Table II shows the mean square error
of each fit for the spatial node density metric, regarding
Dartmouth and SF Taxi traces. Similar to the spatial
node density results, the power law distribution also shows
fitting errors for mobility degree at least 2 orders of
magnitude smaller than the other distributions for both
Dartmouth ad SF Taxis traces, as can be observed in
Table III.

Distribution SF Taxis Dartmouth
(mob. degree) (mob. degree)

Power Law 6.0948e-05 5.8607e-05
Exponential 0.0025 0.0022
Log-normal 0.0461 0.0014

TABLE III
Mean square error resulting from power-law, exponential,
and log-normal fitting of the traces’ node mobility degree.

IV. Scale-Free Stochastic Model
We propose in this section an analytical model, named

Scale-Free Stochastic Mobility (SFSM), which is based on
the spatial node density and node mobility degree power-
law behavior shown in Section III. SFSM’s contributions
include the ability to: (1) express analytically these key
features of human mobility which explains the formation
and maintenance of clusters, and (2) generate mobility
regimes that follow the observed power-law behavior of
user mobility in real scenarios without the need to extract
parameters from real traces. In Section V, we exemplify
SFSM’s latter contribution by presenting an SFSM-based
mobility regime.

2Since nodes in the Quinta trace visit a relatively small number of
locations, the trace does not exhibit enough mobility to be statisti-
cally representative of node mobility degree. As such, we do not use
the Quinta trace in our mobility degree characterization.
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(a) Quinta Trace
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(b) Dartmouth Trace
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Fig. 1. CDFs of the spatial node density (a), (b), (c) and node mobility degree (d), (e) distributions for the traces.

A. Spatial Node Density as a Stochastic Process

Motivated by the empirical results presented in the
previous section we now seek to model the spatial node
density by means of a stochastic process. To this end, we
divide the cells in groups such that cells with the same
number of nodes belong to the same group. Then, we find
the transition probabilities for a cell to migrate from its
current group to another, either denser or sparser, group.
These transition probabilities allow us to derive the node
density distribution in the cells. In [22], a similar model
was presented for modeling the income of people living in
the UK in the early 50‘s.

We consider that the spatial node density distribution
of countable groups of cells follow a stochastic process,
and the stochastic matrix remains constant over time.
In such context and provided certain specific conditions
discussed below are satisfied, the distribution will tend
towards an equilibrium distribution dependent on the
stochastic matrix but not on the initial distribution. Table
IV summarizes SFSM’s notation.

We assume that cell density, i.e. the number of mobile
users populating a cell, is divided into a number of pro-
portionally distributed ranges. For example, we consider
ranges per time interval to be [1, 2) nodes, [2, 4) nodes,
[4, 8) nodes, [8, 16) nodes, and so forth.
We use smaller ranges for lower density values and

larger ranges for higher density values, due to the fact
that higher densities do not occur as frequently. This is
a reasonable assumption since sparse cells occur in much
greater numbers than dense cells, i.e. it is not uncommon
for a small subset of the cells to account for most of the
nodes in the entire network.

We then consider that the change in node density distri-
bution in any individual cell in a given interval depends on
its state in the previous interval and on a random process.
In other words, we consider node density variation across
these ranges as being a stochastic process. In fact, as users
move, there are always new users coming into some cell and
other users leaving. An acceptable assumption to make is
that for each user leaving a cell, there is a cell welcoming
that user in the next instant of time, and vice-versa. This
assumption will imply that cell density is approximately
constant over time and that each mobile node decides
where and when to move. We also assume that the total
number of cells in the system does not change with time
as the region under study remains fixed.

Param. Description
Xr number of cells in each range Rr
Xs number of cells in each range Rs
prs(t) probability of cell in range Rr who shifts to range Rs
pru(t) ratio of cells in range Rr that jumps u ranges
b root of g(z)
N total number of cells
ymin lowest cell density
ys lower bound of the number of cells in range Rs
10h extent of each range
F(ys) distribution of the number of cells exceeding ys

TABLE IV
Summary of SFSM Notation.

Under such assumptions, to describe the spatial node
density distribution, we first define Xr(0) as the number
of cells in each range Rr, r = 0, 1, 2, ... at initial time T0,
and a series of matrices p′

rs(t) as the probability of cells
of Rr at time Tt who are shifted to range Rs in the next
interval time Tt+1. Then, the density distribution xr(t)
will be generated according to Equation (1).

Xs(t+ 1) =
∞∑
r=0

Xr(t)p
′

rs(t) (1)
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If we consider that the ranges are sorted by size, where
the lowest cell density range is R0, then we are able to
define a new set of stochastic matrices

pru(t) = p
′

r,r+u(t) (2)

and rewriting Equation (1) as

Xs(t+ 1) =
s∑

u=−∞
Xs−u(t)ps−u,u(t) (3)

pru(t) carries the information on the ratio of cells in
range Rr which jumps a number u of ranges in Tt. As
such, the frequency distribution of pru(t) in u, is likely to
be centered around u = 0.
In practice, this implies that the probability of cells

shifting upwards and downwards across density ranges
changes very little over time. We thus keep p′r,r+u(t) =
pru(t) constant over time.

