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Abstract

This paper explores clustering as a technique to im-
prove energy efficiency for a variety of current and
emerging IoT application scenarios. We introduce a
novel load balanced clustering algorithm based on Sim-
ulated Annealing whose main goal is to increase net-
work lifetime while maintaining adequate sensing cov-
erage in scenarios where sensor nodes produce uniform
or non-uniform data traffic. To this end, we also intro-
duce a new clustering cost function that accounts not
only for sensor node traffic load but also for the cost of
communicating over physical distances. Through exten-
sive simulations comparing the proposed algorithm to
leading state-of-the-art clustering approaches, we show
that our algorithm is able to improve both network life-
time as well as network coverage by keeping more sen-
sor nodes alive for longer periods of time at lower com-
putational cost.

1. Introduction
The Internet has forever changed the way we live,

communicate and interact, work, play, shop, move, etc.

And, as the Internet marches steadily from being an in-

ternetwork of computers to becoming an internetwork

of things, or an internetwork of everything, what not so

long ago was considered a vision of the “Computer of

the 21st Century” [1] has become reality. Mark Weiser’s

idea of the 21st Century Computer [1], which was later

reframed as “embedding the world”, “instrumenting the

world” [2], and “connecting the world” [3] with the

emergence of wireless sensor networks, predicts that

computing will be so ubiquitous, seamless, and embed-

ded into our world that it will “weave itself into the fab-

ric of everyday life until it becomes indistinguishable

from it” [1].

Indeed, according to [4], it is anticipated that by

2020, there will be close to 30 billion connected devices

worldwide and that number is expected to at least dou-

ble by 2025. Internet of Things (IoT) application such

as Smart Homes, Smart Grids, Smart Buildings, Intel-

ligent Transportation Systems, Smart Cities are some

of the expected contributors to this tremendous growth

which poses daunting challenges. These challenges are

significantly magnified when considering that the in-

crease in number of connected devices will also be ac-

companied by increased device and network technol-

ogy heterogeneity, as well as increased administrative

decentralization and application diversity.

We have been exploring clustering techniques as a

way to tackle the various IoT scalability dimensions

previously discussed. Clustering is widely applied in

a variety of disciplines to address scalability issues. It

has been used extensively in distributed systems and in

computer networking. As discussed in more detail in

Section 2, clustering has also been employed in wire-

less, multi-hop, ad-hoc networks (or MANETs), and

particularly in Wireless Sensor Networks (WSNs) to

not only improve scalability, fault tolerance, and load

balancing, but also as an effective energy savings tech-

nique. In these networked environments energy effi-

ciency is of critical importance since devices are typi-

cally resource anemic and do not have access to con-

tinuous energy sources. Several IoT applications share

these same requirements and may even impose more

stringent demands. For example, “massive IoT” sce-

narios such as smart buildings, smart metering, trans-

portation logistics and fleet management, industrial and

agricultural monitoring are characterized by a very large

number of low-cost, power-anemic devices, while “crit-

ical IoT” applications are characterized by stringent

availability, latency, and reliability demands [5].

Load balanced clustering where nodes generate non-

uniform traffic load is known to be an NP-hard prob-

lem [6]. Approximation algorithms such as gradient

descent, hill climbing, genetic algorithms, and simu-

lated annealing can be used to find approximation solu-

tions. Simulated Annealing’s strength is that its stochas-

tic component avoids getting caught in local optimal so-

lutions. In this paper, we investigate low-cost approx-

imation algorithms for energy efficient, load balanced

clustering that target IoT applications. We propose a

novel clustering approach based on simulated anneal-
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ing which works in both uniform and non-uniform load

scenarios. We compare our clustering algorithm against

leading state-of-the-art clustering approaches, namely

e.g., Load-Balanced Clustering [7] and Genetic Algo-

rithm Based Clustering [8] 1. When compared against

these existing approaches, the proposed simulated an-

nealing algorithm is able to provide improved load bal-

ancing while increasing the network’s lifetime and re-

ducing energy consumption. The contributions of our

work can be summarized as follows:

• We introduce a new class of clustering algorithms

based on Simulated Annealing that is well suited

for IoT scenarios where data traffic load is uniform

across all nodes as well as in scenarios that exhibit

non-uniform traffic load.

• We propose a novel clustering cost function based

on a combination of: distance between sensor node

and clusterhead, distance between clusterhead and

the data sink, traffic load generated by sensor node,

and clusterhead’s current load. We apply the pro-

posed cost function to both our simulated anneal-

ing algorithm as well as Genetic Algorithm Based

Clustering [7].

• We compare our algorithm’s performance against

Load-Balanced Clustering (LBC) [7] and Genetic

Algorithm Based Clustering [8]. Our experimental

results show that the proposed simulated annealing

algorithm is able to achieve better load balancing

amongst the clusterheads, thus extending network

lifetime and reducing energy consumption.

The rest of the paper is organized as follows – Sec-

tion 2 discusses related work, network and energy mod-

els are explained in section 3, cost functions in section

4, overview of generic simulated annealing algorithm is

described in section 5, experimental setup and results

are discussed in section 7 and concluded in section 8.

