
Towards Reproducible Network Simulation
Experiments: A Case Study Using Popper

Andrea David
UC Santa Cruz

andavid@ucsc.edu

Mariette Souppe
UC Santa Cruz

msouppe@ucsc.edu

Katia Obraczka
UC Santa Cruz

katia@soe.ucsc.edu

Ivo Jimenez
UC Santa Cruz

ivo.jimenez@ucsc.edu

Sam Mansfield
UC Santa Cruz

smansfie@ucsc.edu

Kerry Veenstra
UC Santa Cruz

veenstra@ucsc.edu

Abstract—In computer networks, research experiments are
often conducted using a variety of network simulation plat-
forms as well as software development tools. Many of these
network simulators, however, require their own specific setup
(e.g., operating system, libraries, software dependencies, etc),
which makes replicating and validating research results quite
challenging. There has been a growing need in experimental
computer science research, including computer networks, for
tools that enable experiment reproducibility. In this paper, we
show how a recently proposed reproducibility tool called Popper
facilitates reproducibility of networking experiments. In partic-
ular, we detail the steps taken to automate the execution and
re-execution of experimental results presented in two research
works. Using Popper, we develop a workflow and test it on
existing experiments, comparing results from the original and
the corresponding reproduced outcome. We also provide a list of
lessons we learned throughout this process.

I. INTRODUCTION

A. Background

The ability to reproduce previous experiments is one of
the most important aspects in scientific research. However,
as scientific discovery is rapidly advancing, researchers are
pressured to rush publication of new findings and breakthroughs.
This is especially true in Computer Science and Engineering
where knowledge and technology have been advancing over-
whelmingly fast and the push to publish new results is even
stronger. Lately, however, there has been growing concern in
the experimental computer science and engineering research
community about results that cannot be reproduced and thus
cannot be verified [1]. There is increasing consensus about the
importance of being able to reproduce research results to better
understand conveyed ideas and further improve upon them.

Replicating scientific experiments, however, is a challenging
task. In experimental computer science and engineering, more
generally, and in computer networking, more specifically, one
of the biggest setbacks of reproducibility is the complexity
that comes with rebuilding the same environment in which
the original experiment was conducted [2]. Many experiments
in this field rely on expensive hardware and software. While
simulation tools greatly facilitate conducting experiments when
compared to real hardware testbed experimentation, rerun-
ning an experiment from scratch can be strenuous. Network
simulation experiments often come with the cost of extensive
software configuration and package installation upon attempting
to reproduce previous results. In addition, even with a correct

setup there might still exist uncertainty whether results are
reproduced correctly. In this paper, we make a case for a
systematic approach to experimental reproducibility applied to
network simulations. Furthermore, we use examples from our
own experience, with an intent for it to serve as a guideline to
researchers and students.

B. Motivation

In addition to validating the credibility of scientific papers
and their results, reproducing networking experiments has also
been used as a hands-on way to teach both fundamental and
advanced concepts in computer networking [3]. When teaching
a new topic, educators want students to engage in the particular
subject matter rather than the daunting task of setting up an
environment. This educational aspect could be improved by
using a tool that would enable students and educators to easily
create and modify end-to-end workflows to make learning more
accessible to students.

Another motivation behind making the case for experimental
reproducibility in networking research is based on our own
experience as members of an academic research lab. Often
times junior students help and eventually may take over the
work of more senior students who are soon graduating or
have already left the university. Instead of reinventing the
wheel, it is in the interest of the lab for the new students to
improve and build on top of previous work while leveraging
as much of it as possible. However, replicating someone else’s
work is challenging and often impossible. This is especially
prevalent in computer networking experiments where most
of the experiment setup is performed manually with little or
no documentation. The current state of practice of setting
up simulation experiments for researchers and practitioners
involves, among other things, obtaining and keeping track of
large amounts of data from various datasets, installing required
software packages and libraries, and setting up the appropriate
environment. These steps are often left undocumented because
they usually involve consulting multiple resources along with
repeated trial and error attempts. Consequently, they become
not only very tedious and time consuming, but also prone to
errors. As such, having a systematic approach to creating an
experimental pipeline that researchers could easily modify when
conducting and reproducing experiments will be a significant
step forward towards more rigorous scientific research.