Given the discussion above, let us assume that, for all
values of t and r, and for some fixed integer n, we have

p
′

r,r+u(t) = pr,u(t) = 0 if u > 1 or u < −n (4)

i.e., no cell can move upwards by more than one range
or downwards by more than n >= 1 ranges at a time.

p
′

r,r+u(t) = pr,u(t) = pu > 0 (5)
−n =< u =< 1 and u > −r

Equation (5) is our basic postulate, which follows from
our findings from Section III-A, that has tested the hy-
pothesis that spatial node density follows a power law.
What Equation (5) tells us is that the probabilities of a cell
shifting up and down along the ranges of cell densities are
distributed independently of the current cell density. This
is true despite the imposed threshold forbidding that a cell
descends below a given number of ranking positions and
the frequency distribution of prs(t) assumption discussed
above. This will lead to a density distribution which obeys
a Pareto’s law, at least asymptotically, for high cell density
values.

We also need to assume that for every value of r and t
∞∑
s=0

p′rs(t) =
∞∑

u=−r
pru(t) = 1 (6)

which, according to (5), also implies

1∑
u=−n

pu = 1 (7)

The assumption described by Equation (6) tells us that
cell density preserve their identity over time, as described
in Section IV-A above.

We also need to make sure that the cell density pro-
cess is not dissipative. In other words, cell density does
not increase indefinitely without reaching an equilibrium
distribution. We can then denote

g(z) ≡
1∑

u=−n
puz

1−u − z (8)

Thus, our stability assumption is as follows:

g
′
(1) ≡ −

1∑
u=−n

upu is positive. (9)

This means that for all cells, initially in any one of
ranges Rn, Rn+1, Rn+2..., the average number of ranges
shifted during the next time is negative.

Now we determine the equilibrium distribution corre-
sponding to any matrix p

′

r,r+u(t) = pr,u(t) according
to our assumptions. Owing to the uniqueness theorem
mentioned above in Section IV-A, it will be sufficient to
find any distribution which remains exactly unchanged
under the action of the matrix p′rs(t) over time. Such
distribution, when found, must be (apart from an arbitrary
multiplying constant) the unique distribution which will
be approached by all distributions under the repeated
action of the matrix multiplier p′rs(t) over time.
If Xs is the desired equilibrium distribution, we need by

(2), (4), (5)
Xs =

1∑
u=−n

puXs−u for all s > 0 (10)

and

X0 =
0∑

u=−n
quX−u where qu =

u∑
v=−n

pr (11)

We need only satisfy (10), since (10), (4), (5) and (6)
ensure the satisfaction of (11) as well. Now a solution of
(10) is

Xs = bs (12)

where b is the real positive root other than unity. of the
equation

g(z) ≡
1∑

u=−n
puz

1−u − z = 0 (13)

where g(z) was already defined in (8). Descartes’ rule
of signs establishes that (13) has no more than two real
positive roots: since unity is one root, and g(0) = p0 > 0,
and g′(1) > 0 by (9), the other real positive root must
satisfy

0 < b < 1 (14)

Hence (12) implies a total number of cells by

N ′ = 1
1− b (15)

and, to arrange for any other total number N , we need
merely modify (12) to the form

Xs = N(1− b)bs (16)

We can now assume that the proportionate extent of
each range is 10h, and that the lowest cell density is ymin,
then Xs is the number of cells in the range Rs whose lower
bound is given by
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ys = 10shymin from where log10ys = sh+ log10ymin
(17)

By summing a geometrical progression, using (16), we
now find that in the equilibrium distribution of the number
of cells exceeding ys is given by

F (ys) = N.bs from where log10F (ys) = log10N+s.log10b
(18)

Now put

α = log10b
−1/h and γ = log10N + αlog10ymin (19)

Then it follows from (17) and (18) that

log10F (ys) = γ − αlog10ys (20)

This means that for y = y0, y1, y2..., the logarithm of
the number of cells exceeding y is a linear function of y.
This states Pareto’s law in its exact form [20].

Thus, if all ranges are equal proportionate extent, our
simplifying assumptions ensure that any spatial node den-
sity initial distribution will, with time, approach the exact
Pareto distribution given by Equations (19) and (20).

We validate the proposed SFSM model for spatial node
density empirically by comparing it with mobility recorded
in the Quinta, Dartmouth, and SF Taxis traces (summa-
rized in Section II). The graphs in Figures 2(a), 2(b) and
2(c) show, for each trace, the probability of finding a cell
that was visited by y or more mobile users. They were
computed by extracting the number of users visiting each
cell during a given interval, i.e. [800s, 900s] for the Quinta
trace, and a random non-interrupted 24 hour interval for
the Dartmouth and SF traces. These intervals were chosen
based on results presented in [8], which show that node
density distribution does not change over time.

