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Understanding humanmobility plays a vital role in urban and environmental planning as cities continue to grow.
Ubiquitous geo-location, localization technology and availability of bigdata-ready computing infrastructure
have enabled the development of more sophisticated models to characterize human mobility in urban areas.
In this work, our main goal is to extract spatio-temporal features that characterize user mobility and, based
on the similarity of these features, identify user communities. To this end, we propose a novel approach that
leverages image processing techniques to represent user geographical preferences as images and then apply
deep convolutional autoencoders to extract latent spatio-temporal mobility features from these images. These
features are then fed to a clustering algorithm, which identifies the underlying community structures. We use
a diverse urban mobility datasets to validate the proposed framework. Our results show that the proposed
framework is able to significantly increase the similarity between intra-community nodes (by up to 107%) as
well as dissimilarity between inter-community nodes (up to 54%) when compared against no pre-processing
of the datasets, i.e without pre-processing the datasets through any feature fusion method. Moreover, it was
also able to reach up to 100% improvement when compared against community identification using Principal
Component Analysis (PCA). Our results also show that the proposed approach yields significant increase in
contact time amongst users belonging to the same community, by up to 80% when compared to the average
contact time when not considering community structures, and by up to 150% when compared to the baseline.
To the best of our knowledge, our proposal is the first to consider deep convolutional autoencoding to perform
automatic extraction of non-linear spatio-temporal mobility features characterizing individual users from raw
mobility datasets with the goal of identifying user communities.
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1 INTRODUCTION
Currently, about fifty percent of the world’s population lives in urban areas and the forecast is

that by 2050 this percentage will grow to approximately seventy percent [10]. As such, the greatest
wave of city migration is yet to come and together with it a wide range of challenges raised by the
need to improve the style and quality of life of a growing urban population. According to [10], a
better understanding of city dynamics would allow for improved services as well as minimized
environmental impact resulting from urban expansion.
Urban mobility, defined as the displacement of people across an urban region over time [9], is

critical to understand the dynamics of an urban center. As cities grow, the complexity of urban
transportation and transit systems and the time people spend in transit will greatly increase. As a
result, expanded- and new transportation services will be required demanding deeper investigation
into urban mobility [3, 43]. Additionally, understanding human mobility in urban areas is crucial
to other city management and planning applications such as public health, emergency response,
education, entertainment, shopping, etc [29].

As computational resources become more widely available through cloud- and edge computing
services, machine learning techniques, such as neural networks (NNs), which not too long ago
were considered totally prohibitive in terms of their computational demands, have now become
mainstream tools to handle the enormous amounts of data being generated by sensing devices
embedded mostly everywhere. A special category of NNs named deep convolutional autoencoders
has been used as an efficient and effective image processing technique and have, more recently,
been applied in a variety of other domains, ranging from data augmentation, de-noising, activity
and speed recognition, computer vision, to name a few [40].
In this work, we propose a framework to identify user communities based on user’s spatio-

temporal geographical preferences. The proposed framework employs a deep convolutional autoen-
coder (CAE) architecture to learn latent spatio-temporal mobility features from an image-based
representation of user mobility traces recorded in a variety of urban scenarios. From these mobility
datasets, the proposed framework is able to identify geographical preference similarities among
users and in turn group users into communities based on such preferences.

To validate and evaluate our CAE framework, we use a diverse set of publicly available mobility
traces and show that the proposed framework is able to significantly increase similarity between
intra-community nodes (by up to 107% for the datasets used) as well as dissimilarity between
inter-community nodes (up to 54% for our datasets) when compared with our baseline, i.e, without
pre-processing the datasets through any feature fusion method. Moreover, it was also able to reach
up to 100% improvementwhen comparedwith an alternate community extraction approach that uses
Principal Component Analysis (PCA). Besides the degree of similarity amongst users in the same
communities and dissimilarities amongst users in different communities, we also evaluate contact
times between users, which are an important metric for opportunistic networks. Our experiments
show that our CAE approach yields a significant increase in contact times between users belonging
to the same community (for the datasets considered, by up to 80% when compared to the average
contact time when not considering community structures and by up to 150% when compared to user
communities extracted from the baseline). Additionally, our approach also increases contact time
between members of the same community (from 10% up to 125% for our datasets) when compared
to PCA.
While autoencoders have been widely used to predict future mobility trajectories and traffic

conditions, to the best of our knowledge, our work is the first to consider deep autoencoder NNs to
perform automatic extraction of non-linear spatio-temporal mobility features from real mobility
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datasets ultimately achieving improved user community identification. As such, we can summarize
the contributions of this paper as follows:

• Wepropose an image-based representation of spatio-temporal user mobility features extracted
from mobility traces. Such mobility records contain only a time series of user locations (either
GPS coordinates or Access Point associations/disassociations) that capture user mobility in a
variety of scenarios, including different urban settings (such as downtown areas, University
campuses, etc) that incorporate a variety of modes of transportation, including private
vehicles, buses, taxis, pedestrians, and bikes.

• We develop a deep convolution autoencoder (CAE) based approach to perform automatic
spatio-temporal mobility features extraction contained in the images representing user
mobility features.

• We demonstrate that our approach to automatically extract user mobility features by em-
ploying the proposed image-based method and deep convolutional learning architecture
can be used as input to clustering algorithms for identifying communities that group users
according to similar spatial and temporal mobility patterns.

• Through extensive experimentation using mobility records from a variety of scenarios, we
show quantitative evidence that by using autoencoders’ nonlinear feature fusion capabil-
ity ahead of clustering can significantly increase the quality of the community structures
identified when compared to linear feature fusion approaches such as PCA.

• Finally, we evaluate different autoencoder architectures, namely fully-connected, variational,
and convolutional and discuss their impact on the performance of our user mobility based
community identification framework.

The remainder of this paper is organized as follows. An overview of background and related work
is discussed in Section 2. Our proposed approach is described in detail in Section 3. In Section 4, we
present our experimental methodology, including the mobility datasets studied, as well as define
the performance metrics used for evaluating and validating our proposal. Section 5 presents our
experimental results and Section 6 discusses some applications of the proposed framework in the
context of urban and environmental planning and management. Finally, Section 7 concludes the
paper with some directions for future work.

2 BACKGROUND AND RELATEDWORK
This section reviews related work on mobility characterization and presents a brief overview of

autoencoders and our rationale for using them to extract features from raw user mobility datasets.

2.1 Mobility Characterization
In recent years, the wide availability of localization devices and techniques, such as the Global

Positioning System (GPS), cellular base-station and Wi-Fi positioning systems have enabled human
mobility data to be captured and recorded in a seamless and ubiquitous fashion. The availability
of such positioning data not only enabled a variety of services and applications including road
navigation, intelligent transportation systems, ride-sharing, etc, but also, motivated a large body of
research on user mobility characterization and modeling. Below, we briefly describe some examples.