A recently proposed reproducibility tool named Popper

introduces a convention for creating experimentation pipelines
which are easy to reproduce and validate [4]. In order to show
the suitability of the Popper convention in the experimental
networking domain, we document our experience of automating
the execution and re-execution of two network simulation
experiments presented in [5,6]. One of the main reasons we
chose these two papers was because we had the help of the
original authors available to us. As a result, we were able to
obtain all their original scripts and notes for reproducing their
existing experiments. Additionally, we met with the authors
several times to understand how the scripts map to what is
reported in the original papers. This paper details our experience
with the goal of serving as a reference to other researchers
seeking a way to make their experiments reproducible. The
contributions of our work include:

• Applying Popper in the domain of computer networks,
more specificially simulation experiments;

• Lessons learned through this context;
• A methodology template for others to make a researcher’s

work reproducible.
The remainder of the paper is organized as follows, Section II

goes over the tool that is used to help make these simulation
experiments reproducible. In Section III, we describe the
networking experiments that we reproduce using Popper as well
as the network simulation platform we use, while in Section IV,
we describe how each experiment was conducted originally,
i.e., prior to using Popper’s reproducibility model. Section V
presents experimental results under Popper and compares them
with original results. Lastly, in Section VI, we reflect on our
experience and provide a list of lessons learned that we hope
will help other practitioners producing this type of networking
experiments.

II. POPPER

Popper is a convention for creating reproducible scientific
articles and experiments [2]. The convention is based on the
open source software (OSS) development model, using the
DevOps approach to implement different stages of execution.
The Popper Convention creates self-contained experiments
that do not rely on libraries and dependencies other than
what is already inside the Popper-compliant or “popperized”
experiment. To achieve reproducibility, Popper uses pipelines
containing shell scripts that execute the original experiment.
An example of set of steps that an experimenter can follow to
help achieve reproducibility are the following:

1. Experimental design and pipeline definition;
2. Selecting Software selection;
3. Creating of environment using Docker;
4. Writing experiment scripts and parameter sweeps;
5. Writing analysis using python tools.
The Popper pipeline consists of five stages: setup, run, post-

run, validate, and teardown. In the setup stage, a user would
usually download all the necessary files to run the project.
These files are, for example, data files, libraries, and other
dependencies. The run stage executes the script that is used to

Figure 1: Automation workflow for an experiment.

run the original experiment. The post-run stage is where a user
would display the results obtained in the run stage. This stage
could be used to open a log file that shows the results of the
experiment or run a script that graphs and displays the results.
Fig. 1 shows the skeleton workflow for a Popper experiment
using the “popper workflow” command. We note that each
experiment may vary and that not all stages are needed for
every experiment.

In our case, for example, the simulation experiments we
reproduced were made to run in a virtual environment called
Instant Contiki. For this reason, we needed a Popper pipeline
that could run an entire operating system. To achieve this, we
used Docker, a DevOps tool that packages applications and
environments into containers. Docker allowed us to create an
image of the Contiki operating system that contained all the
libraries and dependencies needed to run it as just one package
inside our pipeline. This feature of Popper that allows the use
of DevOps tools makes it an advantageous convention, which
we will demonstrate in the sections that follow.

III. NETWORK SIMULATION EXPERIMENTS

A. Network Simulation Platforms

There are a variety of network simulation platforms such as
NS3, MiniNet, and Cooja. NS3 [7] is an open source discrete
event network simulator that is widely used for simulation
environments for network research. Its goal is to provide
scalability and ease of use for a variety of networks. Mininet [8]
is also an open source simulation tool that provides a virtual
network for interacting with Software-Defined Networking
applications using OpenFlow. Cooja [9] is a widely used
network simulation platform that is specialized in evaluating
wireless sensor network applications. Cooja is a simulation tool

for the Contiki open source operating system, which is used
for building and connecting wireless systems for the Internet
of Things [9]. Although each of these network simulators is a
popular choice in the networking field, the experiments we are
working with are conducted in Cooja, as it allows for inclusion
of simple radio propagation models.

B. TerrainLOS

The first experiment we have reproduced in this paper is
based on TerrainLOS [5]. TerrainLOS is an outdoor terrain prop-
agation model that aims to create a more accurate simulation
of outdoor sensor network communication. Most simulation
platforms either assume a completely flat terrain or tend to
use very simplistic channel propagation models that do not
represent realistic outdoor terrain conditions. To present a more
accurate outdoor simulation model, TerrainLOS uses common
geographical height maps, called Digital Elevation Models
(DEMs). These data files are used in experimental evaluations
to investigate communication between nodes under realistic
conditions. TerrainLOS defines Average Cumulative Visibility
(ACV) as a metric to characterize terrain. ACV denotes the
average percentage of nodes that are visible in an area from all
nodes on a map. For example, 100% ACV means that every
node is visible to all other nodes, which further implies the
presence of a flat terrain. In their experimental methodology,
the authors of TerrainLOS define population as the percentage
of nodes per location on a given map, e.g., a population of
one means there is one node for every one hundred locations
on the map. The ACV and the population metrics are used
in evaluating network connectivity. Our experiments in this
paper focus on automating the execution and re-execution of
Experimental Connectivity simulation in [5]. The purpose of
this simulation is to experimentally evaluate the accuracy of
connectivity results based on the models earlier presented by
the authors in [5]. The connectivity results are plotted using
the Average Cumulative Visibility metric and population size.