These figures also shows the graphs obtained by running
SFSM for each trace. The coefficients of the stochastic
matrix (i.e., the probability pu of a cell changing u ranges
between two consecutive time intervals) used to param-
eterize SFSM were extracted from the traces so that we
could compare to the empirical density and validate our
model. The SFSM curves start at xmin = 4, 24, 247 for
Quinta, Dartmouth and SF Taxis traces, respectively, and
are derived in Section III and shown in Figure 1. To
quantify SFSM’s fidelity to the empirical spatial node
density for values of density greater than a ymin, we define
the modeling error as a perceptual difference between the
distribution obtained from the real traces and the one
computed from SFSM. In other words, the modeling error
is calculated as the absolute difference between SFSM-
derived spatial node density distribution and the distribu-
tion computed for the real trace, taken at each point in the
x-axis in the tail of the distribution (i.e., (> ymin), divided
by the corresponding value from the real trace density
distribution. We computed the mean error and confidence
intervals with a 95% confidence level for the three traces

studied. We average the errors computed for all points
in the horizontal axis for values > ymin. The mean error
and confidence interval for the Quinta trace shown in Fig-
ure 2(a) are 0.16%[0.15%, 0.19%], respectively. Figure 2(b)
shows the Dartmouth trace results, for which the mean
error and confidence interval are 1.17%[1.38%, 0.96%],
respectively, and Figure 2(c) shows results for the San
Francisco Taxi dataset with mean error and confidence
interval of 0.43%[0.47%, 0.38%], respectively.

B. Mobility Degree as a Stochastic Process
Following the observation that, similarly to the spatial

node density, mobility degree also exhibits power law be-
havior (see Section III), we follow the same methodology
used in Section IV-A to derive a stochastic model for user
mobility degree.

Recall that mobility degree is defined as the number of
cells visited by a mobile user over a given period of time.
As such, a user with low mobility visits a small number
of cells, while a very mobile user visits a larger number of
cells. In order to describe the mobility degree distribution,
we define Θd(0), as the number Θd(0) of users in each
mobility degree range Dd, d = 1, 2, ... at the initial time
T0, and a series of matrices p′

dv(t) as the probability of
users in the range Dd at time Tt who shifted to range
Dv in the following interval time Tt+1. Then, the mobility
degree distribution θd(t) will be generated according to

Θv(t+ 1) =
∞∑
d=0

Θd(t)p
′

dv(t) (21)

Just as we did before, consider that the ranges are
ordered by their size, where the lowest range of number
of cells visited per user is C0, then we can define a set of
stochastic matrices such as

pdf (t) = p
′

d,d+f (t) (22)
where pdf (t) indicates the ratio of users inDd who jumps

over a number f of ranges in Tt. Then, Equation (21)
becomes:

Θv(t+ 1) =
v∑

f=−∞
Θv−f (t)pv−f,f (t) (23)

Following analogous derivations as in Section IV-A, we
are able to find the equilibrium distribution F (ωv) of the
number of users whose number of visited cells exceeds ωv.

We validate the proposed SFSM model for node degree
distribution empirically by comparing it with mobility
recorded in the Dartmouth, and SF Taxis traces. Figures
2(d) and 2(e) show the probability of a node visiting n or
more cells in a single trip, and by running SFSM for each
trace. They were computed by counting the number of cells
each upropmted user visits during the trace duration. The
coefficients of the stochastic matrix (i.e., the probability
pf of a user changing f ranges between two consecutive
time intervals) used to parameterize SFSM were extracted
from the traces so that we could compare to the empirical
density and validate our model.
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Fig. 2. Spatial node density (a),(b),(c) and mobility degree (d),(e) distributions extracted from the mobility traces compared against
distributions generated by SFSM.

V. Generating Scale-Free Mobility Regimes

Intelligent Transportation Systems have leveraged re-
search and technology motivated by vehicular ad-hoc
networks, or VANETs. In fact, many ITS services rely
on the provision of an effective communication platform
between vehicles, as well as between vehicles and road
infrastructure (e.g., road-side units, sensors, etc). Also,
communicating devices, such as laptops, smart phones,
and even sensors now often carried by drivers and pas-
sengers can also be used to track vehicle mobility which is
influenced by how humans move, their habits, social links,
and locality [23]. It is known that in the real world, nodes
present clustering behavior and community structure [7],
with islands of connectivity and paths between clusters.
For example, in VANETs, vehicles tend to group around
traffic lights, junctions, toll, hazards, etc. The same be-
havior is also found in human mobility, where they tend
to group in popular places, such as classrooms or cafeterias
on campus, popular events, cafes, restaurants, etc.