2. Background and Related Work
Clustering has been widely used in distributed sys-

tems as a way to achieve improved scalability, ro-

bustness, and load balancing. In computer networks

and particularly in wireless, multi-hop, ad-hoc net-

works (or MANETs), clustering has also been em-

ployed to improve energy efficiency. For instance, in

MANET deployments where some nodes are equipped

with larger batteries or have energy harvesting capabil-

ities (e.g., solar panels), such nodes can act as cluster-
heads. MANET nodes can then organize themselves in

1Our choice of representative clustering algorithms used in our

comparative study is discussed in detail in Sections 2.1, 2.2, and 6.

clusters around clusterheads which can act as traffic re-

lays for their clusters. Clusterheads in MANET, which

typically have access to constrained energy sources, ag-

gregate data for their cluster. Besides saving energy,

aggregation at clusterheads also allows data to be pre-

processed before being transmitted to its ultimate desti-

nation.

Wireless sensor networks, or WSNs for short, can be

considered a particular type of MANET, where some

or all nodes also have sensing capabilities, besides pro-

cessing, storage, and communication. Clustering has

also been used in WSNs to improve energy efficiency

and extend WSNs’ lifetime. Some WSN clustering al-

gorithms, such as [9, 10, 11, 12, 13], organize nodes

into clusters based on their distance to the clusterhead.

Using a pre-determined set of requirements, e.g., min-

imum battery capabilities, nodes that satisfy such re-

quirements announce their presence as clusterheads and

the other WSN nodes choose the closest clusterhead.

Another WSN clustering technique is to virtually divide

the network into a grid, where nodes at the center of

each cell are selected as clusterheads. All nodes within

the cell join the cell’s clusterhead [14, 15, 16].

Algorithms that use uniform degree across all clus-

terheads as clustering criterion have been proposed in

[7, 17]. However, when clusterhead degree is uni-

form, clusterheads that are farther from the WSN data

sink end up spending more energy to transmit data to

the sink when compared to clusterheads closer to the

sink. To overcome this problem, non-uniform clus-

tering has proposed, where clusters closer to the sink

will have more members compared to clusters farther

away [18, 19, 20, 21].

As the Internet continues its evolution from an in-

ternetwork of computers to an internetwork of things,

connected applications and devices as well as the un-

derlying network technology become increasingly more

diverse. This calls for algorithms that consider char-

acteristics that vary across nodes, such as data traffic.

In [8], a genetic algorithm based clustering technique

that accounts for non-uniform sensor node traffic loads

is introduced. However, it does not consider sensor-to-

clusterhead nor clusterhead-to-data sink distances. Ad-

ditionally, genetic algorithms may fall into the local

maximum/minimum problem. They can also be very

onerous in terms of processing complexity and thus en-

ergy needs [22]. Several efforts have proposed mod-

ifications to standard genetic algorithms to overcome

these problems [23, 24, 25].

In the remainder of this section, we provide a brief

description of existing clustering techniques that are

representative of two of the main classes of clustering

algorithms for WSNs, namely Load-Balanced Cluster-

ing (LBC) [7] representing uniform degree clustering
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and Genetic Algorithm Based Clusterings (GAC) [8].

In Section 7, these algorithms’ performance is com-

pared against our simulated annealing clustering tech-

nique.

2.1. Load-Balanced Clustering

Algorithm 1: Load Balanced Clustering
Input:

S: List of Sensors
C: List of Clusterheads

Output:
A: Set of Sensors to CH assignment

LBC(S, C)

begin
A← /0;

// This loop creates the ESet of each CH
foreach sensor in S do

if sensor.reachability = 1 then
// Assign sensor to the only CH in range
ch← Only CH in sensor’s range;
A← A

⋃
(sensor,ch);

ESet[ch]← ESet[ch]
⋃

sensor;
RSet[ch].remove(sensor);

end
end

// Sort CHs in ascending order of their cardinality
Sort (C);

// Expand ESet based on sensor’s distance from CH
foreach ch in C do

CriticalDistance← MinDistance (ESet[ch]);
m← Median (ESet[ch]);
while CriticalDistance < m do

sensor← next sensor in ch’s RSet;
d← Distance (ch, sensor);
if d <CriticalDistance then

// Assign sensor to ch
A← A

⋃
(sensor,ch);

ESet[ch]← ESet[ch]
⋃

sensor;
RSet[ch].remove(sensor);

end
CriticalDistance← m;
m← Median (ESet[ch]);

end
end

// Group remaining sensors based on reachability
Groups← Sensors grouped indexed by reachability;

// Sort Groups in ascending order of reachability
Sort (Groups);

foreach G in Groups do
while G != /0 do

sensor← a sensor in G;
ch← MinimizeObjective (sensor);
A← A

⋃
(sensor,ch);

G = G− sensor;
end

end
return A;

end

Load-Balanced Clustering (LBC) [7] assumes that all

sensors and clusterheads know their relative positions

either via GPS or pre-configuration. The LBC algo-

rithm (shown in Algorithm 1) is executed by all clus-

terheads (CHs) and includes the following steps:

1. CH broadcasts DiscoveryRequest message

to find sensors within its range.

2. CH waits for nodes to respond with

DiscoveryResponse message, contain-

ing their current remaining energy level and

position.

3. CH builds RSet containing information about all

nodes within range and their distances. Exchange

RSet among CHs using RSetInfo message.

4. CH executes clustering algorithm as shown in Al-

gorithm 1.

5. CH broadcasts ClusterID to nodes in its cluster as

determined by Algorithm 1 using ClusterIt
message

6. Nodes update their CH accordingly.

Assuming that all RSets will be received by all CHs,

they will all have consistent information about every

CH’s directly connected nodes. Thus, at the end of

their clustering computation, all CHs will end up clus-

tering nodes in exactly the same way. Upon receiving

RSets from the other CHs, a CH will assign sensors that

have only one clusterhead within their range (reachabil-
ity = 1) to that CH as they do not have any other choice.