User mobility was found to be highly predictable and largely independent of the distance users
cover on a regular basis [54], where most users visit the same places and share the same probability
density function for places visited [25]. Additionally, the probability of a user to visit new locations
or returning to previously visited locations follows a scaling law pattern, i.e., the probability of users
visiting a new place decreases over time, while the chances of returning to places they frequently
visit increases. Also, it is well known that members of the same social group also present similar
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mobility behavior [22]. Moreover, human mobility exhibits strong non-linear dynamics and hence
cannot be described by linear stochastic models [20].
The study of movement patterns has applications in a wide range of fields, such as urban

planning [6, 48, 70], identifying similarities among individuals [53, 72], evaluating and proposing
protocols for mobile networks [24, 30], public health management [11, 45], among others.

Machine learning has been used to identify patterns within large-scale, high-dimensional mobility
data [56, 70]. Most of the work to-date uses supervised learning to map data instances to labels and
predict new, unlabelled data. However, much of the data available from positioning technologies
are not labeled (e.g., GPS records).
Most efforts based on unsupervised learning, on the other hand, use clustering algorithms to

group instances that have similar behavior [33, 56, 69, 74]. Clustering has been extensively explored
in machine learning and data analytics. It tries to organize data observations into groups with
similar features, and its performance highly depends on the quality of the input data [4, 33, 47].
However, most of these efforts do not consider non-linear feature extraction, nor pre-processing or
data transformations ahead of clustering the data. Unfortunately, the expressive power of linear
features is very limited: they cannot be stacked to form deeper, more abstract representations since
the composition of linear operations yields another linear operation [7].
Our work addresses this gap by using autoencoders to automatically learn from non-linear

data representations, which can be stacked into deeper networks to better map input data to
a feature space with improved data representation for clustering. As it will become clear from
our experimental results, the ability to adequately represent non-linear features, as well as the
pre-processing transformations on the raw positioning data are crucial steps towards extracting
valuable and meaningful mobility features from available human mobility datasets. More recently,
non-linear techniques to extract features from mobility datasets for trajectory prediction have
been proposed [41]. For example, the problem of feature extraction for estimating users’ trans-
portation modes from their movement trajectories is addressed in [17], [23], [58], among others.
In [73], and [44], mobility patterns are mined for urban traffic prediction and depressive states
prediction [46].
The work described in [73] mines mobility patterns for trajectory-user linking (TUL). It takes

into account the sparsity and high dimensionality of human trajectories and proposes a semi-
supervised learning framework, which learns the humanmobility in a neural generative architecture
with stochastic latent variables that span hidden states in recurrent neural networks. TUL learns
mobility patterns and classifies trajectories by users, i.e., it correlates unlabeled trajectories to the
corresponding users in geotagged social media (GTSM) data, such as data generated by Instagram,
Foursquare, and Twitter. However, social networks provide information about user location or
interests with low granularity, since information is only recorded when users actually use the social
network. For example, uploading images on Instagram, or check-in using Foursquare. Moreover, our
study seeks to extract features of user mobility relying solely on traces containing time series of raw
GPS coordinates or WiFi association/disassociation data, thus avoiding the need for information
from social networks, cellular providers, etc.

Our work differs from efforts such as the ones outlined above as follows: (i) Our focus is on user
community identification; and (ii) we rely solely on raw mobility traces containing time-series of
user location.

2.2 Autoencoders
An autoencoder, or AE, is a neural network architecture designed to learn data encodings in

an unsupervised fashion. As mentioned before, it is typically used for dimensionality reduction,
where the complexity and variability of the data are reduced into an encoded, more compact
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representation. Along with data reduction, there is also a reconstruction step that tries to reconstruct
a representation as close as possible to the original input. In other words, the AE takes a set of
unlabeled data x ∈ Rn and tries to learn an approximation to the identity function to force the
output to be as similar as possible to the input.

x1 
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x4 

x'1 

x'2 

x'3 

x'4 

Input layer Output layer 

Embedded 
representation of 

the input 

code 

h1 

h2 

Encoder Decoder 

ω ω' 
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Fig. 1. Example of an autoencoder: it learns a representation h (code) of the Input x using a weight matrix ω,
which is used to reconstruct x to obtain x ′. The nodes in the network are also known as neurons.

The AE shown in Figure 1 consists of three basic components: (1) the encoder, which is the
portion before the most compressed layer (or code) of the architecture. It compresses the input
vector x into a latent representation h using a weight matrix ω; (2) the code, h, or latent space
representation, is a lower-dimensionality representation of the input. This reduced representation
allows us to discover interesting structures about the data; and (3) the decoder, the portion after
the code, maps h back to the input, reconstructing it to obtain x ′ with another weight matrix ω ′.
Parameter optimizations are used to minimize the average reconstruction error between x and x ′.
Usually, the input and output layers have the same dimensionality. Note that the AE illustrated
in Figure 1 has only a single encoder layer and a single decoder layer. However, using multiple
encoding/decoding layers offers many advantages compared to shallow AEs. For instance, so-called
deep AEs can decrease the amount of training data needed to learn some functions and yield better
compression [26].

Training the network means learning the weight matrix ω ′ associated with all the neurons in the
network, where a neuron, also knowns as node or unit, is the basic unit of computation in a neural
network. During the training, each unit located in any layer in between the input and output layers,
also called hidden layers, receives several inputs from the preceding layer. The unit computes the
weighted sum of these inputs and eventually applies an activation function to produce the output.
The most popular activation functions are Linear, Logistic, ReLU, SELU, and Tanh. The non-linear
behavior of neural networks comes from the choice of these activation functions. After these steps,
the output x ′ is compared to the input x , and the error will be propagated to every individual
unit using the back-propagation algorithm [37]. Finally, each weight’s contribution to the error is
calculated and a loss function is used to adjust the parameters at each layer (i.e., update the weights).
A typical loss function is the mean squared error or cross-entropy when input values are binary or
modeled as bits.
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Different types of AEs have been proposed. The one represented in Figure 1 is called fully
connected since its neurons form a fully-connected network. Variational autoencoders, or VAEs, are
another type of AE. The main difference from traditional AEs is that VAEs learn the parameters of
a probability distribution to model the data, while traditional AEs learn an arbitrary function to
encode and decode the input. In VAEs, the constraint of the activations in the hidden units over
the whole data should be drawn from the standard Gaussian distribution, i.e., zero mean and unit
variance in each direction. After learning the probability distribution, the parameters are sampled
from it and then the encoder network generates samples closely resembling the training data. Two
loss functions are simultaneously optimized to train the model weights, namely a reconstruction
loss function and the Kullback-Leibler divergence between the learned latent distribution and a
prior unit Gaussian.

Another type of AE, which has been widely used for image processing tasks is called convolutional
autoencoders, or CAEs. CAEs are designed to process data inputs in the form of multidimensional
arrays, e.g. images composed of 2D arrays containing pixel intensities represented in different
color channels. Some examples of data inputs are 1D signals for time series, 2D for images, and
3D for video or 3D images. CAEs use the same principles as traditional autoencoders discussed
above, but instead of fully-connected layers, it contains convolutional layers in the encoder part
and deconvolution layers in the decoder part as discussed in more detail below.