As it is usually expensive and often logistically difficult
to deploy and test ITS solutions in real world environ-
ments, network researchers and practitioners rely on sim-
ulation tools in order to develop and evaluate ITS services.
Moreover, since we would like to be able to simulate real-
istic scenarios, mobility regimes that can closely represent
real-world mobility are imperative in assessing the true
impact and performance of ITS applications and proto-
cols. In this section, we introduce the Scale-Free Mobility
Regime (SFMR) that considers the previously discussed
stochastic properties of node mobility, namely spatial node
density and mobility degree, as well as nodes’ geograph-
ical preferences. SFMR generates mobility regimes that

reflect realistic human mobility behavior as characterized
in Section III. Next, we show how to use the Scale-Free
Stochastic Model (SFSM) proposed in Section IV to set
SFMR’s parameters.

In a nutshell, using SFMR to generate realistic mobility
regimes works as follows: Before the simulation begins,
cells with high node density (or clusters) are defined by
specifying that the spatial node density in these cells
is greater than a given threshold ymin; in other words,
for these high density regions, we use the tail of the
spatial density distribution to derive the probability that
a node will choose a cell in the region. In the case of
cells where density is below the ymin threshold, we apply
an uniform spatial density distribution, for simplicity. As
shown in Section VII, our results indicate that uniform
spatial node density is a reasonable approximation for low
density regions. As part of our ongoing work, we have
been studying more closely the impact of different known
distributions to model cell density bellow ymin.
As we have previously discussed, one of SFMR’s benefits

is the ability to generate mobility regimes that result
in spatial density distributions similar to the ones found
in real mobile applications (as exemplified by the traces
presented in Section II) without the need to extract pa-
rameters from mobility traces. Below we provide a detailed
description of SFMR, including how to set its parameters.

SFMR has two phases, namely initialization and move-
ment. During the initialization phase (shown in Algorithm
1), nodes can be distributed in the geographic area accord-
ing to an arbitrary‘ distribution. In the movement phase,
for simplicity, we use a waypoint-based mobility regime,
contending that simplicity is critical for wide adoption of
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any mobility regime. As such, the steps involved in the
movement phase, as shown in Algorithm 2.

During initialization, described in Algorithm 1, some
node l may decide with probability 1 − P (ηl) if it will
remain in the same cell, or if it will choose a destination
with another cell with probability P (ηl). The number of
different cells ηl visited by node l is defined a priori by
sampling from the computed distribution F (ωv). F (ωv)
can be obtained as described in Section IV-B. The prob-
ability P (ηl) that a user l will leave a cell is computed in
Equation 24, and this value of P (ηl) is kept constant for
every node l during the simulation.

P (ηl) = ηl∑
m ηm

∀m ∈ {1..L} (24)

When the simulation is in the movement phase, nodes
behave as described in Algorithm 2. For every node, using
a probability distribution given by F (ωv), the node decides
with probability P (ηl) if it is going to move to another
cell, as mentioned earlier. If the node decides to move, it
chooses its next cell using a probability distribution given
by F (ys). A (x, y) destination is picked randomly inside
the chosen cell. Then the node moves to that destination at
a randomly chosen speed, uniformly distributed between
[Vmin, Vmax]. When the node reaches its destination it
pauses for some time, and repeats. We discuss how the
values for Vmin, Vmax, and pause time are chosen below.
The decision of which cell is going to be the next

destination is made with probability P (µi). We assume
that the probability P (µi) that a node would choose cell
i as a next destination depends on the cell intensity µi,
that can be obtained by sampling from the computed
distribution F (ys), of every cell i. The probability P (µi) is
computed as in Equation 25, and this value of P (µi) (i.e.,
the probability that cell i is chosen, given its intensity µi)
is kept constant for each cell i during the simulation. Table
V summarizes SFMR’s notation.

P (µi) = µi∑
j µj

,∀j ∈ {1..N} (25)

Param. Description
Fys Distribution of the numb. of cells exceeding ys
Fωv Distribution of the numb. of cells visited by a user that

exceeds ωv
νl Numb of different cells visited by node l
µi Numb of mobile nodes that visits a cell i
Pνl

Prob. that node l chooses to leave a cell
Pµi

Prob. that a node chooses cell i as destination
ymin Lowest cell density

TABLE V
Summary of SFMR notation.

As discussed previously, it is worth pointing out that
the parameters for the proposed mobility regime do not
need necessarily to be extracted from real mobility traces.
In fact, the model parameters can be set and tuned in
order to generate a variety of mobility scenarios in terms
of number of clusters, their size, as well as the nodes’
mobility degree. In the proposed model we need to set
only 4 parameters, namely the speed range, pause time
range, ymin, and the set of coefficients for the generating
function in Equation 8. The tuning of these parameters
will depend on the parameters for the scenario itself (e.g.

total area, cell size, number of nodes, cluster size, etc).
For the simulation results presented in the next section,
we extracted the parameters from the traces for the sake
of having a baseline (i.e., a real trace scenario) for a fair
comparison of all the mobility regimes considered in our
evaluation. That also shows that it is possible to mimic
specific real world scenarios.