When a sensor is assigned to a CH, it will be added to

that CH’s ESet. CHs are then sorted in ascending or-

der of their cardinality, which is defined as the number

of sensors in the CH’s transmission range. This is to

avoid CHs with lower cardinality, to have their cardi-

nality, i.e., number of sensors, be reduced even further,

which could lead to higher load imbalance.

Next, CHs’ ESets are expanded by adding sensors

whose distance to the CH is less than the critical dis-
tance. Initially, the critical distance to a CH is set to the

minimum distance between each node in the ESet and

the corresponding CH, and is gradually updated to the

median of distances in the ESet. Lastly, the remaining

sensors are sorted in ascending order of their reachabil-

ity. They are then assigned to clusterheads with the ob-

jective of minimizing the CHs’ cardinality (load) vari-

ance.

2.2. Genetic Algorithm Clustering
Genetic Algorithms [26] are a class of heuristic-

based stochastic algorithms inspired by evolution’s nat-

ural selection process. It is generally used in NP-hard

problems where the search space for the optimal solu-

tion is large (e.g., such as traveling salesman [27, 28]).

In genetic algorithms, a set of all solutions to a prob-

lem, called Population, and a random subset of that

population (Initial Population) are considered for fur-

ther processing. Members of the population are called

Samples, where each sample has a set of properties (or

chromosomes). Each property is represented as a num-

ber and therefore, the set of properties is represented as

an array of numbers. The properties of a pair of sam-

ples (parents) are altered systematically (crossover) or
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Figure 1: Flowchart of Genetic Algorithm [8]

mutated randomly (mutation) to produce new samples

(children). The altered solutions become next genera-

tion population and only samples that have better fitness
than the current population survive and others die. The

goal of performing crossover and mutation operations

is to arrive at a better solution defined using a cost or
fitness function. The algorithm stops when a termina-
tion conditions such as, failure to find better solutions or

achieving a pre-defined maximum number of iterations

are met. A flowchart of the standard genetic algorithm

is as shown in Figure 1.

In Kuila et.al [8], genetic algorithms are applied to

the problem of clustering with unequal load. In their al-

gorithm, which we refer to as GAC, a sample is defined

as a valid sensor to CH assignment for all sensors in

the network. A valid assignment is when a sensor is as-

signed to a CH that is within its communication range.

First, a population of 200 valid random samples is gen-

erated. Of the 200 samples, the top 10% best fit samples

are included in BSet, where the fitness 1
σ is defined by

equation 1. At each iteration of GAC, a crossover opera-

tion is performed on two random samples selected from

BSet to produce two children. The crossover point for

each crossover operation, which is performed 75% of

times, is chosen randomly. The two children thus pro-

duced are mutated 5% of times. Mutation is done as

follows: first, a sensor is chosen randomly from a max-

imally loaded CH and is assigned to a CH with minimal

load that is within the sensor’s communication range.

After crossover and mutation, children are carried over

to the next generation if their fitness is better than every

sample in the current generation. An equal number of

older generation samples is removed from the popula-

tion. The experiment continues until no better children

are produced for successive 3 rounds or a maximum of

500 iterations have been completed. The fitness func-

tion is given by -

Fitness =
1

σ
, where

σ =

√
∑m

j=1(μ−Wj)2

m

(1)

Figure 2: Crossover Operation [8]

Figure 4: System Model: Nodes, Clusterheads, and Sink

where, μ(average load) = (∑n
i=1 di)/m, di is the load of

sensor si, Wj is the overall load of the clusterhead c j, n
is the number of sensors and m is the number of cluster-

heads. The crossover and mutation operations are illus-

trated in Figures 2 and 3, respectively.

Figure 3: Mutation Operation [8]

3. System Model
In this work, we focus on IoT applications in which

nodes are essentially stationary. Examples of such ap-

plications include Smart Environments such as Smart

Homes, Smart Buildings, Smart Grids, Industrial and

Agricultural Automation, etc. As such, in our system

model we consider three components as illustrated in

Figure 4: 1. sensor nodes that have sensing capabil-

ities and generate different amounts of data (or load),

2. clusterheads (CHs) which are equipped with more

computing power and larger batteries (or have access to
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continuous energy sources) than sensor nodes , and 3.

data sinks which are typically the ultimate destination

of data generated by sensor nodes and connect to the

Internet. Note that while there is a single data sink in

Figure 4, multiple data sinks can be used.

3.1. Network Model
Given the IoT applications we target in this work, we

assume CHs are one hop distance from a sink. This

is accomplished either by placing data sinks closer to

clusters, and using multiple data sinks in deployments

covering a larger area, and/or relying on the fact that

CHs have radios that are powerful enough and thus have

longer transmission range. We also assume that CHs

are within each other’s communication range. Note that

these assumptions do not affect the generality of the

proposed clustering mechanism. They mainly simplify

how CHs communicate amongst themselves and with

sinks since no routing mechanism is required.

For energy efficiency, one of the clustering criteria

is that sensor nodes in a cluster are one hop distance

from the CH. As previously noted, nodes are station-

ary and once deployed, their positions will not change.

Each sensor node is assumed to know its geographic lo-

cation position either through some localization mech-

anism or pre-configuration during installation. Sensor

nodes share their position information with the CHs as

part of clustering.