CAE architectures are structured in several stages of convolutional and pooling layers. The units
in a CAE are organized in layers called feature maps, also known as convolutional filters or kernels
that are connected through a set of weights. Again a non-linear activation function, such as ReLU,
is passed through the weights. In this way, CAEs are able to detect local groups of values in an
array of images that are often highly correlated, and also detect spatial invariance patterns. In
other words, if a pattern is identified in a part of an image, it could appear also in other parts.
Hence, the convolutional layer is responsible for detecting patterns from the previous layer, and
the pooling layer is responsible for merging semantically similar features into one. In CAEs, the
pooling layer is responsible for reducing the dimensionality of the representation and creating
an invariance to handle small shifts and distortions on the images. Usually, CAEs contain two or
three stages of convolutional layers, non-linearity and pooling stacked, which may be followed by
additional convolutional and/or fully-connected layers. The back-propagation algorithm is also
used to training CAEs [37].

To date, the vast majority of applications of CAEs focus on image data. As discussed in Section 2.3
below, most work that use non-linear approaches for mobility characterization are based on either
fully-connected or variational AEs. Our proposed approach is motivated by CAEs’ well-known
favorable cost-performance trade-offs. As such, an important contribution of this paper is to
demonstrate the use of CAEs as an effective tool for extracting salient features from raw mobility
records which are then used to automatically identify user communities that share commonmobility
characteristics.

2.3 Deep autoencoders for community identification
Deep learning (DL) models have been widely employed in recent years by researchers and

practitioners to solve a plethora of different problems in many areas [7, 37, 40]. In the literature,
it is possible to find DL architectures that fit specific purposes. For example, the use of U-Nets
in medical imaging segmentation problems in [51], the use of Convolutional Neural Networks
(CNNs) for semantic segmentation and image classification and recognition problems [35, 42, 59, 67],
application of Fully Connected (FC) neural networks for regression and classification problems [50],
Generative models for style transfer and data augmentation, and Recurrent Neural Networks (RNNs)
applied to sequential and temporal data analysis [13, 14, 27, 66, 75], to name a few.

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article . Publication date: August 2020.



A Deep Learning Approach for Identifying User Communities Based on Geographical Preferences
and Its Applications to Urban and Environmental Planning 7

Most examples mentioned above are applied to supervised learning problems, where there
are known labels or ground truth (GT) values that can be used to train neural networks (NNs).
Once efficiently trained, these NNs should be able to identify such labels automatically in new,
unseen samples in a generalizable fashion. While autoencoders (AE) are also an example of NN
architectures, they can be applied to problems where a supervised approach is not possible, e.g.,
where there are no labels or GTs.

Identifying user community structures from raw mobility data requires unsupervised learning
approaches since, most of the time, there is no previous knowledge from these raw records about the
nature of the relationship between users (i.e., whether they belong to a certain community). Principal
Component Analysis (PCA) [8] is a class of algorithms that has been widely used for unsupervised
learning problems, especially for dimensionality reduction. PCA applies linear transformations
to the data, rotating axis on the directions of where the data presents the higher variability. This
way, it is possible to describe most of the variability in the data with only a few variables, instead
of using the raw higher-dimensional data. Autoencoders (AEs) are another well-known class of
algorithms that can be applied to unsupervised representation learning and has been used in a
number of applications, such as pattern identification and dimensionality reduction [12]. One of
our main reasons for applying AEs, instead of PCA, is the non-linear nature of the activations on
the output of the AE layers [61]. In other words, AEs are able to capture non-linearities intrinsic to
the mobility data that PCA cannot represent due to its linear nature.
Recent efforts propose the application of non-linear methods to extract community structures.

Some examples include [15, 19, 28, 55, 65]. In [65] and [15], the problem of community detection is
stated as modeling the probability that two vertices in an unweighted and undirected graph are
connected. They also use deep autoencoder architectures, namely fully connected and variational
autoencoders, respectively to learn a latent representation of such probability distributions for their
datasets. Both works apply clustering algorithms on the latent variables to identify the communities.
Even though these approaches can be applied to a number of different datasets, they are not suitable
to be used on a rawmobility trajectory directly. In contrast to other types of data, extracting features
from trajectory data is a non-trivial task [62]. Trajectory records can be highly unstructured and
heterogeneous. They may have different sampling rates, number of users, lengths, sparsity/density.
They may include different types of mobility patterns such as vehicular, bike, and pedestrian
trajectories. Moreover, the types of features present and that can be extracted from this kind of
datasets can also vary, e.g., initial- and final positions, speed, duration, type of user/device, social
relationships. These features provide unique insights for exploring trajectories.

Adjacency matrices, like the ones used in [65] and [15], can be used to identify user communities
based on the amount of time users spend together, or contact time. In our work, we group users
solely based on individual user mobility patterns and geographical preferences, which is motivated
by the fact that such mobility datasets can be more easily generated, and a large variety of them
are publicly available and accessible. We should point out that, in our work, we compute contact
times as a way to validate and compare user community identification approaches, instead of the
very criterion to identify user communities. In other words, we use contact times between users
in the same community as well as contact times between users in different communities to show
how well the proposed approach is able to generate user community structures when compare to
alternate techniques.

3 DEEP LEARNING ASSISTED USER COMMUNITY IDENTIFICATION
This section presents our proposed approach for extracting mobility patterns from raw GPS-

and WiFi network datasets using convolutional autoencoding and clustering algorithms. Figure 2
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summarizes the steps involved in the proposed framework and illustrates its key components,
which will be described in detail below.

Output 
Geographical 
preferences-
based 
community 
structure 

Data Preprocessing Features Encoding Clustering Validation 

Cell	definition	

Feature	Matrix	
computation	

Logit	transform	

Features	Image	
generation	

Encoded	latent	
features	as	input	
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Autoencoder	w/	
Feature	images		
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•  timestamp 
•  coordinates 
•  user id 

Fig. 2. Proposed user community structure identification framework illustrating all its components and
data-flow.

3.1 Data pre-processing - converting mobility records into images
The first step in processing GPS- or WiFi mobility traces is to generate a matrix summarizing

spatio-temporal mobility features extracted from the traces. In the space dimension, the region
covered by the trace is divided into a grid of equally-sized cells. User trajectories are then considered
as a sequence of cell positions.
In the time dimension, the temporal resolution depends on the sampling resolution of GPS

devices or WiFi devices. We should point out that mobility data can be aggregated and/or their
temporal and/or spatial resolution adjusted to consider how mobility patterns change at different
times of the day, day of the week, specific areas, etc. Also, Figure 7 illustrates a use case for the
GeoLife trace. Similar aggregation can be used for the space dimension, for example, aggregating
a group of cells into regions within the region being considered (e.g., different sections in a city,
different suburbs in a suburban area).
Then, a matrix containing spatio-temporal features can be constructed using time- and space

information from the traces as described above. The resulting spatio-temporal mobility matrix is
defined as:

FM =


t11 t12 ... t1C
t21 t22 ... t2C
... ... ... ....
tN 1 tN 2 ... tNC

 (1)

where N is the number of users and C the number of cells present in the dataset. Each position
in the feature matrix FM(i, j) contains the average time user i spent in cell j normalized by the
total time the user appears in the trace.
The next step is to apply a non-linear transformation, namely the Logarithmic Likelihood

Logit [31], to FM , generating FM ′. This step maps the values FM(i, j) (which are values in the
range [0, 1]) to the full range of real numbers, FM ′(i, j). This step is important in order to highlight
the similarities between users.

