
A Novel IoT Protocol Architecture: Efficiency
Through Data and Functionality Sharing Across

Layers
Vinı́cius Galvão Guimarães,

Adolfo Bauchspiess
Departamento de Engenharia Elétrica

Universidade de Brası́lia
Brası́lia, DF 70910-900, Brazil

vinicius galvao@msn.com,
adolfobs@unb.br

Renato Mariz de Moraes
Centro de Informática

Universidade Federal de Pernambuco
Recife, PE 50740-560, Brazil

renatomdm@cin.ufpe.br

Katia Obraczka
Department of Computer Engineering

University of California (UCSC)
Santa Cruz, CA 95064, USA

katia@soe.ucsc.edu

Abstract—Motivated by the need to accommodate IoT devices
that have limited power, processing, storage, and communication
capabilities, this work introduces the IoT Unified Services,
or IoTUS, a novel network protocol architecture that targets
energy efficiency and compact memory footprint. IoTUS uses
an extensible service layer that facilitates cross-layer sharing.
It promotes sharing of both network control information, (e.g.,
number of transmissions, receptions, collisions at the data-link
layer) and functionality (e.g., neighbor discovery, aggregation)
by different layers of the protocol stack. Additionally, IoTUS
can be used by existing network stacks without having to modify
the basic operation of their protocols. We implemented IoTUS on
the Cooja-Contiki network simulator/emulator. Our experimental
results show improved energy efficiency resulting in longer
network lifetime, as well as more compact memory footprint
resulting when compared to current IoT protocol architectures.

Index Terms—Energy Efficiency, Internet of Things, Stack
Framework, Wireless Networks.

I. INTRODUCTION

Similarly to the ISO/OSI (Open System Interconnection)
communication standard [1], the design of the Internet’s
TCP/IP protocol architecture also followed the principles of
layered system design. As such, the functions performed
by the TCP/IP protocol suite are implemented at different
protocol layers, where each layer provides a specific set of
services to the layer above through a well-defined interface.
Using this interface, data being received or sent is passed
up or down the stack on its way from source to destination.
Accessing services provided by layer i through a well-defined
interface shields layer i + 1 from the implementation details
of layer i, simplifying each layer’s design and improving
overall modularity, maintainability, and extensibility. However,
layered design approaches can increase overhead, as each
layer incurs additional communication- (e.g., additional header
fields) and processing costs. Furthermore, limiting the flow
between layers restricts sharing of functionality across layers
and may lead to functions being duplicated at different layers.

Motivated by the emergence of wireless networks, the
networking research community devoted considerable atten-

Fig. 1. IoTUS’ extensible cross-layer sharing framework.

tion to cross-layer approaches as a way to circumvent the
limitations imposed by the traditional TCP-IP layered protocol
architecture. Accordingly, a wide range of techniques that use
cross-layer information aiming at improving performance were
proposed [2], [3].

As we enter the Internet of Things (IoT) era and the number
of connected devices with limited power, processing, storage,
and communication capabilities rapidly increases, as well
as Internet applications become increasingly more complex
and resource demanding, significant advancements in network
protocol architecture efficiency are imperative to deliver the
IoT vision of a connected world.

As described in more detail in Section II, a number of
approaches have tried to bridge this gap. Notable examples
include: using an adaptation layer that translates/optimizes
header fields of standard protocols so they can run on
capability-challenged devices [4], proposing monolithic proto-
col stacks [5], and developing more effective ways for cross-
layer information sharing, e.g., CLAMP [6] and Rime [7].
However, most proposals to-date have either developed mod-
ules that require protocol redesign or used traditional cross-

layer data exchange.
In this paper we introduce the IoT Unified Services frame-

work, or IoTUS for short, which takes a step further in
achieving efficiency through a novel approach to cross-layer
sharing, while still preserving the benefits of layering, such
as modularity and portability. As shown in Fig. 1, IoTUS
proposes an extensible service layer that facilitates cross-layer
sharing of not only control plane information, or attributes
(e.g., number of transmissions, receptions, collisions at the
data-link layer) but also services (e.g., neighbor discovery, data
aggregation). IoTUS can be used by existing protocol stacks
allowing information and functionality sharing among layers
without requiring changes to existing protocols. Our evaluation
results show that IoTUS is able to achieve significant energy
savings as well as lower memory footprint when compared to
existing IoT stacks, in particular Rime [7].