Each cluster is managed by only one CH and sen-

sor nodes are members of only one cluster at any given

time. However, a sensor node can be in the transmission

range of one or more CHs. It is assumed that sensor

nodes periodically send data to their CH and any re-

quired signaling information can be piggybacked onto

sensor data.

The main goal of our clustering approach is to extend

network lifetime, which we define as the number of data

transfer rounds until the first CH fails. Once clusters are

formed, re-clustering is triggered when sensor failures

(e.g., due to energy depletion) are detected.

3.2. Energy Model
Our energy model is similar to the one in [9, 7, 8], but

we introduce extensions to handle the case of unequal

load, i.e., when sensor nodes generate different amounts

of traffic. As such, total energy consumed to transmit

information includes – 1. Energy consumed by sensing

and processing which depends on the amount of data

sensed and 2. Energy consumed for actual transmission

which depends on the distance between data source and

destination as well as the amount of data being trans-

mitted. Energy consumed for receiving data depends

only on the amount of data received. It is assumed that

all data sensed is transmitted and there is no loss of in-

formation during transmission. These are represented

Variable Description
Etx Energy for transmitting

Erx Energy for receiving

d Euclidean distance separating nodes

b Data transmitted (a constant

for equal load)

bsi Data transmitted by sensor si
bci Data transmitted by clusterhead ci
lsi Load co-efficient of sensor si
Sci Members of clusterhead ci
M Maximum packet size

Table 1: Energy model notation

by Equation 2 below. The notation used in our energy

model is summarized in Table 1.

Etx = b(Ep +Ecd2)

Erx = bEp
(2)

When, the load generated by each sensor is consid-

ered equal, b is a constant. However, in an unequally

loaded system, b will be different for each node in the

system. If lsi ∈ Q, where Q is the set of rational num-

bers between 0 and 1, represents the load of sensor node

si and M ∈ N, where N is the set of natural numbers, is

the maximum data size, then the amount of data trans-

mitted by sensor node si is given by -

bsi = Mlsi (3)

If clusterhead ci’s cluster contains the set of sensor

nodes Sci , then the amount of data transmitted by ci to

the sink is given by -

bci = M∑ lsi∀si ∈ Sci (4)

Note that transmission distances between sensor nodes

and clusterheads and clusterheads and data sinks are

given by the euclidean distances between them.

4. Problem Formulation
In this section we formulate the clustering problem

that we are trying to solve and introduce a novel cost

function that is based on a combination of: distance be-

tween sensor node and clusterhead, distance between

clusterhead and data sink, traffic load generated by sen-

sor node, and clusterhead’s current load. While earlier

works consider only a subset of these parameters, we

argue that in heterogeneous IoT environments, it is im-

portant to consider all of them. Table 2 summarizes the

notation used in the formulation of our problem as well

as our cost function. We start by summarizing our as-

sumptions as follows:

• Sensors may generate non-uniform amounts of

data.
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• Clusterheads are equipped with more computing

power and larger batteries than sensor nodes.

• Sensors are at one-hop from their clusterheads.

• Clusterheads are one-hop from each other and

sink/s.

• All nodes in the network are stationary.

• Sensors are aware of their geo positions.

• Each cluster is managed by only one clusterhead.

• Sensors periodically send data to the clusterhead.

• All sensed data is transmitted.

• There are no losses when data is transmitted.

• Clusterheads do not perform data compression.

• The distance between any two nodes is given by

their euclidean distance.

• Sensors fail only due to energy depletion.

Let S = {s1,s2, ..., sn} be the set of n sensor nodes

and C = {c1,c2, ..., cm} be set of m clusterheads (CHs)

in the system, where n >> m. Each CH c j finds the

set of sensor nodes Pj = {s1,s2, ..., sp}|Pj ⊆ S, that

are in its communication range. Using this information,

which is exchanged among all CHs, each CH c j con-

structs the set of CHs Qsi = {c1,c2, ..., cq}∀si ∈ S|Qsi ⊆
C, that are in communication range of si. Therefore, at

the end of this process each c j will know the set of CHs

in communication range of each si.

The problem is then to assign each sensor node si
to CH c j in order to maximize overall fitness, where

fitness is defined as follows. At any given time, let

Rc j = {s1,s2, ..., sk}|Rc j ⊆ S, be the set of sensor nodes

currently assigned to c j. Fitness resulting from assign-

ing si to c j, F(si,c j), is given as the reciprocal of the

total cost TCost(si,c j) of assigning si to c j, i.e.,

F(si,c j) =
1

TCost(si,c j)
(5)

Proposed cost function
The fitness maximization problem is converted to a

cost minimization problem. As previously discussed,

our proposed cost function cost accounts for: (1) Dis-

tance between sensor node and CH, (2) Distance be-

tween CH and data sink, (3) Load generated by sensor

node, and (4) CH’s current load. As such, the cost in-

curred by CH c j, if it accepts sensor node si as a member

of its cluster is given by -

Cost(c j : si) = d(c j,sink)× ∑n
k=0 load(sk)

m
+

load(c j)× ∑m
k=0 d(ck,sink)

m
, where

load(c j) = ∑ load(sk) ∀sk ∈ Rc j+

load(si),where si �∈ Rc j

(6)

The cost incurred by sensor node si if it accepts c j as its

CH is given by -

Cost(si : c j) = d(si,c j)× ∑n
k=0 load(sk)

n
+

load(si)× ∑m
k=0 d(si,ck)

m

(7)

As a result, the total cost, TCost(si,c j), is given by -

TCost(si,c j) =

Cost(c j : si)+
(n+m)

n
×Cost(si : c j)

(8)

Generally, d(c j,sink) > d(si,c j) and load(c j) >

load(si). Therefore, Cost(si : c j) is multiplied by
(n+m)

n
so that the total cost is not dominated by Cost(c j : si).