Finally, an image for each user is generated by representing each row of FM ′ as a 2D-image. To
construct this image, we simply use each position (i, j) as a pixel and the value of each position t ′i, j
as the intensity of that pixel.
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3.2 Feature encoding - CNN autoencoder for extracting geographical preferences
Figure 3 shows an instantiation of the proposed convolutional autoencoder (CAE) architecture

when applied to one of the mobility traces used in our study (in this case, the GeoLife trace
which is described in detail in Section 4.1). As illustrated in the figure, our CAE architecture
consists of two main components, that is, the Encoder responsible for encoding the input image
and extracting mobility features; and the decoder responsible for prediction and model output (i.e,
image reconstruction). The model input is the image generated from mobility records representing
the spatio-temporal characteristics captured from the mobility record as detailed in Section 3.1.

Input 
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Flatten 
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deconv3 
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MBC clustering 

Decoder 

A	 C	

B	
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E	 F	

Cell 

Spatio- temporal Validation 

Fig. 3. The proposed deep autoencoder architecture for the GeoLife dataset. There are three convolutional
layers followed by a fully connected layer which is composed by only 8 neurons. Then three deconvolutional
layers reconstruct the Input on the decoding part. The 8 embedded features represent the encoding of the
inputs and are used as input for the MBC clustering algorithm. To evaluate the performance of our approach
against other AE architectures, the nodes’ contact times are computed, considering the user communities
identified.

Feature encoding is performed as follows:
(1) Building the CAE: A deep autoencoder architecture is built for each trace. It is not possible

to train a single architecture for general use since the models depend on the size of the input
and vary with the application scenario (i.e., the size of the area, number of cells and feature
matrix changes from scenario to scenario). The parameters used by the CAE are described in
detail in Section 4.1.

(2) Training the CAE: The CAE is trained by using the input image representation obtained from
the mobility features described above. During training, the spatio-temporal behavior of the
user and its geographical preference are learned, while the model tries to output images as
close as possible to the input.
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(3) Extracting encoded latent features: Once the network is trained, the reduced embedded
features are extracted from the autoencoder latent representation space. These features can
be used to make predictions and comparing the original input with the reconstructed image.
The size of the reduced feature space depends on the autoencoder architecture and the dataset.
Section 4.1 presents the latent space size for the datasets considered in our study. The learned
features are finally concatenated into a dense vector (at the Flatten layer) which contains the
reduced representation of the input model features.

Finally, at the decoder stage, the inverse process is carried out, i.e., the latent vector is reshaped
into a matrix, and transformed by a number of deconvolutional layers until the original image is
reconstructed. Note that the encoded representation of the input (from the Flatten layer) is used as
input to the clustering step.

3.3 Clustering - user community identification
The goal of the user community identification step is to group users with similar spatial and

temporal mobility features. To this end, the latent encoded representation of the mobility patterns
extracted from the mobility traces by the autoencoder is used as input to the clustering algorithm
which identifies user communitiies based on the users’ mobility features. As a result of the clustering
step, users are labeled according to the community to which they belong.
Two of the most popular feature-based clustering techniques are K-means and Model-Based

Clustering (MBC). The K-means algorithm [64] updates cluster centroids by minimizing the within-
cluster sum of squared errors. It generates K clusters represented by their centroids.

In this work, we apply MBC to identify user communities from encoded spatio-temporal mobility
features generated by the proposed CAE. MBC is a representative of a probabilistic model approach
for data clustering that models the density function by a probabilistic mixture model. This method
assumes that the data is generated by a mixture distribution and the clusters are defined by one
or more mixture components [18]. Each cluster can be modeled by a Gaussian distribution that
has three parameters: mean vector, covariance matrix and an associated probability in the mixture,
where each point has a probability of belonging to each cluster. The Gaussian Mixture Model
algorithm, which assumes that the original data consists of several Gaussian distributions, is a
well-known MBC approach [32]. Data that follows the same independent Gaussian distribution is
considered to belong to the same cluster. The Expectation-Maximization (EM) algorithm, initialized
by hierarchical model-based clustering, is often used for estimating the parameters of the model,
where clusters are centered at the mean value, and the geometric features (shape, volume, and
orientation) are given by the covariance matrix.
Model-Based Clustering (MBC) has linear complexity and attempts to handle more arbitrarily

shaped clusters. Due to the standard deviation parameter, the clusters can take on any elliptical
shape, rather than being restricted to circles. This solves problems found in hierarchical and k-means
algorithms, which tend to produce spherical and same size groups.

To facilitate visualization of the resulting clusters, the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) technique was applied in order to reduce the extracted features to a 2D plain. t-SNE is
a commonly used technique for the visualization of high-dimensional data in scatter-plots [57].
The technique aids in visualizing high-dimensional data by giving each data-point a location in a
two or three low-dimensional data representation in such a way, that nearby points correspond
to similar objects and that distant points correspond to dissimilar objects. It aims to preserve as
much as possible the significant structure of the high-dimensional data in its low-dimensionality
representation.
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Other techniques, such as Principal Components Analysis (PCA), also aim at preserving such
structure. They mainly differ in the type of structure they preserve. PCA is a linear technique,
which keeps the low-dimensionality representations of dissimilar data points far apart. On the
other hand, t-SNE is a non-linear technique that keeps the low-dimensionality representations of
similar data points close together. t-SNE is also capable of revealing global structure such as the
presence of clusters in the data.
t-SNE computes an NxN similarity matrix in both the original data high dimension and in the

low-dimensional latent space. The similarity matrix contains the probabilities given by a Student-t
distribution between two data-points, where high probability means a pair of similar objects and low
probability a pair of dissimilar ones. The low-dimensional embedding is learned by minimizing the
Kullback-Leibler divergence between the probability distributions, in the original high dimensional
and the low-dimensional data space, with respect to the locations of the points in the latent.

3.4 Validation - computing spatio-temporal performance metrics
As illustrated in Figures 2 and 3, the final step of our user community identification framework

is its validation using a number of spatio-temporal metrics. Validation of the user community
structure is based on a number of spatio-temporal metrics. For the spatial evaluation, the following
similarity metrics are used to compute the quality of the resulting user community structure: the
mean square error (MSE), the Adjusted Rand Index (ARI) and the Structural SIMilarity (SSIM) index,
which are described in the next paragraph. The average of the similarity metrics for each pair of
input images is compared for all node pairs belonging to the same community and belonging to
different communities. As such, we expect to see higher average similarity metrics (e.g., SSIM and
ARI) between users belonging to the same community and higher average dissimilarity metrics
(e.g., MSE) for users belonging to different communities.

The simplest metric is the mean square error (MSE), calculated by averaging the squared dif-
ferences of pixel intensity of two images. However, the MSE is not the most effective way to
detect image similarities and dissimilarities. The Structural SIMilarity (SSIM) [60] Index identifies
the information structures found in images and therefore is considered as a better alternative
to measure image similarity. A third metric to evaluate clustering results is the Adjusted Rand
Index (ARI) [52]. ARI is the corrected-for-chance version of the Rand Index, which measures the
percentage of decisions (cluster assignments of all pairs of users) that are made correctly.
For time-domain validation and evaluation of the resulting user community structure, we use

contact time between users belonging to the same- and different communities. The average total
time spent together in the same cell for pairs of users belonging to the same community and
different communities is computed. Thus, we expect to see higher contact time values between
users from the same communities and lower values for users belonging to different communities.