The rest of this paper is structured as follows. Section II
presents an overview of related work while Section III
describes the IoTUS framework in detail. Our evaluation
methodology and results are presented in Sections IV and
V, respectively. Section VI concludes the paper and discusses
directions for future work.

II. RELATED WORK

In this section, we present an overview of the current
state-of-the-art of protocol stacks and architectures that try to
accommodate devices with constrained power, computation,
storage, and communication capabilities.

Through experiments using the Cooja-Contiki simulator [8],
the work reported in [8] shows that the control overhead in
RPL [9] can represent about 25% of the overall traffic in a
20-node network and can go up to 75% with 100 nodes. It is
worth noting that IPv6 and RPL use similar control packets
for neighbor discovery [10], which could generate additional
control overhead.

The Flexible Interconnection Protocol (FLIP) [11] uses
flexible headers to interconnect heterogeneous devices, while
accommodating their different capabilities. The overhead in-
curred by FLIP’s header will depend on the capabilities of the
device running FLIP and the needed functionality. For low-
power devices like scalar sensors (e.g., temperature, humidity,
etc.), which typically need to send out their readings period-
ically, FLIP provides considerable savings when compared to
fixed-length protocols like IPv4 and IPv6.

Other efforts towards efficient protocol architectures specif-
ically targeting networks of low power, low capability devices
(e.g., wireless sensor networks) have used a “monolithic”
approach, i.e., combining the functionality of multiple layers
into a single layer. A notable example is the Unified Cross-
Layer module (XLM) [5] and Uniform Clustering with Low
Energy Adaptive Hierarchy (UCLEAH) [12].

Adaptation-layer protocols like 6LoWPAN [4] have also
been proposed as a way to translate protocol fields and
optimize headers in order to be able to adapt standards such as
IPv6 [13] and RPL [9] to run on top of IEEE 802.15.4 [14] in
IoT devices. 6LoWPAN, IPv6, IEEE 802.15.4 and RPL can be

considered the de facto protocols for the IoT stack, according
to [15].

Other approaches try to improve IoT protocol stack effi-
ciency through cross-layer information sharing. For example,
Cross Layer Management Plane CLAMP [6] uses a pub-
lish/subscribe/update/query system that allows protocols at
different layers to share information.

Another solution for cross-layer sharing is proposed by
TinyXXL [16] which provides the TinyOS [17] embedded
operating system with more efficient data storage, as well as
a generic interface for data exchange. TinyXXL is part of
TinyCubus [18], a new cross-layer based protocol stack for
sensor networks.

Cross-layer information sharing in the Rime stack [7] which
runs on ContikiOS [19] works as follows. Information pro-
duced by different protocol layers is stored as attribute-value
pairs and is accessible by protocols at different layers. Shared
information is used in building the protocol headers at the
different layers. Rime uses a Radio-Duty Cycle (RDC) layer
separate from the Medium Access Control (MAC) layer. This
may cause portability issues as most implementations handle
both layers (RDC and MAC) as a single layer [20].

It is interesting to point out that Riot-OS [21], a more
recently developed operating system for IoT devices, can
use different protocol stacks. The default stack is named
GENERIC (GNRC) and does note make use of any cross-
layer sharing.

IoTUS aims at facilitating sharing across protocol layers.
In light of related work, IoTUS’ main contributions include:
(1) a systematic approach to cross-layer information sharing
that yields both energy and storage efficiency as described in
detail in Section III; and (2) a modular and extensible service
layer that enables sharing common functionality by different
protocol layers as illustrated in Fig. 2. Additionally, IoTUS can
be used by existing network stacks without having to modify
their protocols.

III. IOTUS

As previously discussed, IoTUS, promotes information and
functionality sharing across protocol layers while maintaining
the benefits of a layered design. Through efficient cross-layer
sharing, IoTUS’ main goal is to achieve energy efficiency as
well as a more compact memory footprint, both of which are
important to accommodate IoT devices with limited capabili-
ties. Similar to other proposals ([6], [7], [16]), IoTUS provides
modules to standardize the way information is stored and
packets are built, allowing more effective information sharing
among layers. As illustrated in Fig. 2, IoTUS is designed as
a collection of service layers (or modules) which can be used
by existing stacks without the need to modify their protocols’
design.