It is worth pointing out that the proposed cost func-

tion was motivated by some of our experimental re-

sults as reported in Section 7. More specifically, we

noticed that when distance between nodes was not con-

sidered when accounting for cost in clustering, we did

not observe significant improvements in network life-

time even after achieving better load balancing across

clusterheads.

Applying new cost function to GAC
We applied our cost function to the Genetic Algo-

rithm Clustering approach (GAC) [8] described in Sec-

tion 2 with minor modification. In case of GAC, fitness

of an entire sample should be evaluated, where a sam-

ple is a random valid assignment for all n sensor to one

of m clusterheads. This is because, unlike simulated an-

nealing, the solution is not built incrementally by eval-

uating a random assignment of sensor to clusterhead,

rather a random valid assignment of all sensors to clus-

terheads is considered and fitness of entire solution is

evaluated. Valid assignment means sensor si and clus-

terhead c j pair are within communication range of each

other. Adapted cost function for GAC is given by -

TCost(sample) = ∑
∀c j∈C

∑
∀si∈Rc j

Cost(c j : si) +

(n+m)

n ∑
∀c j∈C

∑
∀si∈Rc j

Cost(si : c j)

(9)

5. Our Approach
Our approach to solving the problem of clustering in

an unequal load environments uses simulated annealing

(SA) [29] which is a well-known approximation tech-

nique to solve NP-hard problems, where the solution

search space is quite large. While stochastic algorithms

like hill climbing may get caught in local optima solu-

tions, SA is designed to overcome the local optimum

problem by accepting locally non-optimal solution with
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Variable Description
si Sensor si
c j Clusterhead c j
C Set of all clusterheads

Rc j Set of sensors currently assigned to c j

n Number of sensors

m Number of clusterheads

F(si,c j) Fitness resulting from assigning si to c j
TCost(si,c j) Total cost of assigning si to c j
Cost(c j,si) Cost incurred by c j if si is accepted as its member

Cost(si,c j) Cost incurred by si if c j is chosen as its clusterhead

d(si,c j) Euclidean distance between si and c j
d(c j,sink) Euclidean distance between c j and sink
load(si) Load co-efficient of si

Table 2: Variables in cost functions

non-zero probability. As illustrated in Figure 5, hill

climbing will terminate when it finds that solution-2 is

less optimal than solution-1. However, SA may accept

solution-2 with some probability hoping to find a solu-

tion better than solution-1, e.g., solution-3.

Figure 5: Simulated Annealing

Simulated Annealing’s name is inspired by the

physics of metal annealing, where metals are heated and

cooled slowly in order to change their physical prop-

erties. Initially, the temperature is set to a high value

and is gradually cooled. The rate of cooling determines

the number of iterations the algorithm executes before

stopping. At every iteration, a new solution is found at

random. In our case, a new valid sensor-to-clusterhead

assignment is chosen according to the acceptable prob-
ability, AP given by Equation 10. In other words, if the

new solution is the best fit so far (i.e., new solution’s

cost is the lowest so far), then that solution is always

accepted (i.e., with probability 1). Otherwise, the solu-

tion is accepted with probability AP < 1 calculated as

a function of the solution’s “fitness” which is evaluated

using our proposed cost function described in Section 4.

Initially, i.e., when the annealing temperature is high,

non-optimal solutions are accepted with higher proba-

bility as the solution space has not been well explored

and thus the probability of finding a better solution is

higher. However, the AP decreases as the annealing

temperature cools down. When the temperature cools

down to zero, the current set of sensor-to-clusterhead

assignments is accepted as the final solution.

AP =

{
1 : i f new cost < current best cost

e
−(new cost−current best cost)

T : otherwise
(10)

Besides the new cost function (described in Sec-

tion 4), we also modified the standard simulated an-

nealing algorithm to be executed in a distributed fash-

ion by all clusterheads who broadcast the results of

their computation to the members of their clusters. It

should be noted that in order to guarantee that the sim-

ulated annealing computation carried out in all clus-

terheads yields the same result, identical seeds for the

pseudorandom number generator are used. Addition-

ally, all clusterheads must have consistent information

about the network topology. Both of these requirements

are achieved during step (2) of our distributed simulated

annealing algorithm, whose pseudocode is shown in Al-

gorithm 2.

As illustrated in Algorithm 2, our clustering mech-

anisms consists of 5 steps as described below. These

steps are similar to the steps used in the Load-Balanced

Clustering approach as described in Section 2.1, except

for the clustering phase, in which we use our simulated

annealing algorithm.

1. DiscoveryPhase: Clusterheads broadcast

DiscoveryRequest messages to find sensor

nodes within its range. Then, they wait for nodes

to respond with a DiscoveryResponse mes-

sage, containing the node’s current remaining en-

ergy level and position.

2. RSetExchangePhase: Clusterheads build

their RSet containing information about all nodes

within range and their distances. Additionally,

each clusterhead also adds a random seed to RSet.
The random seed of the lowest-ID clusterhead will

be used by all clusterheads as their pseudo-random

number generator seed for their Simulated Anneal-

ing computation. This ensures that all clusterheads

cluster sensors in exactly the same way. RSet’s are

exchanged among clusterheads using RSetInfo
messages.