4 EXPERIMENTAL METHODOLOGY
Weperformed experiments on threemobility datasets to evaluate the performance of the proposed

autoencoder architecture and other variants of autoencoders as well as PCA. The datasets we used
in our experiments are described in Section 4.1. The autoencoder architectures and parameters are
presented in Section 4.2, and the performance comparison in Section 4.3.

4.1 Experimental datasets
The experiments were performed on three datasets selected to represent different mobility

scenarios: (1) GeoLife, (2) San Francisco cabs, and (3) Dartmouth. We briefly describe each of the
datasets, as well as the pre-processing, including the autoencoder architectures, applied on them.
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• Geolife dataset: The GeoLife trace records mobility in various scenarios in the city of
Beijing, including different modes of transportation (e.g. walking, cycling and driving) [71].
The trace contains GPS trajectories of 182 users, collected over three years and sampled every
5 seconds. The user trajectory is represented in the dataset by a sequence of latitude and
longitude set of coordinates over time, containing 17,621 trajectories, over 50,000 hours. The
user trajectories are recorded in latitude-longitude geographical coordinates. We converted
the geolocation coordinates to two-dimensional UTM Cartesian coordinates [36].
A 2D-image was generated for each node, where each position of the matrix is a pixel, as
detailed in Section 3.1. The 182 images in this dataset have 15 x 23 = 345 pixels, which
corresponds to the number of cells for this trace. The values of the feature matrices were
individually normalized by their maximum values, so that the values of the pixels for every
user would remain between 0 and 1. These images with normalized pixel values were used
as input for training the architectures.

• San Francisco dataset: The San Francisco trace is a vehicular trace and consists of GPS
trajectories of 483 cabs in the City of San Francisco, USA [49]. It was collected during 24 days
with intervals between sample positional records ranging from 1 to 3 minutes. Similar to
GeoLife trace, we generated an image for each node. The 425 images in this dataset have 12 x
58 = 696 normalized pixels.

• Dartmouth dataset: This dataset is a Wi-Fi association trace from the Dartmouth College
campus’ WLAN [34]. The trace logs user access to Dartmouth College’s campus WLAN using
Access Point (AP) association and disassociation events. It has 6,524 users over 60 days. In
this dataset, the location of a user was set to the location of the access point to which the
user was associated at the time. We worked with a subset of this dataset, with only the busy
days where the larger number of APs were active. After filtering, this dataset allowed 2004
images (one for each active user) with 26 x 18 = 468 normalized pixels.

4.2 Autoencoder architectures and parameters
In our comparative study, we use four different autoencoder architectures, namely:

• AE: fully connected network with five dense layers on the encoder part and five symmetric
dense layers to reconstruct the input. This network has the following structure: the five
encoding layers contain 512, 256, 64, 32 and 16 units, respectively. The latent mid-layer is
composed of an 8-unit feature vector that is used as input for the MBC clustering algorithm.

• VAE: fully connected network with one fully connected layer on the encoder part and one
symmetric fully connected layer to reconstruct the input. This network has the following
structure: For Geolife dataset the two encoding layers contains 64 and 8 units, and for San
Francisco and Dartmouth datasets the layers contains 128 and 8 units, respectively. The latent
mid-layer is composed of an 8-unit feature vector that is used as input for the MBC clustering
algorithm.

• CAE: convolutional network with four 2D convolutional layers on the encoder and four 2D
convolutional layers to reconstruct the input. The Geolife and San Francisco networks have
the following structure: the four convolutional layers contain 128, 64, 32 and 16 filters of size
(3x3). The latent layer contain 1 filter of size 3x3. We used the output of the activation in the
middle layer, of shape [1, 2] as input features for the clustering algorithm. For Dartmouth
dataset the values of the filters are 128, 64, 8 and 4 with size 2x2. The latent layer contains
1 filter of size 2x2, leading to a shape of [1, 2] after activations, to be used as input for the
clustering algorithm.
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• Full CAE: convolutional networkwith three 2D convolutional layers on the encoder, followed
by a fully-connected layer in the latent space, and three symmetric 2D convolutional layers to
reconstruct the input. The GeoLife and San Francisco networks have the following structure:
the three convolutional layers contain 128, 64 and 32 filters of size (3x3), strides of size 2,
respectively. For Dartmouth dataset the parameters for the three convolutional layers are
128, 256 and 16 filters of size (2x2) and strides equal to 2. The encoded latent vector for all
three datasets used as input to the MBC is the output of the activations of the fully-connected
layer with 8 units.

Input layer size layer type depth encoder structure latent layer filter stride
GL-AE 345 fully 5 512-256-64-32-16 8 fully - -
GL-VAE 345 fully 2 64-8 8 fully - -
GL-CAE 15x23 conv 4 128-64-32-16 1x(3x3) (3x3) 2
GL-Full CAE 15x23 conv/fully 3 128-64-32 8 fully (3x3) 2
SF-AE 696 fully 5 512-256-64-32-16 8 fully - -
SF-VAE 696 fully 2 64-8 8 fully - -
SF-CAE 15x28 conv 4 128-64-32-16 1x(3x3) (3x3) 2
SF-Full CAE 15x28 conv/fully 3 128-64-32 8 fully (3x3) 2
DM-AE 468 fully 5 512-256-64-32-16 8 fully - -
DM-VAE 468 fully 2 64-8 8 fully - -
DM-CAE 18x26 conv 4 128-64-8-4 1x(2x2) (2x2) 2
DM-Full CAE 18x26 conv/fully 3 128-256-16 8 fully (2x2) 2

Table 1. Hyper-parameters and depths of the autoencoders. conv is the abbreviation of convolution layers
and fully is the abbreviation of fully connected layers.

In order to extract features from the images generated for each mobility dataset, we needed to
train the four different autoencoder architectures used in our study for each dataset. The most
well-known technique for selecting the hyper-parameters of the AEs is grid search [1]. It consists in
selecting a set of values for each hyper-parameter. Because this approach may be too expensive, We
used a variation of this technique that randomly samples the hyper-parameters uniformly within
the grid range. Following this approach, We tested a range of hyper-parameters and neural network
depths and use the ones that achieved the lowest loss on the training. The values chosen for the
hyper-parameters, as well as the depths of the autoencoder architectures are summarized in Table
1.

For all experiments, the activation function used for all input layers is the Rectified Linear Unit
(ReLU). The activation function on the output layer is linear, except for the VAE architecture, where
a sigmoid function was used. The AE, CAE, and Full CAE networks for all traces were trained to
minimize mean square error. The VAE used Kullback Leibler Divergence as its loss function. The
optimizer used was Adam for all autoencoders. The batch size was set to match the number of image
samples, i.e., 182 for GeoLife, 425 for San Francisco, and 2004 for Dartmouth. All architectures were
trained for 1000 epochs on the same dataset. The training error and number of parameters of the
resulting network and the time elapsed during the training are shown in Table 2. The computation
times presented in this table were measured on a laptop computer with a 2.0 GHz quad-core Intel
Core i7 processor and 8 GB of memory.