C. Sensor Network Deployment Over 2.5D Terrain

TerrainLOS has been used to evaluate the sensor placement
algorithm proposed in [6] that aims at optimizing visual
coverage in deployments over 2.5D terrain. 2.5D terrain is
defined as using 2-dimensional rendering techniques such as the
sensor placement algorithm and using controls in 3-dimensional
space such as the terrains. It is named 2.5D terrain as it is not
quite 3-dimensional but it is using features of 2-dimensions
and 3-dimensions. The proposed algorithm works as follows.
Initially, a set of nodes is placed on a given region. Then,
each node executing the algorithm moves around the terrain to
optimize the collective visibility of the network. In the original
paper, each new run of the experiment involved initializing
a script with parameters such as number of nodes, intended
transmission range of the nodes, and the desired terrain, then
running the script, analyzing the results, and repeating these
steps multiple times until the results are reasonable.

Additionally, the experiment in the paper required pre-
installing an associated program containing a graphical user

interface (GUI) that required familiarity with its features
from the user. After extensive manual configuration and
initialization of the parameters mentioned above, running the
script and waiting for the final results was a repetitive and
time-consuming task. Since each new experiment had to be
configured and re-run a number of times for accurate results,
the student or researcher had to be present in front of their
computer throughout the duration of the process. Finding a
way of automating this process and avoiding using a GUI was
imperative.

IV. RECONSTRUCTING EXPERIMENTS USING POPPER

A. TerrainLOS

TerrainLOS is intended to run in Cooja, the network
simulator for the Contiki operating system. In order to run
TerrainLOS, without using Popper, a researcher would have to
go through several steps when attempting to replicate the results
in [Sam’s Paper]. First, they would have to download Instant
Contiki, a development environment for the Contiki operating
system, and install a virtual machine to run it. Once the user
has logged in and started the Cooja simulator, they would have
to download the necessary files, libraries, and dependencies
needed to run the TerrainLOS propagation model. Lastly, they
would have to create a jar file of TerrainLOS and load it into
Cooja to run the simulations. This is a very time-consuming
task, not to mention the very likely possibility of encountering
errors upon attempting to run the project the first time. Similarly
to our experience, the researchers or the reviewers of the project
may find that after compilation there are a few necessary files
or modules missing that were not part of the set-up instructions
provided by the authors. However, opposed to our particular
case, reviewers rarely have a chance to contact the original
author of the experiment and receive step-by-step instructions or
solutions to the encountered errors. For this reason, interpreting
error messages is generally cumbersome if not impossible.

Popper provides a significantly more effortless way to
reproduce someone’s experiment without the need of having
the original author explain the steps needed for the procedure.
Usually, the author would tailor their code in a way that follows
the Popper convention from the start. However, making an
experiment Popper compliant in retrospect is possible as well.
We want to show this by detailing the steps taken to make
Experimental Connectivity simulation of TerrainLOS Popper
compliant.

First, in the implementation of the Popper pipeline, two
stages were generated – the run stage and the post-run stage.
Although in this particular experiment the setup, validate,
and teardown stages were not used, the workflow for other
experiments may differ. In our pipeline, the run stage takes care
of setting up the Instant Contiki and Cooja environment. Since
Instant Contiki requires a virtual machine to run and Cooja is
usually used with a GUI, the setup of the two was accomplished
with the help of Docker containers. Docker creates an image
of the Contiki operating system including the Cooja simulator.
Once the virtualization of the Contiki system is finished, the
main task of the run stage is to execute the author’s script

that takes ACV and population size as inputs. The original
simulation experiment was run using population sizes of one,
ten, thirty, and eighty, and ACVs ranging from one to hundred
percent with increments of ten. The same input arguments are
used for the reproduced experiment as well. After the script
has been executed, the output of these runs is saved in log
files, which are read in the post-run stage with another script
written by the author. The results are then graphed and saved
in an image file as output. As a result, the original experiment
is “popperized” and can be run by just simply executing the
“popper check” command inside the experiment pipeline.