3. ClusteringPhase: Our simulated annealing

algorithm described in Algorithm 2 is executed in

this phase.

4. CompletionPhase: In this phase, each clus-

terhead informs nodes in their cluster that it is

their parent by broadcasting their ClusterID using
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ClusterIt message.

5. MaintenancePhase: In this phase, periodic

heartbeats are exchanged amongst clusterheads.

On a sensor failure, the clusterhead of the failed

sensor informs other clusterheads of the event and

all clusterheads execute the steps above starting at

the RSetExchangePhase.

Algorithm 2: Load Balanced Clustering with

Equal and Unequal Loads

Input: S: List of Sensors
Output: A: Set of Sensors to CH assignment

NEW(S)

begin
A← /0;
Shuffle(S);
foreach sensor in S do

chlist← List of CHs in sensor’s range;
if chlist.length = 0 then

Mark sensor dead;
continue

end
else if chlist.length = 1 then

/* Assign sensor to chlist[0] */;
A← A

⋃
(sensor,chlist[0]);

continue
end
Shuffle(chlist);
ch← Pop first element from chlist;
cost← TCost(sensor,ch);
T ← 1.0;
Tmin← 0.0001;
α ← 0.9;
while T > Tmin & chlist.length > 0 do

cht ← Pop first element from chlist;
newcost← TCost(sensor,cht ) ;
P← AP(cost,newcost,T );
if P > random() then

ch← cht ;
cost← newcost;

end
T ← αT ;

end
/* Assign sensor to ch */;
A← A

⋃
(sensor,ch);

end
return A;

end

6. Experimental Methodology
We experimented with our simulated annealing clus-

tering algorithm using a Python custom simulator. To

conduct a comparative performance study, besides our

own clustering algorithm, we also implemented Load-

Balanced Clustering (LBC) [7], Genetic Algorithm

Clustering (GAC) [8], and GAC using our proposed

cost function as described in Section 4. We chose to use

LBC and GAC in our comparative performance study

since they have been extensively referenced as repre-

sentatives of the non-stochastic and stochastic cluster-

ing mechanisms, respectively. We compare the follow-

ing metrics in our study -

1. Standard deviation of load on all cluster heads after

clustering. The load on the clusterhead will be the

sum of loads of all its cluster members.

2. Network lifetime, which we define as the number

of data transfer rounds until the first CH fails. One

round includes data transfer from all sensors to the

sink via their clusterheads.

3. Network energy consumption, which is equal to

the sum of energy expended by all sensors and

clusterheads in the network.

4. Rate of sensor failure.

5. Clustering time, which is the total time consumed

for the convergence of the clustering algorithm.

To implement the different clustering algorithms un-

der study, our simulator employs a modular design so

that most of the code except for the core clustering al-

gorithms is reused for all mechanisms tested. The simu-

lator supports save and restore features, which are used

to save and restore system information after bootstrap-

ping, so that different algorithms can be executed with

the same scenarios (e.g., exactly the same node place-

ment, etc). It can also be used to save information after

clustering is performed that can be loaded by a visu-

alization tool to display resulting clusters (as shown in

Figures 8 and 9.

Simulation parameters and the values used in our ex-

periments are summarized in Table 4. Sensor nodes

within range of clusterheads and vice-versa are de-

termined based on the maximum transmission range

and euclidean distance separating them. This forms

the RSet of clusterheads and sensors, respectively. To

model traffic load generated by sensor nodes, each

node’s load coefficient (lsi ) is randomly generated be-

tween 0 and 1 and do not change in the course of the

experiment.

The network’s total energy consumption is calculated

as the sum of the energy consumed by cluster formation

and data transfer as follows:

• Energy consumed during cluster formation:
each clusterhead subtracts the amount of energy

required to transmit one DiscoveryRequest
message, receive ‘r’ DiscoveryResponse
messages, where ‘r’ is the cardinality of clus-

terhead’s RSet, transmit one RSetInfo mes-

sage, receive ‘m−1’ RSetInfo messages, where

‘m’ is the number of clusterheads, and one

ClusterIt message. Each sensor node sub-

tracts the amount of energy required to re-

ceive ‘q’ DiscoveryRequestmessages, where

‘q’ is the cardinality of sensor’s RSet, transmit

one DiscoveryResponse message and one

ClusterIt message. For control messages, we

use a maximum length of 32bytes and we use the

maximum transmission range as the distance sepa-

rating the nodes. Energy consumed to transmit and
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receive information is determined according to the

energy model described in Section 3.2.

• Energy consumed when transferring data: the

amount of data transmitted by each sensor node is

calculated as the product of the node’s traffic load

lsi and the maximum data size M. The energy con-

sumed esi by each sensor node is thus equal to the

energy consumed to transmit data of length M ∗ lsi

over the distance separating the sensor node and

its clusterhead. At every round, each sensor node

reduces its energy esi , which will be different for

each sensor. The reduction of energy continues

until energy of sensor nodes and/or clusterheads

become zero. At this point the sensor node(s) or

clusterhead(s) are considered to have failed. A sen-

sor node failure triggers all clusterheads to start at

the RSetExchangePhase as explained earlier.

Data transfer continues until a clusterhead fails,

which terminates the experiment. In our current

experiments, energy depletion is considered as the

only mode of failure.