4.3 Performance comparison
In our performance comparison study, besides the AE architectures described in Section 4.2, we

also include two "baseline" approaches. The first one which we refer to as "modularity" does not
group users in communities and thus all performance metrics (i.e., SSIM, MSE, ARI and contact time,
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Time elapsed (sec.) Loss Total Parameters
GL - AE 9.58 0.0046 483,481
GL - VAE 9.49 -31.12 91,237
GL - CAE 2184.21 0.0503 331,890
GL - Full CAE 268.36 3.1765e-04 495,017
SF - AE 49.39 0.0245 1,015,600
SF - VAE 24.05 -217.47 182,216
SF - CAE 2500.02 6.9078e-05 388,017
SF - Full CAE 989.44 8.8735e-05 200,802
DM - AE 78.34 0.0056 443,374
DM - VAE 32.15 -27.89 19,224
DM - CAE 1047.79 0.0072 72,122
DM - Full CAE 537.47 0.0044 266,073

Table 2. Time elapsed, Training Loss and total number of parameters for the three autoencoder architectures
analyzed.

which are described in Section 3.4) are calculated by averaging the metrics for all pairs of users in
the dataset. The other baseline approach called "MBC" applies clustering to the datasets without any
dimensionality reduction. Additionally, we use liner reduction using Principal Component Analysis
(PCA). It is important to mention that PCA and autoencoders share common characteristics. PCA
uses linear combinations of the original variables that maximize the variance. Reconstructing
the input data from its principal components minimizes the mean squared reconstruction error.
Autoencoders with linear activations, which minimize the mean quadratic error also learn the
principal components of the data [5]. However, differently from PCA, AEs can learn nonlinear
combinations of the features and even more complete representations of data. It is important
to mention that human mobility exhibits non-linear behavior and hence cannot be described by
linear stochastic models [20]. Moreover, it is also possible to provide higher quality in the AE
reconstructions by adjusting the hyper-parameters and applying improvements over the standard
AE. As such, we also include different AE models in our comparative study.

In all experiments, the t-SNE technique was used for visualizing the clusters. Its perplexity
parameter [57] used to compute the input similarities varied from 5 to 25. Typical values for this
parameter are reported in [57] to be between 5 and 50. For the Dartmouth dataset, it was set to be
5, for GeoLife and San Francisco, it was set to 25.

5 RESULTS
Figure 4 shows the output of the clustering step after applying t-SNE for visualization. It plots

clusters for the three mobility datasets using three pre-processing/feature encoding methods,
namely: MBC (i.e., no dimensionality reduction applied before clustering), PCA, and autoencoder.
The results presented for the autoencoder approach were obtained using Full CAE architecture. No
significant visible differences were observed in the clustering visualization amongst the different
autoencoder architectures.
As discussed before, one of the motivations behind applying autoencoders before clustering

was the non-linear nature of the activations. The hypothesis was that the autoencoders would
be able to represent non-linearities intrinsic to the data that PCA could not represent, given its
linear nature. It is clear that the clusters become increasingly distinct as the linear and non-linear
pattern identification techniques are performed and the best visual results are achieved when using
autoencoders.
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(a) GL - MBC (b) GL - PCA (c) GL - Full CAE

(d) SF - MBC (e) SF - PCA (f) SF - Full CAE

(g) DM - MBC (h) DM - PCA (i) DM - Full CAE

Fig. 4. Clustering visualization after applying t-SNE for MBC clustering, reduced data with PCA, and latent
representation by Full AE autoencoder architecture using GeoLife (GL), San Francisco (SF), and Dartmouth
(DM) mobility datasets.

Figure 5 visualizes the matrices of pairwise SSIM values ssimi j between users i and j, computed
after considering the labels attributed to each user by our proposed methodology when using raw
data, PCA, and autoencoder. The values of the 3 matrices computed for each dataset (i.e., each
line of Figure 5) are in fact the same for all 3 images. What changes from image to image, for a
specific dataset, is the reordering of the matrix rows and columns. Each matrix for each dataset
has its rows and columns reordered and sorted according to their group labels (i.e., labels defined
by the clustering algorithms) as they were rearranged in a way that users belonging to the same
community are shown together in the matrices. In the figure, the brighter the color, the higher the
similarity (i.e., SSIM value close to 1), whereas darker colors indicate lower similarity.
We expect to see brighter colors along the main diagonal, as users belonging to the same

community tend to have similar geographical preferences and as a result, a higher SSIM similarity
metric among them. We find, however, bright regions showing high similarity between different
communities. This only means that sometimes, users of different communities can have also
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(a) GL - Raw Data (b) GL - PCA (c) GL - Autoencoder

(d) SF - Raw Data (e) SF - PCA (f) SF - Autoencoder

(g) DM - Raw Data (h) DM - PCA (i) DM - Autoencoder

Fig. 5. Similarity for each pair of users sorted by label groups, computed using the SSIM metric for GeoLife
(GL), San Francisco (SF), and Dartmouth (DM) datasets. Yellow color shows high similarity and dark green
low ones.

similar preferences. These interesting patterns revealed by the SSIM matrices can be interpreted as
relationships between the different communities identified.

The noisier and less structured the patterns in the images, the less efficient in separating similar
spatial preferences the method is. We can observe that images (a), (d) and (g), generated by applying
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clustering over the raw data, are the noisiest of them all, which means they are the less structured
ones. Overall, cluster separation is more distinct when using the autoencoder and raw data yields
less distinct clusters. The goodness of the method becomes visually more evident especially when
looking at SF-Autoencoder results in Figure 5(f), where the different regions with different colors
are much more evident and well defined when compared to the images resulting from the PCA
and Raw Data. For these last two, we can still see noisier and not well defined structured regions
of SSIM values for different communities. PCA also represents better structures in these matrices
when compared to Raw Data, however quantitative metric results will show that autoencoder is
able to differentiate better the communities, not only in terms of spatial behavior but temporal as
well. We discuss this further below.

SSIM SSIM MSE MSE ARI ARI
(same) (diff) (same) (diff) (same) (diff)