Algorithm 1 SFMR: Initialization phase
1: Distribute L nodes over the simulation area according to any given

distribution
2: for each node do
3: Attribute the node degree probability P (ηl), drawn from F (ωv)
4: end for

From the statistical study presented in Section III,
ymin was found to typically fall between 10% to 20%
of the largest cluster (the highest node density). The
coefficients of Equation 8 can be set according to the
shape of the target density curve, considering: (1) the sizes
of the clusters one wants to simulate and (2) the total
population of nodes, which will provide an estimate of how
many clusters of each size can be simulated. Equation 8
depends on the probability matrix of cells changing to
another range (higher or lower). Depending on the scenario
we would like to simulate, this probabilities can be set
differently. For dense scenarios, where clusters are fewer
and larger, such probabilities should be higher. For sparser
scenarios, on the other hand the probability of choosing a
given cell should vary little over the range of i.

Algorithm 2 SFMR: Movement phase
1: for each node do
2: if node decides to move to another cell with probability P (ηl)

then
3: Select next cell with probability, P (µi), drawn from F (ys)
4: Moves to destination using randomly speed between

[Vmin, Vmax]
5: pauses for a pause-time
6: end for

VI. Evaluation Methodology
We evaluate the proposed Scale-Free Mobility Regime

(SFMR) in terms of how accurately it reproduces real user
mobility according to spatial density and mobility degree
when compared against real mobility traces. In our study,
we also compare SFMR against four well-known mobil-
ity regimes, namely: Random Waypoint mobility (RWP),
Natural [14], Clustered Mobility Model (CMM) [15], and
Self-similar Least Action Walk (SLAW) [16]. Our rationale
for choosing these mobility models for our comparative
performance study of SFMR is as follows. RWP, despite its
limitations, has been widely used to evaluate wireless net-
works and their protocols. Natural and CMMwere selected
as representatives of the class of mobility regimes that
follow the preferential attachment principle. More recently
proposed models have extended CMM, e.g., HCMM [24]
and ECMM [25] but preserve CMM’s core preferential
attachment based features; as such we use CMM, along
with Natural, to represent preferential attachment based
mobility regimes in our comparative analysis. Similarly,
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SLAW is a well-known, widely cited mobility regime that
accounts for social structure and social features. SLAW
has inspired and has been extended by successors like
SMOOTH [26] and MobHet [27] which prompted us to
select SLAW to represent mobility models that consider
social interactions.

Additionally, we evaluate SFMR’s fidelity to real user
mobility by investigating how it affects network rout-
ing behavior, and consequently the efficiency of message
dissemination in ITS, when compared to real mobility
traces as well as to the mobility regimes listed above,
namely Random Way-Point (RWP) mobility, Natural [14],
Clustered Mobility Model (CMM) [15], and Self-similar
Least Action Walk (SLAW) [16].

We conducted two types of simulations: (1) first, we
modified the Scengen [28] scenario simulator to generate
traces according to RWP (already implemented), Natural
and CMM (implemented at Scengen), SLAW (MATLAB
implementation), and SFMR (also implemented in Scen-
gen). Once the simulator was able to generate the mobility
traces we computed the spatial node density distribution
results presented in Section VII-A. (2) in the second type
of simulation experiments, once the synthetic mobility
traces were generated as described above, these and the
real traces were fed to the Qualnet network simulator [29]
in order to evaluate their impact to core network functions,
such as routing and message dissemination for example.

For the first type of experiments, in order to compare
synthetic traces generated with RWP, Natural, CMM,
SLAW, and SFMR to real user mobility traces, we ad-
justed the Scengen simulation parameters according to
information extracted from the real trace for all mobil-
ity models. For example, velocity range [vmin, vmax] is
set such that average node velocity (assuming that the
velocity of each node is randomly chosen from a uni-
form distribution of values between [vmin, vmax]), matches
the average node velocity extracted from the trace. In
particular, for the RWP regime, in order to address the
steady-state stationarity problem reported in [30], we
followed the recommendations mentioned in that work.
More specifically, the velocity range was set to be ±, the
standard deviation measured in the real traces, around the
measured average velocity. Then, velocities were chosen
uniformly within that range in which the lower limit was
greater than zero and where the mean matches the one
measured in the real trace.

Similarly, the pause time was chosen uniformly in the
range [0, Pmax], where the value of Pmax is such that the
average pause time matches the one measured in the real
traces. The dimensions of the rectangular simulation area
are set to be the same as in the traces. Moreover, in our
simulation scenarios, we use the same initial positions for
the nodes found in the real traces, except for SLAW which
has its own initialization procedure.