B. Sensor Network Deployment Over 2.5D Terrain

When first running the experiment [6], there were a few
tools that had to be downloaded before getting the experiment
to work. Java and Contiki had to be installed since those are the
environments where the experiment runs. Once the environment
was set up, the code for the experiment would run in Cooja.
Then for every experiment to be run, a simulation file had to be
configured per experiment manually. This part of the process
can be very lengthy since each simulation contains numerous
different parameters. After each simulation script has been
configured, each script could be run within the simulator, then
after a certain amount of time the final Cumulative Visibility
value is obtained. In the Popperized version of the experiment,
there are two stages in the pipeline - the setup stage and
run stage. The setup stage builds a Docker container which
creates the necessary environment for the experiment to run.
Additionally, the setup stage creates simulation scripts for every
experiment the user would like to run. In the run stage, each
of the scripts that have been made from the setup stage are
now run in the Cooja simulator.

Furthermore, in the Popper version the user only has to
configure one file for multiple simulations where popper will
run each simulation individually and then output the final results.
The automated workflow for this simulation is as follows; first,
the values of the parameters of the experiment have to be
defined by the user. Second, a Docker container is created
with the entire environment, modules, and packages for the
experiment to run. In the third step, the simulation template
gets pulled, from the pipeline created from the popper tool, and
the fourth step creates N simulations that the user has defined.
Fifth, those N simulations are run and lastly the Cooja.testlog
are outputted into the output folder to further evaluate the final
result. Listing 1 shows an example Popper pipeline for this
experiment.

V. RESULTS

A. TerrainLOS

The simulation experiment titled Experimental Connectivity
in [5] outputs a graph depicting the percentage of connected
networks based on Average Cumulative Visibility and pop-
ulation size. This graph can be seen in Fig. 2. Intuitively,
population size of 80 has the highest percentage of connected
networks from ACV ranging from zero to hundred percent. The
authors of [5] explain that this is because a larger population

Listing 1 Sample contents of a Popper repository.

paper-repo
| README.md
| .popper.yml
| pipelines
| |-- myexp
| | |-- setup.sh
| | |-- run.sh
| | |-- post-run.sh
| | |-- scripts/
| | |-- sim_config.yaml
| | |-- sim_template.csc
| | |-- create_sim_files.csc
| | |-- simulations/
| | |-- output/
| | -- contiki/
| | |-- {java files for exp}
| paper
| |-- build.sh
| |-- figures/
| |-- paper.md
| |-- paper.pdf
| -- references.bib

can bypass obstacles in the terrain (e.g., mountain) more likely
than a smaller population. For this reason, the percentage of
connected networks drop as the populations size decreases.

In our reproduced experiment output, depicted in Fig. 3, a
similar graph is seen. The reproduced experiment is not an
exact copy of the original. This is because the experimental
simulation outputs for Experimental Connectivity are intended
to be probabilistic and vary across multiple runs. It is possible
to generate the exact graph using the original simulation logs
from the author, but we wanted to showcase the re-execution of
the pipeline from the start of the experiment. We still observe
the general trend in the reproduced results. Population size
of 80 produces the highest percentage of connected networks.
Furthermore, as population size decreases, the percentage of
connected networks decrease as well. This trend indicates a
successful reproduction of the experiment.

B. 2.5D Deployment on TerrainLOS

Similar to Experimental Connectivity, the results of [6] are
obtained in a form of a graph. The output of the original paper
can be seen in Fig. 4, while the output of our reproduced
experiment is shown in Fig. 5. Fig. 4 shows results for every
data point calculated for the average of ten nodes in random
starting positions on specified terrain [6]. Furthermore, the
graph illustrates each communication radius from 130 to 170
with increments of ten for the given terrains.

In the graph in Fig. 5, we can see that the outputs are not
exactly the same. Some of the reproduced results do not have
all of the terrains as in the original results because not all of
the terrains were available while reproducing the experiment.

Figure 2: Original results from the Experimental Connectivity
experiment in [5].

Figure 3: Reproduced network connectivity results using
Popper.

Figure 4: Original results from the 2.5D Terrain Experiment.

Figure 5: Reproduced results using Popper.