GL-Modularity 0.1264 0.1264 0.1074 0.1074 0.1140 0.1140
GL-MBC 0.1342 (-) 0.1861 (-) 0.1041 (-) 0.0600 (-) 0.1515 (-) 0.1429 (-)
GL-PCA 0.2512 (87%) 0.0862 (54%) 0.0683 (34%) 0.1512 (152%) 0.1942 (28%) 0.0662 (54%)
GL-AE 0.2266 (69%) 0.1199 (46%) 0.0776 (25%) 0.1159 (93%) 0.1866 (23%) 0.0820 (43%)
GL-VAE 0.1973 (47%) 0.1144 (38%) 0.0873 (16%) 0.1052 (75%) 0.1541 (2%) 0.1012 (29%)
GL-CAE 0.2372 (77%) 0.0959 (49%) 0.0688 (34%) 0.1349 (124%) 0.1882 (24%) 0.0971 (32%)
GL-Full CAE 0.2784 (107%) 0.0860 (54%) 0.0687 (34%) 0.1297 (116%) 0.2120 (40%) 0.0816 (43%)
SF-Modularity 0.7632 0.7632 0.0347 0.0347 0.1501 0.1501
SF-MBC 0.7826 (-) 0.7074 (-) 0.0342 (-) 0.0392 (-) 0.1674 (-) 0.1579 (-)
SF-PCA 0.8747 (12%) 0.7147 (-1%) 0.0159 (54%) 0.0473 (21%) 0.1640 (-2%) 0.1498 (5%)
SF-AE 0.9528 (22%) 0.7860 (-11%) 0.0010 (97%) 0.0301 (-23%) 0.1618 (-3%) 0.1521 (4%)
SF-VAE 0.9341 (19%) 0.7172 (-1%) 0.0025 (93%) 0.0409 (4%) 0.1666 (-1%) 0.1393 (12%)
SF-CAE 0.9517 (22%) 0.7370 (-4%) 0.0008 (98%) 0.0416 (6%) 0.1637 (-2%) 0.1455 (8%)
SF-Full CAE 0.9545 (22%) 0.7254 (-3%) 0.0008 (98%) 0.0410 (5%) 0.1649 (-1%) 0.1444 (9%)
DM-Modularity 0.2018 0.2018 0.0198 0.0198 0.1804 0.1804
DM-MBC 0.2898 (-) 0.1813 (-) 0.0180 (-) 0.0198 (-) 0.2116 (-) 0.1708 (-)
DM-PCA 0.3242 (12%) 0.1652 (9%) 0.0161 (11%) 0.0202 (2%) 0.2435 (15%) 0.1569 (8%)
DM-AE 0.3120 (8%) 0.1931 (-6%) 0.0166 (11%) 0.0207 (5%) 0.2444 (15%) 0.1734 (-2%)
DM-VAE 0.3089 (6.6%) 0.1774 (2%) 0.0162 (11%) 0.0208 (5%) 0.2329 (12%) 0.1596 (6%)
DM-CAE 0.3419 (18%) 0.1829 (-1%) 0.0158 (12%) 0.0204 (3%) 0.2484 (17%) 0.1709 (0%)
DM-Full CAE 0.3580 (24%) 0.1625 (10%) 0.0157 (13%) 0.0202 (2%) 0.2634 (24%) 0.1505 (12%)

Table 3. Performance comparison using three different metrics, SSIM, MSE, and ARI for the four AE architec-
tures considered as well as PCA and baseline approaches for Geolife (GL), San Francisco (SF), and Dartmouth
(DM) datasets.

Spatial performance is shown in Table 3 while performance according to a temporal metric is
shown in Table 4 for different methods of mobility patterns extraction. Table 3 presents results for
the three similarity metrics that are SSIM, MSE, and ARI for GeoLife, San Francisco and Dartmouth
mobility datasets. The results are shown in absolute values of similarity and also as the percentage
difference in relation to MBC clustering. MBC clustering is then used as the baseline for assessing
the quality of the clustering methodology; note that it only slightly outperforms the "modularity"
approach, which uses no community structure. Table 4 presents results for contact time, i.e., the
average total time users spend together in a cell. CImin and CIMax represent lower and upper
bounds, respectively, for a 95% confidence interval.

We observe from Table 3 that despite the fact that other methods, in most cases PCA, also yield
good performance according to some metrics, the Full CA architecture outperforms it in most
metrics for all datasets. It is important to mention that while MSE only considers the Euclidean
distance between data points, SSIM can capture the variations in contrast and luminosity of the
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Comm Mean CImin CIMax # contacts
GeoLife Modularity 4024842 3615976 4433707 32037
MBC Same 2863731 (-) 2312482 (-) 3414981 (-) 17432

Diff 5410701 (-) 4801901 (-) 6019501 (-) 14605
PCA Same 4795244 (67%) 3672235 (59%) 5918253 (73%) 5470

Diff 3863132 (-29%) 3428206 (-29%) 4298059 (-29%) 26567
AE Same 6165288 (115%) 4856236 (110%) 7474340 (119%) 4962

Diff 3632565 (-33%) 3212565 (-33%) 4052565 (-33%) 27075
VAE Same 6063904 (112%) 4685518 (102%) 7442289 (118%) 4354

Diff 3704137 (-31%) 3283634 (-31%) 4124639 (-32%) 27683
CAE Same 5361019 (87%) 4298002 (86%) 6424036 (88%) 4470

Diff 3872740 (-28%) 3429318 (-28%) 4316162 (-28%) 27567
Full CAE Same 7175820 (151%) 5644526 (144%) 8707115 (155%) 4308

Diff 3535303 (-35%) 3127447 (-35%) 3943159 (-35%) 27729
San Francisco Modularity 236227 230051 242404 176820
MBC Same 226120 (-) 217844 (-) 234398 (-) 90246

Diff 246763 (-) 237561 (-) 255966 (-) 86574
PCA Same 238084(5%) 223890 (2%) 252279 (7%) 35454

Diff 235762 (-4%) 228905 (-4%) 242618 (-5%) 141366
AE Same 244589 (8%) 229042 (5%) 260136 (10%) 28020

Diff 234653 (-5%) 227923 (-4%) 241383 (-6%) 148800
VAE Same 249878 (10%) 239179 (9.7%) 260578 (11%) 66288

Diff 228041 (-7.6%) 220527 (-7.2%) 235554 (-8%) 110532
CAE Same 251571 (11%) 240800 (11%) 262342 (12%) 65842

Diff 227124 (-7%) 219641 (-7%) 234608 (-8%) 110978
Full CAE Same 259195 (14%) 243613 (12%) 274777 (17%) 33792

Diff 230801 (-6%) 224112 (-6%) 237490 (-7%) 143028
Dartmouth Modularity 1006 985 1027 4018020
MBC Same 1129 (-) 1075 (-) 1183 (-) 635442

Diff 983 (-) 960 (-) 1006 (-) 3382578
PCA Same 1399 (24%) 1335 (24%) 1463 (24%) 581186

Diff 940 (-4%) 918 (-4%) 962 (-4%) 3436834
AE Same 1493 (32%) 1432 (32%) 1554 (32%) 607324

Diff 919 (-7%) 897 (-7%) 942 (-7%) 3410696
VAE Same 1130 (0%) 1065 (-1%) 1193 (-1%) 1203022

Diff 984 (0%) 962 (0%) 1006 (0%) 2812994
CAE Same 1488 (32%) 1404 (31%) 1572 (33%) 531164

Diff 933 (-5%) 912 (-5%) 954 (-5%) 3486856
Full CAE Same 1557 (38%) 1485 (38%) 1629 (38%) 589824

Diff 911 (-7%) 890 (-7%) 933 (-7%) 3428196
Table 4. Contact times for Geolife (GL), San Francisco (SF), and Dartmouth (DM) datasets.

images. Consequently, MSE is not able to differentiate similar images that only vary in contrast
and luminance, providing larger than expected errors [21]. On the other hand, the SSIM metric is
not significantly impacted by the changes in luminance and contrast, given that it is equipped to
address such issues. Recall that the images representing mobility features extracted from mobility
traces use pixel intensity to encode the time spent in a given region, the SSIM is the most adequate
metric to measure image similarity. According to the SSIM metric, the Full CAE architecture was
able to increase the similarity between nodes belonging to the same community by up to 107%
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and the dissimilarity by up to 54% for the GeoLife scenario. The second best method was PCA
which showed 87% improvement over the baseline. We argue that this may be due to the movement
patterns captured by the Geolife trace, where linear variables were able to represent reasonably
well most of the data. However, in the SF scenario, Full CAE achieved 83% better performance and
100% in the Dartmouth scenario compared to PCA.