IoTUs’ main module is called IoTUS-Core. It is required
both during compilation and runtime. For the compilation
process, IoTUS-Core processes each protocol in the stack and
includes IoTUS’ modules as needed/requested.

Fig. 2. (a) Traditional network stack; (b) IoTUS service modules as an extension to the stack.

IoTUS modules are similar to dependencies in Linux’
Advanced Packaging Tool (APT) [22]. They can rely on other
IoTUS services, i.e., services can be split into smaller services
and protocols can select exactly which one(s) to use. This
dependence management is also taken care by IoTUS-Core.
At runtime, it starts every other module using the information
gathered at the compilation stage.

Some modules are mandatory for the framework operation,
like: Node Manager, Task Manager, and Packet Manager.
Node Manager maintains information about the node’s neigh-
bors such as addresses, ranking in the routing tree, link
layer sequence number, link quality (RSSI), etc. The Packet
Manager module provides functions to build packets; these
functions can be used by any layer of the protocol stack
when they are adding, removing, or changing fields in their
respective transmission units (e.g., packets at the network
layer, frames at the data link layer, etc). The Task Manager
assigns the control of a module to protocols, thus ensuring
synchronization between procedures and protocols.

Other modules are optional and their utilization will depend
on the protocol’s functional needs. For example, the Piggyback
Service module provides a data aggregation mechanism that
can be used by protocols at different layers. Piggybacking
helps achieve energy efficiency by ”packaging” as much
information as possible into a packet. Network Attributes
and Event Register module concentrates information about
many general network values, e.g., number of transmissions,
connection quality, package drop rate, and others.

To illustrate IoTUS’ operation, let us consider an envi-
ronmental monitoring application where nodes use a basic
network protocol stack composed of a data link protocol, e.g.,
ContikiMAC [23], a static routing protocol, and the applica-
tion layer protocol which sends periodic data from sensing
nodes forming a tree rooted at the data sink. In addition to
application-layer messages, keep-alive (KA) control messages
are periodically generated by nodes to the data sink.

In most existing networks stack, packets are built based
on an array of bytes, in which headers are added to the
payload as packets are processed by each layer on their
way down the stack. In IoTUS, A protocol uses information

maintained by Node Manager to build a packet using the
Packet Manager. During this step, additional information can
also be added to the packet, such as timeout, priority, fragmen-
tation/aggregation, etc. After the protocol finishes handling this
packet, it sends a signal to the next layer carrying the packet’s
metadata. In this way, every field added to the packet has a
globally known format, readable across different protocols. In
the example shown in (Fig. 2), the application layer starts to
build a packet and will signal the network layer when it is
done. The network layer will evaluate the information already
inserted in this packet block created by the application and
inserts more processed data and header, sending a signal to
the next layer as well.

Since the process of managing packets across layers is
done using a centralized module, i.e., the Packet Manager,
other modules such as Piggyback Service can use the out-
going packet to aggregate information from other layers. For
example, in the case of an application message being built
to be transmitted, a KA control packet can be piggybacked,
which results in improve network efficiency.

As previously discussed, besides facilitating information
sharing across layers, IoTUS also allows sharing of services,
e.g., Neighbor discovery, Tree Manager services, which are
responsible for discovering information about a node’s neigh-
bors and maintaining a routing tree, respectively.

The control of the sending packets is assigned by Task
Manager, but other protocols aware of this module’s operation
can aggregate their requests, and therefore reduce overhead
and/or improve connection speed.

IoTUS was developed to improve energy consumption
by allowing protocols to synchronize and/or aggregate their
procedures. Hence, with more protocols and more complex
tasks, it is expected better memory usage, code reduction and
network lifetime in general. However, IoTUS comes at the
cost of processing time and an initial additional code. This
processing cost caused by IoTUS framework can increase
CPU consumption, but the energy saved in radio operations
is expected to cause more impact on the overall network
consumption.

The remainder of this section describes in detail all of

Fig. 3. Example of IoTUS-core installing requested modules from different
protocols.

IoTUS’ modules that have been currently implemented.

A. IoTUS Core

Its main function is given by the software compilation stage,
where its compilation directives (here referenced as makefiles)
manage which modules will be installed.