In the RWP simulations using Scengen, a node’s next
destination (xd, yd) is randomly chosen over the simulated
area according to a uniform distribution. For SFMR, the
choice of (xd, yd) is given by Equation 25, where the

intensity values µ are set by the initialization procedure
as described in Section V. For Natural and CMM, the
probability of choosing the next destination is computed
“on-the-fly”, based on the destination’s popularity as de-
scribed in [14].

For the second type of experiments, synthetic mobility
traces generated using Scengen as described above, as
well as the real traces were fed to the Qualnet network
simulator [29]. As previously pointed out, efficient message
dissemination is critical to road safety and transportation
efficiency in ITS. Thus, the goal of these experiments is
to evaluate how close to the real trace are the synthetic
mobility regimes as far as their impact on routing and data
dissemination.

Data traffic scenarios used in these experiments
try to simulate nodes communicating with one an-
other in ITS scenarios (e.g., vehicle-to-vehicle, vehicle-to-
infrastructure). We use 20 Constant Bit Rate (CBR) flows
between randomly chosen source-destination node pairs.
Flows start at randomly chosen times and stay active
during the course of the whole simulation generating traffic
at a rate of 4 packets per second. We use the Ad-hoc On-
Demand Distance Vector (AODV) [31] routing protocol,
an Internet standard for routing in wireless multi-hop
ad-hoc networks, and the IEEE 802.11g data link layer
protocol with radio range of 150m and data rate of 54.0
Mbps. Table VI summarizes other simulation parameters
used in these experiments.

Parameter Quinta
Average Velocity (±σ)(m/s) 1.2 (±0.53)
Average Pause Time Duration (sec) 3.6
Area Dimensions (meters x meters) 840 x 840
Duration of Simulation (sec) 900
Number of users 97
Number of CBR flows 20

TABLE VI
Simulation parameters.

VII. Results
Results are reported here for the Quinta trace with a

90% confidence interval over 10 runs. For the runs using
the real trace, since we cannot vary mobility, we randomize
the traffic scenarios by varying the source and destination
pairs of the flows in each of the 10 runs. The same traffic
patterns were used to feed the RWP, Natural, CMM,
SLAW and SFMR simulations, but in these cases, we
generated 5 mobility traces with each model, giving a total
of 10× 5 = 50 simulation runs for each synthetic mobility
regime.

A. Spatial Node Density
In order to study spatial node density behavior, we

define the Node density distribution metric as the ratio of
cells containing ≥ n nodes. Each curve in Figure 3 shows
the density distribution for the Quinta trace and each
mobility model, namely SFMR, RWP, Natural, CMM, and
SLAW. The curves shows the distribution at the end of
the trace collection interval, which is at 900 seconds for
Quinta.
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Fig. 3. Node Spatial Density Distribution.

From these plots we observe that SFMR’s density dis-
tribution closely follows the distribution of the real trace.
In the case of RWP, the majority of cells (i.e., more
than 80%) present a similar number of nodes (i.e., one
or more nodes), and no cells contain significantly greater
concentration of nodes (i.e., no cell contains more than 9
nodes). This is also the case for Natural, CMM and SLAW.
In order to quantitatively compare how close the node
density distributions resulting from the synthetic mobility
regimes are to the real trace, we compute the average
normalized difference between the synthetic traces’ spatial
node density distribution and that of the real trace as
follows: for each data point, we compute the absolute
value of the difference between the density distribution
resulting from the synthetic model and that of the real
trace, divided by the latter. We average over all data points
and Table VII reports these averages as well as lower and
upper values of their 95% confidence interval. Table VII
confirms that SFMR’s spatial density distribution is the
closest to the real trace’s when compared to the other
mobility regimes studied.

Mobility Model Mean Confidence Interval
SFMR 0.0161616 [0.00749751 0.0248257]
SLAW 0.0396465 [0.0234087 0.0558843]
CMM 0.0492424 [0.0282684 0.0702164]
Natural 0.070202 [0.0364066 0.103997]
RWP 0.813131 [0.0442555 0.118371]

TABLE VII
Normalized difference between the spatial distribution

resulting from mobility models and the empirical
distributions computed from the real trace: mean [lower

upper] values 95% confidence interval.

B. Performance Evaluation of SFMR

Mobility models are frequently used for simulation pur-
poses when new communication-based vehicular and hu-
man mobile services are being investigated. One key factor
researchers and developers must take into account when
evaluating solutions through simulations of mobile scenar-
ios such as V2V and V2I applications is realistic mobility
patterns. In fact, mobility models play a vital role in deter-
mining the performance of various wireless mobile systems,

such as Vehicular Ad-Hoc Network (VANET) [32], Wire-
less Sensor Network (WSN) AND Body Sensor Networks
(BSNs) [33], etc. In ITS an efficient message dissemination
scheme is critical to its applications, such as road safety
and urban traffic status. Thus, in order to evaluate SFMR
in such dynamic scenarios we focus on the study of the
impact of different mobility models in an infrastructureless
network, when compared to real mobility extracted from
a real mobility trace.