Table 4 complements the spatial similarity results presented in Table 3 with an assessment of
temporal similarity. We can observe from Table 4 that the Full CAE architecture exhibits results that
are up to 151% better when compared to MBC, and 125% better compared with PCA. These results
show that the community detection method when using Full CAE is able to extract community
structures where the users belonging to the same community actually and consistently (i.e., for all
datasets studied) spend more time together in the same location. On the other hand, users that do
not belong to the same community tend not to meet, and the Full CAE architecture also managed
to decrease contact time for members of different communities.
In summary, our results demonstrate that the Full CAE architecture outperforms the other

approaches according to most metrics for all datasets. To evaluate the computational complexity
of the techniques under study, we measure the time elapsed for training, training loss, and the
total number of parameters for each autoencoder architecture and for each dataset analyzed. As we
observe from Table 2, the Time elapsed and Training Loss metrics for the Full CAE architecture
are smaller than the ones measured for the CAE architecture, even when the total number of
network parameters was larger, as it was the case for the GL and DM datasets. Full CAE’s reported
performance according to the Time elapsed metric demonstrates the feasibility of our approach in
identifying user communities which can find applications in intelligent transit and transportation
systems, as well as in urban and environmental planning.

We should point out that, although we presented results that show that the proposed Full CAE
architecture performs better than the other approaches studied, other AE architectures are still
being developed and may prove to be good candidates for feature extraction.

6 DISCUSSION AND APPLICATION
An important characteristic of smart mobility applications such as Lime, Bird, Scoot, Lyft, and

Uber-owned Jump is that users can either pick up or drop off equipment anywhere in the city.
Attending to the needs of groups of users that share the same mobility pattern allows for (1)
increasing the efficiency equipment usage (more shared bicycles/scooters available by certain route)
and (2) reducing expenses with equipment relocation, by the equitable placement of shared vehicles.

Recently, some cities experimented issues with such vehicles (bikes/scooters) blocking sidewalks
and building entrances, causing accidents (e.g., people tripping on scooters) and making public
spaces less accessible to children and people with disabilities. The mobile pattern extracted by
the proposed method may be used in the decision-making of where to make shared mobility
equipment available. Therefore the application can make more precise decisions regarding the
distribution of equipment throughout the area visited by the same mobility group. Moreover, the
job of collecting and reallocating assets still needs to be performed so that they are available to
users in the appropriate parks and racks. This can also be optimized once user groups’ movement
patterns are known.

Carpool services, such as Waze, Scoop, and Lyft are other examples of mobile-based applications.
A carpooling activity consists of a matching process that enables drivers and passengers to be
matched, and a daily route commute process that chooses the order at which passengers will be
picked up and dropped off. The complexity of the problem of finding the length of the carpooling
route, and select the best route scales dramatically according to the increase in the number of
candidates and the number of passengers in the carpool [63]. Such applications improve the
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efficiency in the carpool sharing matching algorithm if they had knowledge about mobility patterns
of groups/communities that share the same paths (fully or partially). A vehicle-to-passenger
communication (V2P) approach to support communications between riders and drivers that allows
ride-sharing, such as [39], could also benefit from our approach.

These applications normally rely on user id, home address and work address to performmatching.
If the application knows a priory the information about the group structure, labeling users according
to groups that reflect their geographical preferences, communication between drivers and riders
and even the matching algorithms could be improved.

Message routing protocols on wireless networks can also take advantage of the mobility pattern
identified by the proposed method since users belonging to the same group spend more time
together and can be good message forwarders. This characteristic was studied in several previous
work [2, 16, 38, 68] and it was found that the time users spend together, in one region and at the
same time, has a great impact on the probability of delivering messages in some types of networks.
In this work, we show in Table 4 that the proposed group identification strategy increases the
average total time spent together for members of the same group by up to 80% if compared to
the average time pairs of users spend together without considering community structures. We
show that our best autoencoder model increases average total contact time by up to 150% when
comparing with an approach that clusters the users using raw mobility data. Moreover, the same
metric is improved by 80% when considering our best approach, for one of the datasets in our
study, when compared to the non-deep learning approach. On the other hand, when using our best
model, we also find that users belonging to different groups (i.e, users who do not have a strong
relationship or common interests) have much smaller total contact then the same metric computed
for groups extracted by other methods.

(a) All groups in the map (b) Blue group (c) Red group

Fig. 6. Groups extracted by the proposed methodology plotted in the map of the city of Beijing.

Figure 6(a) shows the probability distribution of finding a member of a given group in a given
position on the map, for all groups extracted by our method and plotted over the Beijing city map.
As expected, different groups have different preferences for different regions of the city. This is
more evident when looking at Figure 6(b) and Figure 6(c). These figures show the trajectories of
all users belonging to groups 1 (blue) and 2 (red), respectively. The blue group visits much of the
city, but has a preference for the upper-right region of the map, while the red group preferences
are more evident towards the lower-left region. Figure 7 also shows the probability distribution of
finding a member of a group on the map but filtered by weekdays. We can observe from the figure
that geographical preferences can change over time. Hence, the proposed autoencoder architecture
should be retrained at appropriated time intervals, according to the temporal sensitivity of the
application applying the models, such as carpool sharing and V2P communications.
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Fig. 7. All communities by week days in the city of Beijing.

Smart mobility applications can distribute their equipment, parking lots and racks according
to the groups’ regions of preference, also considering groups’ routes. The sharing algorithms of
carpooling applications could run their matching searches between source and destination more
efficiently within a group, increasing the probability of overlapping routes and origin and destination
pairs. Also, algorithms for message forwarding or advertisement dissemination applications could
take advantage of the location and encounters among the same group of users to forward their
messages in order to reach a specific audience, increasing message delivery rate.

7 CONCLUSION
In this paper, we proposed an approach to automatically identify user community structures from

real mobility records (e.g., GPS fixes and Wi-Fi network logs). We show that the proposed method-
ology which uses deep autoencoder to pre-process raw mobility datasets is able to more accurately
uncover community structures that identify groups of users sharing common geographical interests
and temporal relationships. The proposed methodology was built based on 3 main pillars: (1)
geographical preferences feature generation, pre-processing and mobility data transformations, (2)
deep autoencoders for dimensionality reduction and extraction of latent non-linear representations
of the mobility data, and (3) clustering the output of the autoencoders and visualizing clusters by
applying the t-SNE visualization technique.

Through extensive experimentation using three real mobility records representing diverse urban
mobility scenarios, we show the effectiveness of the proposed autoencoder-based methodology.
Our results show that automatically extracted features lead to an improvement of the performance
of spatial similarity metrics while increasing contact time for users in the same community from
30% up to 150%. Moreover, the proposed approach reduces the complexity of the features design
task.
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