As shown in Fig. 3, at the beginning of a device operation,
the framework core (IoTUS-core) interfaces different proto-
cols. The application makefile should have some expected
parameters to start and set how IoTUS operates. Then, this
module’s makefile continues the compilation, reading and
installing the other necessary requested modules from each
protocol makefile. This is a compilation step, which selects
only the necessary codes to be installed, reducing the overall
implementation size.

Each module also has its own makefile, which can re-
quest another module to be installed, creating the dependency
system. As the protocols know exactly which module they
will be using, the interface functions and API (Application
Programming Interface) are known, making every information
in that module to be understood by the operating protocol.

IoTUS Core is also responsible for starting all installed
modules at runtime. It also provides functions to simplify pro-
cedures between mandatory modules, e.g., getting a neighbor’s
reference (by address) within Node Manager and using it to
create a packets with Packet Manager.

B. Node Manager

Many information extracted by different layers can be
attached to a given neighbor node; however, protocols usually
would not share this data. This module centralizes the data
gathered about neighbors. It creates a standardized way to
share a determined set of information; thus, allowing shared
neighbor data to be stored in structures of blocks, retrieving
its block by reference pointers or search by address number.

For example, the link quality extracted by the physical layer
can be attached to the node structure block, along with the

address given by the second layer and the rank (how distant,
in number of hops, the node is from a sink node) given by the
third layer. Such approach reduces memory usage, redundancy
and improves cross-layer decisions.

C. Packet Manager

Similar to the Node Manager, Packet Manager is respon-
sible to concentrate most of packet information into one
structure, as represented by the small circles being added to the
big packet block in Fig. 2(b). That means having shared data
in one place, where every layer can understand what is being
added to the header. Moreover, Packet Manager works on top
of the Node Manager and saves memory space by pointing to
its structure block instead of copying all of it.

Many packet parameters like source and destination ad-
dresses are available in a standardized manner. Also, this
information is available across the layers when the packet
is being built. However, differently from the static way
Rime/ContikiOS allocates the whole collection of possible
data, IoTUS framework does it dynamically, allocating only
the necessary memory for the information attached through
linked lists.

Along with the Node Manager, the packet references their
source and destination nodes using this new system; thus,
creating an integration that facilitates other services to operate,
like aggregation of packets.

Fig. 2 shows a side-by-side comparison between a tradi-
tional layered stack and the same stack extended with the
IoTUS framework by showing how an application message
is processed before being transmitted. In the traditional way
Fig. 2(a), messages are sent down the stack using abstract
functions and encapsulating headers in the buffer. In Fig. 2(b),
the same stack with IoTUS framework builds the message
using dynamic packet structure blocks. The Packet Manager
creates a buffer that can hold headers and small information
block attached to it. Each small block contains well defined
and known information, the packet fields.

Hence, after the application layer signals the messaging
procedure in the shared layer, the packet structure block
(buffered) is reserved and a signal is sent to the lower layer.
Layers below will set small structure blocks and attach to the
packet structure block along with their headers. This process
is represented by the small circles numbered with the layer
rank (4 to 1). At the physical layer, all information attached
is readable and the header is ready.

The creation of a packet container in the IoTUS system can
be seen with more details in Fig. 4, where step 1 represents
a calling from a protocol to the message creating function,
defining some basic information (payload, destination node,
parameters, timeout and others). Continuing, lower layers will
get information (step 2) to process this packet. In this way,
packets are always stored in a list of dynamic containers that
all layers have access. IoTUS’ services generally use pointer
references to other services block structures, which allows to
keep information up to date.

Fig. 4. Message construction with IoTUS.

D. Task Manager

This manager module assigns tasks to each running pro-
tocol. Since IoTUS framework proposes shared services and
functionality, it would be possible that two or more protocols
using the same service would then request it to start a pro-
cedure more than once. Hence, synchronization is necessary.
However, it does not block any protocol to do a redundant
operation by itself, instead it just informs all layers which
service will be done by each protocol, keeping the redundancy,
if necessary.

The process of assigning for a task is done at the start-
up of the device by each protocol using this framework.
Task Manager module has a subscription system that allows
each protocol to check which one is finally responsible for
each task. Inside this module, priorities are usually given
to the protocols located in lower layers, i.e., protocols in
physical and data link layers have higher priority than network
and application layers. This also solves some issues with
addressing, packet aggregation and other tasks.