GAC Parametric Sensitivity
The GAC’s implementation reported in [8] uses a

single set of values for the algorithm’s parameters as

described in Section 2.2. We then wanted to investi-

gate how sensitive GAC’s performance, i.e., load bal-

ancing and network lifetime (rounds of data transfer),

is to these parameters. We experimented with 384 dif-

ferent combinations with various population sizes (100,

200, 350, 500), BSet percentages (10, 20, 40, 50),

crossover percentages (50, 70, 90), mutation percent-

ages (5, 10, 20, 40), and number of maximum itera-

tions (500, 1000). It turns out that the algorithm is

not significantly sensitive to these parameters as shown

in Table 3, as more than 95% of the experimental re-

sults were within two standard deviations. Therefore,

we used the same experimental parameters as in [8].

AVG SD Within 1-SD Within 2-SD
Load 4.16 0.05 67.19% 95.31%

Rounds 4217.19 181.74 67.45% 96.10%

Table 3: GAC algorithm’s sensitivity to experimental parameters

We also explored modifications to GAC to overcome

the local optima problem as proposed in [23, 24, 25].

To this end, we perturbed the algorithm by carrying

some genetically weak children to the next generation

with different probability (i.e., 0, 10, and 25%) for var-

ious numbers of CHs (10, 15, 30, 45) using 300 sen-

sor nodes and averaged over 100 runs. We did not ob-

serve any significant changes in the results when com-

pared to the original GAC approach which carries only

better children to the next generation. The standard

deviation of load (0.0199) was just 0.25% from aver-

age load (8.275) and standard deviation of network life-

time (24.53) was 0.83% from average network lifetime

(2948.18). These results show that simple perturbations

to the original GAC algorithm do not significantly im-

pact its performance. More detailed experimentation

with different optimization techniques will be consid-

ered as part of our future work.

7. Results
We have conducted extensive simulations to evalu-

ate our proposed simulated annealing based clustering

algorithm. In this section, we present our experimen-

tal results which were obtained by running two sets of

experiments, one where distances between nodes were

not considered when computing the cost function and

the other set where node distances were accounted. We

start by describing the experimental setups used.

7.1. Experimental Setup
As discussed in Section 6, we experiment with 4 dif-

ferent clustering algorithms - 1. LBC [7], 2. GAC [8],

3. GAC with our cost function described in Section 4,

labeled “GANC”, and 4. our simulated annealing al-

gorithm, labeled “NEW”. Results presented here are

averaged of 100 runs. We ran the algorithms with both

equal and unequal loads, varying the number of sen-

sors from 100 to 350 (in increments of 50) and using

10,15,30,45 clusterheads. We assume the network area

to be 200x200 meter2, which approximately the size of

a large office building or a medium shopping mall. Po-

sition of sensors and clusterheads are randomly chosen

and do not change as mobility is not considered and sink

is positioned at the center (100, 100). Transmission

ranges of protocols like Bluetooth, WiFi and 802.15.4

transmission range are approximately between 10 and

100 meters [30, 31]. Therefore maximum transmission

range of sensors is set to 85m. In order for the clus-

terhead to communicate amongst each other, the maxi-

mum transmission distance is set to 300m, which is ap-

proximately the length of the diagonal of the network

area and can be achieved using long-range protocols

like LTE [32] or LoRa [33]. Remaining simulation pa-

rameters such as sensors’ and clusterheads’ initial en-

ergy, Ec, Ep and message sizes are set to be the same

values as used by previous researches [9, 11, 8]. Ta-

ble 4 summarizes our experiments’ simulation parame-

ters and their values.

7.2. Load-balancing without node distances
In this first set of experiments, we focus on improving

load balancing, i.e., reducing load variance, across clus-

terheads. As such we do not account for distance be-

tween nodes when computing clustering cost. We only

show results using 30 clusterheads as we do not observe
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Parameters Values
Area 200x200 m2

Load Type Equal & Unequal

Sink position (100,100)

Sensor & Clusterhead position Random

Sensors 100-350

Clusterheads 10-45

Max sensor range 85m

Max clusterhead range 300m

Initial sensor energy 2 joules

Initial clusterhead energy 10 joules

Load co-efficient per sensor Unique random value ∈ [0,1)

Ec 50x10−9 joules/bit

Ep 10x10−12 joules/bit

Max data size 256 bytes

Max control message size 32 bytes

Number of simulation iterations 100

Table 4: Simulation parameters

Figure 6: Standard deviation in clusterhead load without considering

distance in cost metric

significant changes when we vary the number of CHs.

As shown in Figure 6, we observe that NEW yields sig-

nificant improvement in load balancing (up to 40% less

load variance) when compared to LBC and GAC. The

gap in load variance reduction increases with the num-

ber of sensors.

However, as shown in Figure 7, there was no signif-

icant improvement in NEW’s network lifetime. As ex-

pected, network lifetime decreases as number of sensor

nodes increases which causes the load on the cluster-

heads to increase.

Figure 7: Network lifetime without distance in cost metric

Figure 8: Clusters formed by GAC algorithm minimizing clusterhead

load variance for sensors with unequal load.

Figure 9: Clusters formed by NEW algorithm minimizing cost

function using load and distance metrics for sensors with unequal

load

To understand why we did not see substantial im-

provement in network lifetime, we visually inspect clus-

terhead load for the case when sensor nodes are gen-

erating non-uniform data traffic as shown in Figure 8.

All three algorithms (GAC, LBC and NEW) show sim-

ilar clustering behavior and therefore, only results for

the GAC algorithm are shown in Figure 8. The size of

the clusterheads and sensor nodes are indicative of their

load - the higher the load, the bigger their size. We ob-

serve that while the size of all clusterheads are similar,

implying that they are equally loaded, clusterheads far-

ther away from the sink deplete their energy faster than

those near the sink due to longer distance. Therefore,

clusterheads farther from the sink fail quickly which

leads to decrease in network lifetime.