Furthermore, the values in Fig. 5 are higher than the values
in Fig. 4. This difference is because the original paper used
a custom, synchronous simulator that was programmed in
C++. Since then, the author of the experiment decided to
switch environments. For this reason, the experiment has been
translated into a Cooja environment as a new Java model in
the event-driven simulator. Despite missing elements, due to
the author’s decision, the trend in both Fig. 4 and Fig. 5 is
uniform.

VI. LESSONS LEARNED

Throughout our work using Popper to reproduce the exper-
iments mentioned in this paper, one of the main takeaways
that we learned is the difficulty involved in automating an
experiment that was not implemented with reproducibility in
mind. In our case, we had the opportunity to closely work
with the original authors of the network experiments. However,
having access to the original authors is quite uncommon. Even
with the opportunity of consulting with the authors, reproducing
their experiment was an extensive task as they have made a few
changes to their work since publication. This further shows
how focusing on reproducibility from the start (e.g., using
the Popper convention or other reproducibility tools) makes it
easier to obtain a versioned, automated, and portable pipeline
that others can easily re-execute.

As we strived for portability across different hardware
and operating systems, we encountered some limitations. For
example, our experiments were conducted in the Cooja network
simulator, which has the option to run without a GUI. However,
this is not the case for other GUI-based network simulation
tools. Experiments implemented using platforms that are
exclusively GUI-based are much harder to automate, since
they cannot run in a command-line environment. A command-
line interface not only helps the process of reproducibility but
is required by many reproducibility tools. Furthermore, in the
process of automating the experiments, we encountered issues
using Docker on a Windows system and needed to switch
to a Linux based operating system. Further, when creating
the Docker files, we had to make sure that the images we
were using were up to date and maintained, otherwise our
environment would not be fully functional.

VII. CONCLUSION

Experimental reproducibility is an essential component of
scientific research. However, unlike other disciplines in the
sciences, reproducing experimental results in the field of
computer science and engineering has not been part of common
practice for a number of reasons. This includes the fact that it is
a fast evolving field and re-creating the original experimental
environment from the ground up is often too complex and
sometimes impossible. In this paper, we reported our experience
using a recently proposed tool called Popper which employs a
systematic approach to automating the experimental process,
including experimental setup, (re-)execution, data analysis, and
visualization. We showcase how Popper can be used to facilitate
experimental reproducibility in the experimental computer
networking domain. We hope our work will provide a workflow
template to guide network researchers and practitioners towards
making experimental reproducibility part of the best practices
in the field.

REFERENCES
[1] J. Kurose, “Dear colleague letter: Encouraging reproducibility in computing and

communications research,” National Science Foundation, Oct. 2016.
[2] I. Jimenez, A. Arpaci-Dusseau, R. Arpaci-Dusseau, J. Lofstead, C. Maltzahn, K.

Mohror, and R. Ricci, “PopperCI: Automated reproducibility validation,” Computer
communications workshops (infocom wkshps), 2017 ieee conference on, IEEE, 2017,
pp. 450–455.

[3] L. Yan and N. McKeown, “Learning networking by reproducing research results,”
ACM SIGCOMM Computer Communication Review, vol. 47, 2017, pp. 19–26.

[4] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau, “The popper convention: Making reproducible
systems evaluation practical,” Parallel and distributed processing symposium work-
shops (ipdpsw), 2017 ieee international, IEEE, 2017, pp. 1561–1570.

[5] S. Mansfield, K. Veenstra, and K. Obraczka, “TerrainLOS: An outdoor propagation
model for realistic sensor network simulation,” Modeling, analysis and simulation
of computer and telecommunication systems (mascots), 2016 ieee 24th international
symposium on, IEEE, 2016, pp. 463–468.

[6] K. Veenstra and K. Obraczka, “Guiding sensor-node deployment over 2.5 d terrain,”
Communications (icc), 2015 ieee international conference on, IEEE, 2015, pp.
6719–6725.

[7] “Ns-3,” ns3 RSS.
[8] “Mininet,” Mininet: An Instant Virtual Network on your Laptop (or other PC) -

Mininet.
[9] “Instant contiki and cooja,” Get Started with Contiki, Instant Contiki and Cooja.

	Introduction
	Background
	Motivation

	Popper
	Network Simulation Experiments
	Network Simulation Platforms
	TerrainLOS
	Sensor Network Deployment Over 2.5D Terrain

	Reconstructing Experiments Using Popper
	TerrainLOS
	Sensor Network Deployment Over 2.5D Terrain

	Results
	TerrainLOS
	2.5D Deployment on TerrainLOS

	Lessons Learned
	Conclusion
	References