In the case of addressing, most of the data link protocols
have their own methods to look for neighbor’s address. Thus,
they already have to use the header to insert these addresses.
A network layer that checks that the data link layer is already
addressing can use this feature to synthesize their addressing
system accordingly, which is done in a similar way by the
6LoWPan protocol [4].

Another case is given by the aggregation service. In many
cases it is done by the network layer, but if the data link layer
has some procedures that would benefit from aggregating their
control packets, then it could request to operate the shared
service called aggregation.

E. Piggyback Service

IoTUS’ provides data aggregation through its Piggyback
Service module, which is critical to optimize energy consump-

Fig. 5. Using IoTUS Piggyback Service.

tion by reducing network overhead. Protocols can create pig-
gyback blocks (pieces) and set defined parameters like timeout,
destination address and others. Furthermore, if timeout expires,
Piggyback Service will signal the callback function of the
block owner, so that the protocol sends that data as soon as
possible. However, if conditions are matched, the piggyback
container will be aggregated (with small compact headers) into
the outgoing packet.

Therefore, Piggyback Service uses Node Manager and
Packet Manager. The main conditions to insert a piggyback
block into a packet are:

• There is a outgoing packet;
• The packet has to be flagged as allowing aggregation by

its creator protocol;
• The packet is addressed to the same next router(s).

(Eventually, to the same final destination node).

This service creates control frames overhead that avoid
separate transmissions to shared destinations in the network.
Thus, many layers can rely on it to have their control packet
optimized, as is the case of DAO packet in RPL.

The process of creating a piggyback block is given in
Fig. 5. Protocols would start by a similar process as the packet
Manager, allocating resources with specific functions of the
module (Step 1 of Fig. 5). Later, if any protocol was previously
assigned by the Task Manager, it will try to attach possible
piggyback blocks into a packet being built, aggregating its
information (Step 2 of Fig. 5).

From another point of view, Fig. 6 shows the piggyback
piece (P.B.p) being created by “Protocol y”, which represents
the Step 1 in Fig. 5. When “Protocol x” creates a packet,
headers (Hdr) are attached. At some assigned layer, Piggyback
Service is called and it attaches the pieces that matches this
condition, representing the Step 2 in Fig. 5. Bellow the dashed
line, this process is represented by a node using this procedure
and delivering his packet to its destination, in which the
piggyback piece is detached again and delivered to the target
node’s protocol.

Fig. 6. Piggyback aggregation and transmission.

IV. EXPERIMENTAL METHODOLOGY

We evaluated IoTUS using the Cooja-ContikiOS [8], [19]
simulation/emulation platform. We used Cooja for the follow-
ing reasons: first, it provides an experimental platform specifi-
cally designed for networks of capability-constrained wireless
devices (e.g., wireless sensor networks, IoT) where we can run
controlled and reproducible experiments; as such, it includes
an implementation of the Rime protocol stack [7], which
we used as basis of comparison against IoTUS; additionally,
the same code developed to run on Cooja-ContikiOS can be
directly ported to real devices running ContikiOS, as well as
testbeds which are accessible to the research community. In
particular, we developed IoTUS under ContikiOS [19] for the
TMote Sky [24] device emulated within Cooja

To drive our experiments, we consider a general environ-
mental monitoring application in which sensing nodes are
deployed to periodically sense the environment (e.g., temper-
ature, humidity, etc.) and transmit their readings through the
network to a data sink. Fig. 7 shows a 44-node tree topology
that we used in our experiments. The tree is rooted at the data
sink (node 1) and intermediate and leaf nodes are sensing
nodes. Note that intermediate tree nodes act both as traffic
generators as well as forwarders.

Table I shows the simulation parameters and their corre-
sponding values used in our experiments. The values used
for sensing rate and application payload size have been
previously used in the literature (e.g., [25]). For the keep
alive messages, which, as described in Section III, are control
messages periodically generated by the network layer that are
transmitted through the tree towards the root, we set their size
and frequency based on ContikiOS’ implementation of RPL.