7.3. Load-balancing accounting for node dis-
tances

As discussed in Section 4, these results inspired us

to develop a new cost function that considers all four
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(a) Network lifetime with 10 clusterheads

(b) Network lifetime with 15 clusterheads

Figure 10: Network lifetime with new cost function for sensors with

unequal load with 10 and 15 clusterheads

metrics - sensor node load, clusterhead load, as well as

distance from sensor to clusterhead, and distance from

clusterhead to sink. When clustering is performed us-

ing the new cost function, we notice, as illustrated in

Figure 9, that clusterheads closer to sink are more heav-

ily loaded than those farther away. This depletes the

energy among the clusterheads more evenly, increasing

network lifetime. As previously pointed out, in order

to conduct a fair comparative study, besides using the

new cost function in our simulated annealing algorithm,

we also apply it to the GAC algorithm, which we call

GANC (GA New Cost).

Figures 10 and 11 shows network lifetime when the

new cost function is used for the non-uniform sensor

load case. Improvement in network lifetime is observed

for different number of sensor nodes and clusterheads.

Our algorithm increases network lifetime by an average

of 30% compared to GAC and an average of 60% com-

pared to LBC. LBC yields the lowest network lifetime

as it is not designed to accommodate unequal load. We

believe that GANC does not show much improvement

over GAC because of the local maxima drawback.

NEW also results in lower energy consumption and at

any point in time will have more sensor nodes alive as

shown in Figure 12a. Energy consumed during cluster-

ing is same for all protocols as the number of messages

transmitted is the same. However, energy consumed

during data transfer depends on how well the load is bal-

anced. NEW consumes approximately 15% and 20%

less energy compared to GAC and LBC, respectively

per round. Due to lower energy consumption per round,

data can be transferred for more rounds, which leads to

increase in network lifetime and sensor nodes will also

(a) Network lifetime with 30 clusterheads

(b) Network lifetime with 45 clusterheads

Figure 11: Network lifetime with new cost function for sensors with

unequal load with 30 and 45 clusterheads

be alive for longer duration. In summary, besides at-

taining the primary goal of improved network lifetime,

NEW also improves coverage by keeping a higher num-

ber of sensor nodes alive as shown in Figure 12b.

NEW also outperforms LBC, GAC, and GANC for

scenarios where sensor nodes generate uniform load as

shown in Figure 132. Note that NEW yields better load

balancing than LBC which was specifically designed

for uniform load applications.

Lastly, we compare the computational cost of the dif-

ferent clustering algorithms by measuring the time it

takes for the algorithm to perform clustering once all

the information required for clustering is exchanged. As

shown in Figure 14a, which plots results for runs with

10 and 45 clusterheads, NEW algorithm is significantly

faster when compared to GAC in all cases, and faster

than LBC in most of cases. In cases where clusterhead-

to-sensor ratio is high, there is higher probability that

more clusterheads are within the range of each sensor

nodes. Therefore, simulated annealing may take more

time to converge, when compared to LBC, as it will

have to explore more solutions (i.e., clusterhead to sen-

sor assignment). We observe in Figure 14b that NEW is

slower than LBC with 100 sensors but the difference in

time shrinks as the number of sensors increases and as

a result clusterhead- to-sensor ratio decreases.

2Due to space limitations and the fact that the trends in perfor-

mance are similar in all cases, we only show network lifetime results

for 10 and 45 clusterheads in Figure 13.
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(a) Energy Consumption

(b) Sensor Failure

Figure 12: Total energy consumption and sensor failure using NEW

(a) Network lifetime with 10 clusterheads

(b) Network lifetime with 45 clusterheads

Figure 13: Network lifetime for uniform sensor load scenarios

(a) Clustering time with 10 clusterheads.

(b) Clustering time with 45 clusterheads

Figure 14: Clustering time non-uniform load scenarios sensors

8. Conclusion and Future Work
This paper introduced a novel clustering algorithm

that targets a variety of current and emerging IoT ap-

plications such as Smart Environments (e.g., Smart

Homes, Smart Buildings, Smart Grids, etc.), Industrial

and Agricultural Automation to name a few, where IoT

nodes are stationary. The main goal of clustering when

applied to IoT applications is to maximize energy ef-

ficiency and consequently the IoT’s network lifetime.

Our experiments show that, when compared to lead-

ing state-of-the-art clustering approaches, our simulated

annealing based algorithm is able to improve both net-

work lifetime as well as network coverage by keeping

more sensor nodes alive for longer periods of time at

lower computational cost. This is the case for IoT sce-

narios where sensor nodes generate uniform and non-

uniform data traffic. More specifically, our algorithm

increases network lifetime by an average of 30% com-

pared to genetic algorithm based clustering and an av-

erage of 60% compared to non-stochastic clustering. It

increases energy efficiency by around 10% and its av-

erage convergence time is 75 times faster than genetic

algorithm based clustering and is approximately as fast

as non-stochastic clustering.

As future work, we plan to relax the clustering re-

quirement that sensors are only one hop away from their

clusterhead. We also plan to consider sensor failures

other than energy depletion as well as the trade-off be-

tween re-clustering immediately when sensor failures

are detected versus the resulting additional processing

and communication cost. Additionally, we will explore

other definitions of network lifetime [34].
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