We report results comparing performance for the AODV
wireless ad-hoc network routing protocol under our mobil-
ity regime, the Quinta mobility trace, as well as mobility
regimes proposed in the literature and discussed in Sec-
tion VI. The objective here is not to evaluate a proper
ITS system or a real application, but rather evaluate the
ability of our proposed model to deliver realistic node
movement and how a network simulation can be affected
by realistic and non realistic mobility. We compute the
following metrics in our study:
• Throughput: is defined as the total number of bytes

received at the destination node divided by the time
elapsed between the reception of the first byte of the
first data packet and the reception of the last byte
from the last data packet. This quantity is measured
at all nodes and averaged before reported.

• End-to-End Delay: is measured as the time elapsed
between the moment a packet is sent and the instant
it is received at the destination. This quantity is then
averaged for all packets transmitted by all nodes in
the network.

• Delivery Ratio: is computed as the ratio between the
total number of packets received by all nodes and the
total number of packets transmitted by these nodes.

The above described metrics for throughput, delay, and
delivery ratio are reported in Figures 4(a), 4(b) and 4(c)
respectively, over time for the Quinta scenarios. There
is a notable discrepancy between the results for the real
trace and results for RWP. Also noteworthy is how the
discrepancy widens over time which can be explained
by RWP’s inability to maintain the trace’s spatial node
density distribution over time which directly impacts rout-
ing performance. SFMR, on the other hand, allows the
formation and preservation of clusters of nodes, which, in
the case of this scenario, resembles closely the real trace
curves. As the clusters are bigger for the realistic scenarios
and SFMR, information delivery is also more efficient, as
more nodes are closer together in the clusters.

In the case of Natural, CMM, and SLAW, we notice that
routing performance under these mobility regimes stay
close to the real trace up until around 300s for Natural
and around 500s for SLAW and CMM. Up until then, the
probabilities of choosing each cell are based on the initial
non-uniform spatial densities, and the mobility regimes
are capable of maintaining some level of node clustering.
However, later in the experiment, nodes start to spread out
as the probability of choosing a new cell starts approaching
a uniform distribution. This behavior causes the clusters to
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Fig. 4. Network routing performance for the Quinta trace.

dissipate and routing performance starts to diverge from
the real traces.

VIII. Generating ITS-Inspired Traces with
SFMR

As previously pointed out, one of the distinguishing
features of SFMR is its ability to generate mobility traces
without the need to prime its parameters using existing
traces. In this section, we demonstrate this feature of
SFMR by using it to generate mobility traces for ITS-
inspired scenarios.

A. Mobility in Urban Scenarios
Suppose we want to simulate mobility in an urban sce-

nario, such as the downtown area of a large metropolitan
region. We could then consider two different types of
mobility, namely pedestrian- and vehicle mobility.

Spatial Density: Pedestrians tend to congregate in
locations like malls, markets, cafes, schools, etc. Since
pedestrian density tends to be relatively high in most
downtown areas (e.g., compared to rural or even suburban
areas), the mobility model used to represent spatial node
density of pedestrians in urban centers could then be
assigned a lower value for α. This means that the power-
law curve representing spatial node density of pedestrians
in downtown areas would have a longer tail to indicate
that a relatively higher percentage of cells have higher
concentration of nodes.On the other hand, if we are now
interested in simulating vehicle mobility in a city center,
we could consider fewer nodes (e.g., in some cities, only
public transportation is allowed to circulate in the city’s
downtown area) compared to pedestrians. Assuming that
public transportation vehicles are moving most of the time,
except for high traffic congestion spots or bus depots, most
cells would have lower concentration of nodes. As such, we
could use a power-law distribution with longer tail, i.e., a
higher value of α, to represent spatial density of vehicles
in a city center.

Mobility Degree: To model pedestrian mobility de-
gree, we would assume that most pedestrians would typi-
cally visit less cells due to their limited mobility and thus
exhibit lower mobility degree relative to vehicles. This
means that pedestrian’s mobility degree would follow a
power law that decays quickly, i.e., with higher α.

For vehicles, since they can cover longer distances and,
as a result, visit more cells, the tail of the power law
describing their mobility degree distribution would be
longer when compared to pedestrians’.

B. Mobility in Suburban Areas
In the case of suburbs, we could still consider different

mobility regimes for pedestrians and vehicles. However,
unlike urban scenarios, suburbs are typically less densely
populated and there are less people walking than driving.