TMote Sky’s power consumption specification is summa-
rized in Table II. Note that Cooja’s emulation of Tmote Sky
provides four different power modes for the radio, namely
Reception, Transmission, Idle, and Sleep, and two for
the micro-controller, Active, and Sleep. Energy consump-
tion measurements were provided by two different Cooja-
ContikiOS tools, namely: PowerTrace and PowerTracker. Pow-
erTrace is a tool available inside the ContikiOS implemen-

Fig. 7. Tree topology considered for an environmental monitoring.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Sensing rate (application packets) 30 seconds

Application payload size 20 bytes
Keep alive control data size 12 bytes
Keep alive transmission rate 30 seconds

tation, which periodically reports energy consumption infor-
mation through its serial port. PowerTrace reports time spent
in each state (transmitting, receiving, idle, or sleep for the
radio, and active or idle for CPU). PowerTracker is available
in the Cooja simulator and also provides power consumption
measurements for the radio. However, due to its microsecond
simulation granularity, it provides more accurate power con-
sumption measurements than PowerTrace. As such, we use
PowerTracker to measure energy consumed by the radio while
CPU consumption is still extracted from the PowerTrace tool.

V. RESULTS

We evaluated IoTUS in terms of its energy efficiency and
memory footprint. As baseline, we use ContikiOS’ Rime stack
[7] implementation. Results reported here were obtained by
averaging over 10 runs using random seeds with a 95%
confidence interval.

While latency is an important performance metric for delay-
sensitive applications, it is not considered to be critical for
environmental monitoring. Though we do not report latency re-

TABLE II
ENERGY CONSUMPTION BY STATES OF TMOTE SKY [24].

State Current
micro-controller

Active (No Radio) 1.8mA @1MHz,3V

micro-controller
sleep (No Radio) 5.4 µA

Reception 18.8mA
Transmission 17.4mA (0 dBm)

Idle 18.8mA
Sleep 0.426 µA

Fig. 8. Average energy consumption per node in a 44-node tree network.

sults in this paper, we note that additional processing incurred
by IoTUS (e.g., packet construction, data aggregation) may
increase latency. For example, the duration between building
a message at application layer and finally transmitting it was
on average 4.1ms with IoTUS, while the standard Rime stack
processed the same request in 1.3ms. Depending on the end-
to-end propagation delay, this difference may be negligible.
As part of our ongoing work, we have been evaluating IoTUS
impact on latency.

Fig. 8 plots energy consumption averaged over all 44 net-
work nodes using the topology illustrated in Fig. 7 for both
IoTUS and Rime over time. The shaded areas represent the
confidence interval of each line according to their colors. We
ran the experiments for 30 minutes to allow enough time for
the system to reach steady state. Although IoTUS’ average
energy consumption gain is about 5.33%, as shown in Fig. 9,
nodes 2 and 3 experience energy consumption gains of 13%
each. Note that these are the closest nodes to the root of
the tree and, thus, are the ones that need to forward the
highest number of packets on their way to the sink. Indeed,
Fig. 9, which plots consumption by power state for selected
nodes in the network, shows that most of nodes’ 2 and 3
energy consumption gains by IoTUS come from the radio,
more specifically by spending less time in transmission mode
when compared to the Rime stack. This is mainly due to
IoTUS’ aggregation feature provided by the Packet Manager
and Piggyback Service. For comparison purposes, node 43,
which is a leaf node had the overall minimum consumption.
Fig. 9 also shows energy consumption for other nodes which
are a mix of intermediate and leaf nodes.

As expected, for this experiment, radio functions are by far
the most energy consuming. Even though active states can
consume thousands more than sleep state and up to 10 times
more than CPU, Fig. 9 reveals that nodes’ radios spent most of
the time in either idle or sleep, and these two states contributed
the most to the overall energy consumed by nodes.

Fig. 9. Total consumption by states of selected nodes in the 44 nodes network.
The left side bar of each node describes the IoTUS framework consumption.
The right side bar indicates the consumption of the node for the Rime stack.

Fig. 10. Maximum and minimum radio energy gain per nodes in the network.

Fig. 10 shows the maximum and minimum energy consump-
tion gains attained for networks of varying size. These results
were obtained by using trees of sizes 2, 8, 14, 20 nodes,
etc. where each tree corresponds to the tree shown in Fig. 7
but only including nodes up to node id 2, 8, 14, 20, etc.,
respectively. We observe that, as the network increases in size,
so does the energy consumption gains obtained using IoTUS.
As previously discussed, the highest gains were observed by
nodes 2 and 3, which also had the highest energy consumption
according to Fig. 9. Since these nodes are the most likely to
be the first to have their battery depleted, guaranteeing them
the highest energy savings results in extending the network’s
overall lifetime.

Fig. 11 presents results for expected node lifetime for tree
topologies of varying sizes. Node lifetime is defined as the

Fig. 11. Maximum lifetime per number of nodes in the network.

time between the start of the experiment until the node’s
battery is depleted. To calculate lifetime, we consider that
each device is supplied with two AA cells (2000mAh of
NiMH type) that would provide up to 22.32 kJ at 3.1 Volts
according to [26]. A node’s lifetime is then obtained by
dividing the node’s battery capacity by the node’s average
power consumption. Considering nodes 2 and 3 which exhibit
the highest energy consumption, IoTUS achieves a lifetime
gain of up to 11 days representing an improvement to 12.11%
over Rime. Furthermore, for this particular topology, once
nodes 2 and 3 deplete their batteries, the rest of the network
gets disconnected from the sink and therefore is no longer able
to perform its monitoring task.

We should point out that, with the current setup, we were
not able to run experiments using trees with more than 44
nodes. The problem is due to RAM size needed by the Rime
stack which exceeded the 10KByte TMote Sky RAM capacity.
However, using IoTUS, larger tree topologies could still be
emulated which attests to IoTUS’ efficient memory footprint.

Fig. 12 shows a comparative memory footprint character-
ization between IoTUS and Rime as packet buffer size in-
creases. While IoTUS requires additional flash space (less than
5KBytes, or 18% more than Rime), it saves RAM storage
through its ability to share information across layers and avoid
information duplication. As shown in Fig. 12, IoTUS’ memory
footprint savings increases with the size of the packet buffer. In
this experiment, memory saving reaches 23.63% for a packet
buffer size of 15 packets.

VI. CONCLUSION

In this paper, a new framework called Internet of Things
Unified Services, or IoTUS, was introduced. Its main goal is
to facilitate sharing across protocol layers while preserving
the benefits of layered protocol architectures, in particular
modularity and portability. To this end, IoTUS proposes an
extensible service layer, that allows sharing of control plane

Fig. 12. Memory usage when increasing packet buffer capacity.

information (e.g., collisions at the data-link layer, number of
transmissions/receptions, radio packet size, ID address size) as
well as sharing of services (e.g., neighbor discovery, network
events log, data aggregation). Additionally, IoTUS can be used
by existing network stacks without having to modify the basic
operation of their protocols.

We implemented IoTUS on ContikiOS and evaluated its per-
formance using ContikiOS’ Cooja network simulator/emulator.
Our results demonstrate that IoTUS is able to achieve energy
efficiency as well as more compact memory footprint when
compared to Rime, a layered stack used by ContikiOS.

Directions for future work include implementing protocol
standards like RPL using IoTUS, deploying and evaluating
IoTUS in real-world testbeds, as well as evaluating IoTUS
latency performance.

ACKNOWLEDGMENT

This work was supported in part by CAPES Brazil, by CNPq
Brazil, and by the US National Science Foundation under grant
CNS 1321151.

REFERENCES

[1] Webopedia, “The 7 layers of the OSI Model.” [Online]. Available:
https://www.webopedia.com/quick ref/OSI Layers.asp

[2] B. Fu, Y. Xiao, H. J. Deng, and H. Zeng, “A survey of cross-layer
designs in wireless networks,” IEEE Communications Surveys and
Tutorials, vol. 16, no. 1, pp. 110–126, 2014.

[3] L. D. Mendes and J. J. Rodrigues, “A survey on cross-layer solutions
for wireless sensor networks,” Journal of Network and Computer Appli-
cations, vol. 34, no. 2, pp. 523–534, 2011.

[4] S. Chakrabarti, G. Montenegro, R. Droms, and J. Woodyatt, “Ipv6
over low-power wireless personal area network (6lowpan) esc dispatch
code points and guidelines,” February 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8066

[5] I. Akyildiz, M. Vuran, and O. Akan, “A Cross-Layer Protocol for
Wireless Sensor Networks,” in Proceedings of the 2006 40th Annual
Conference on Information Sciences and Systems. Princeton, NJ, USA:
IEEE, mar 2006, pp. 1102–1107.