Spatial Density: For pedestrians, there would likely
be only a few areas with higher pedestrian density like
parks and street malls, while most everywhere else would
present low densities. As such, we could use a higher α
value to simulate spatial density of pedestrian mobility in
suburban areas.

We could also envision similar behavior for the spatial
density of vehicle mobility in suburban settings, i.e., that
most cells will exhibit low vehicle density. As such, we
could use higher α values to model vehicle spatial density
in suburban scenarios.

Mobility Degree: In suburban areas, we could envision
scenarios where a reasonable number of vehicles circulate
only locally but a good number travels longer distances,
e.g. when people commute to work. As such, we would
use lower α values for the mobility degree power law
distribution.

In the case of pedestrians, we may consider people
spending most of their time inside their property and going
out to move around the streets for a few sporadic activities,
e.g., jogging, walking the dog, go to the playground or
store close by. For that reason, we would recommend using
a higher value of α for simulating pedestrians in this
conditions.

C. Sample ITS Mobility Regime
Here we use a sample ITS-inspired mobility scenario to

illustrate how SFMR can be used to generate synthetic
mobility traces without the need to extract parameters
from existing traces. The goal is to show how to use
SFMR to simulate a given ITS scenario and validate the
resulting spatial density and mobility degree distributions
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Fig. 5. Mobility degree and spatial density distribution for ITS-inspired mobility regime generated by SFMR and SFSM.

by comparing them to the ones obtained using our an-
alytical model SFSM derived in Section IV. We use our
implementation of SFMR on the Scengen [28] simulator
to generate SFMR mobility traces.

In particular, this example simulates 3, 000 vehicles
moving around a large metropolitan region of size 8km-by-
6km. Vehicle speeds vary uniformly over a range of 15 to
40 km/h 3. The duration of the simulation is set to 100.000
seconds (i.e., around 27 hours, or a little more than a day).
We wanted to keep the network always mobile and for that
reason we set pause time to be 0 at all times. Table VIII
summarizes the simulation parameters and their values.
We simulated two scenarios by essentially changing the
value of α. We first use an alpha of 1.4 for both mobility
degree and density, and then increase α to 2.4.

Parameter Value
Velocity Range (km/h) [15 40] uniform
Average Pause Time Duration (sec) 0
Area Dimensions (meters x meters) 8000 x 6300
Duration of Simulation (sec) 100000
Number of nodes 3000
α for Mobility Degree 1.4 and 2.4
α for Spatial Density 1.4 and 2.4

TABLE VIII
SFMR parameters and their values for sample ITS mobility

regimes.

The data points in the SFMR curves in Figure 5 are
averaged over 20 simulation runs; the graphs also show
the SFSM with the previously mentioned values of α.
Figure 5(a) shows the spatial density distribution for
two values of α. In the example scenario described in
Section VIII-B above, most cells present low density of
vehicles with a small number of cells exhibiting high ve-
hicle densities (e.g., shopping malls, supermarkets, school
campuses, etc); we would use α = 2.4 in this case. The
value of xmin was set to 45 for SFSM with α = 2.4. The
value of xmin was then set to 25 in the case of SFSM with
α = 1.4. We observe that both curves match closely the
SFSM curves.

One of the curves in Figure 5(b), i.e., the one with
α = 2.4, shows an example of high mobility degree where

3These parameter values were set based on real scenarios as
reported in “http://infinitemonkeycorps.net/projects/cityspeed/”

few mobile nodes visit > 1500 cells. This mobility degree
behavior can mimic the behavior of vehicles in a city center
as described in Section VIII-A. When α = 1.4 the decay of
the curve is slower and more nodes have lower and more
uniform mobility degrees, meaning that 25% of the nodes
visit from 85 (xmin) to 900 cells. This could be true if
we wanted to simulate for example, vehicles moving on
the suburban neighborhood scenario mentioned before in
Section VIII-B.

IX. Conclusion
In this paper, we showed the scale-free properties of

some important human mobility characteristics, namely
spatial node density and mobility degree. In our study
we analyzed a set of real mobility traces collected in
diverse scenarios motivated by ITS, namely a city park,
a University campus, and taxis in the downtown area of
a major city. We demonstrated that both spatial node
density and mobility degree exhibit power law behavior
which then allowed us to derive analytical models for these
two mobility features. We showed that the proposed ana-
lytical model closely matches the empirical data extracted
from the real mobility traces. Another contribution of our
work was to use the proposed analytical models for spatial
node density and mobility degree to build a waypoint-
based mobility regime capable of generating synthetic
mobility traces whose spatial node density and mobility
degree closely resembles the ones measured in real human
mobility scenarios. As such, the proposed mobility regime
can be employed to test and evaluate ITS services and
protocols. Finally, using a network simulator, we evaluated
a wireless ad-hoc network routing protocol and showed
that its performance under our mobility regime and under
the real trace is very similar.
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