[6] S. A. Madani, S. Mahlknecht, and J. Glaser, “A Step towards Standard-
ization of Wireless Sensor Networks: A Layered Protocol Architecture
Perspective,” in Proceedings of the 2007 International Conference on
Sensor Technologies and Applications (SENSORCOMM 2007). Valen-
cia, Spain: IEEE, oct 2007, pp. 82–87.

[7] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication
architecture for wireless sensor networks,” in Proceedings of the 5th
international conference on Embedded networked sensor systems -
SenSys ’07. Sydney, Australia: ACM Press, 2007, pp. 335–349.

[8] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Proceedings of the
Conference on Local Computer Networks, LCN. IEEE, 2006, pp. 641–
648.

[9] T. Winter, Ed., P. Thubert, Ed., A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander, “Rpl: Ipv6 routing
protocol for low-power and lossy networks,” March 2012. [Online].
Available: https://www.rfc-editor.org/info/rfc6550

[10] A. Parasuram, D. Culler, and R. Katz, “An Analysis of the RPL Routing
Standard for Low Power and Lossy Networks,” Technical Report No.
UCB/EECS-2016-106, p. 98, 2016.

[11] I. Solis and K. Obraczka, “FLIP: A Flexible Interconnection Protocol
for heterogeneous internetworking,” Mobile Networks and Applications,
vol. 9, no. 4, pp. 347–361, 2004.

[12] K. Babber and R. Randhawa, “A Cross-Layer Optimization Framework
for Energy Efficiency in Wireless Sensor Networks,” Wireless Sensor
Network, vol. 09, no. 06, pp. 189–203, 2017.

[13] S. Deering and R. Hinden, “Internet protocol, version 6 (ipv6)
specification,” December 1998. [Online]. Available: https://www.
rfc-editor.org/info/rfc2460

[14] IEEE, “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std
802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, apr
2016.

[15] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler, “Standardized protocol stack for the internet
of (important) things,” IEEE Communications Surveys and Tutorials,
vol. 15, no. 3, pp. 1389–1406, 2013.

[16] A. Lachenmann, P. J. Marrón, D. Minder, M. Gauger, O. Saukh, and
K. Rothermel, “TinyXXL: Language and runtime support for cross-layer
interactions,” in Proceedings of the 2006 3rd Annual IEEE Communi-
cations Society on Sensor and Adhoc Communications and Networks,
Secon 2006, vol. 1, Reston, VA, USA, 2007, pp. 178–187.

[17] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and Others, “TinyOS: An operating
system for sensor networks,” in Weber W., Rabaey J.M., Aarts E. (eds)
Ambient intelligence. Berlin, Heidelberg: Springer, 2005, pp. 115–148.

[18] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel, “Tiny-
Cubus: An Adaptive Cross-Layer Framework for Sensor Networks
(TinyCubus: Ein Adaptives Cross-Layer Framework für Sensornetze),”
it - Information Technology, vol. 47, no. 2, jan 2005.

[19] Contiki, “The Open Source OS for the Internet of Things.” [Online].
Available: http://www.contiki-os.org/

[20] K. Roussel and Y.-q. Song, “A critical analysis of Contiki’s network
stack for integrating new MAC protocols,” Ph.D. dissertation, INRIA
Nancy, 2015.

[21] Riot, “The friendly Operating System for the Internet of Things.”
[Online]. Available: https://riot-os.org/

[22] Wikipedia, “Advanced Packaging Tool.” [Online]. Available: https:
//pt.wikipedia.org/wiki/Advanced Packaging Tool

[23] A. Dunkels, “The contikimac radio duty cycling protocol,” SICS Tech-
nical Report T2011:13, 2011.

[24] Moteiv, “Tmote sky - Low Power Wireless Sensor Module.”
[Online]. Available: http://www.eecs.harvard.edu/∼konrad/projects/
shimmer/references/tmote-sky-datasheet.pdf

[25] F. Osterlind, E. Pramsten, D. Roberthson, J. Eriksson, N. Finne, and
T. Voigt, “Integrating building automation systems and wireless sensor
networks,” in Proceedings of the 2007 IEEE Conference on Emerging
Technologies & Factory Automation (EFTA 2007), Patras, Greece, 2007,
pp. 1376–1379.

[26] Wikipedia, “AA battery.” [Online]. Available: https://en.wikipedia.org/
wiki/AA battery

