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Abstract—Opportunistic networking has been proposed to ad-
dress episodic connectivity, common in so-called "challenged" or
"extreme" networking environments where arbitrarily frequent
and long-lived connectivity disruptions are the norm, instead of
the exception. Examples of extreme networking environments
and applications include interplanetary communication, disaster
relief, and emergency response, (semi-)autonomous driving, to
name a few. This paper proposes a novel community-based
opportunistic routing approach that identifies user communities
based on mobility features extracted from real traces of user
mobility. The proposed Deep AutoenCoder Community-based
Opportunistic Routing protocol, or DACCOR, employs deep
learning to identify user communities based on data extracted
from user mobility traces and uses user community information
to make forwarding decisions in opportunistic networking scenar-
ios. Through extensive simulations, we evaluate DACCOR’s per-
formance and show that it outperforms well-known opportunistic
forwarding protocols in terms of delivery probability, latency, and
communication overhead. We also show that DACCOR’s lower
communication overhead yields considerable energy efficiency,
increasing mobile devices’ battery lifetime.

I. INTRODUCTION

Despite the ever increasing ubiquity and availability of wire-
less communication, there are still applications and scenarios
where network connectivity is intermittent and may suffer
from arbitrarily frequent and long-lived disruptions. Notable
examples include environments where fixed infrastructure is
sparse (e.g., rural- and under-developed regions) and areas
where the wireless channel is prone to propagation impair-
ments (e.g., due to obstacles in the case of dense urban regions,
interference, etc).

Opportunistic networking has emerged as a way to ad-
dress connectivity-challenged environments by considering
node mobility an opportunity instead of a challenge [6].
In opportunistic networks, temporary and occasional contacts
between users through their mobile devices present themselves
as data transmission opportunities, and user mobility serves as
a way to carry data from its source to its destination directly or
through intermediate nodes. As such, opportunistic forwarding
schemes should be able to send messages to a select set of
intermediate relays so that chances of successful data delivery
at the destination are maximized. Another important goal is
to keep network overhead as low as possible, avoiding unnec-
essary transmissions. The importance of reducing overhead

in opportunistic networking environments is due to the fact
that mobile devices have limited battery power. Reducing
unnecessary radio transmissions can substantially decrease
energy consumption and increase battery life. Thus, one of
the main challenges in opportunistic networks is to forward
data to relay nodes that have the best chance to encounter the
destination, while limiting the number of copies being relayed
in the network.

Opportunistic routing/forwarding protocols seek to discover
information about users to assist in deciding when and to
whom messages should be forwarded [27], [1], [13], [5]. It
has been demonstrated that user community based schemes
improve forwarding messages in specific scenarios [27]. BUB-
BLE [9] was one of the first community-based opportunistic
forwarding protocols. It uses the well-known centrality metric
and a community structure to forward data. More recent works,
such as [25], [26], [18] also use community-based protocols
to forward data.

Most community detection schemes to-date extract user
information via inter-contact time between users [7] (i.e.
peer contact) or use information obtained through social
networks or through network service providers [19], [17] (e.g.,
examining logs that record call information made by mobile
phones). In our work, we identify communities exclusively
through user mobility behavior, rather than depending on
information obtained from external sources. Additionally, to
our knowledge, most efforts to-date do not account for user
geographical preference when identifying user communities.

In this paper, we introduce a community-based opportunis-
tic routing approach that identifies user communities based
on mobility features extracted from traces that record user
mobility in real and diverse environments. The proposed
Deep AutoenCoder Community-based Opportunistic Routing
protocol, or DACCOR employs a deep learning approach to
identify user communities based on data extracted from user
mobility traces and uses user community information to make
forwarding decisions in opportunistic networking scenarios.

The main contributions of DACCOR can be summarized as
follows:
• It introduces a user mobility feature extraction technique

based on information obtained from traces of real user
mobility. The resulting user mobility features will then be



used by DACCOR’s novel deep learning based algorithm
to identify user communities.

• It proposes a metric to measure affinity between users
and user communities.

• It develops a deep learning based approach to identify
user communities based on features extracted from mo-
bility traces.

• It proposes an opportunistic routing protocol that uses
user community information to decide how to forward
data. Through extensive experimentation using synthetic-
and real mobility records representing diverse urban
mobility scenarios, we show that DACCOR is able to out-
perform other well-known opportunistic routing protocols
by delivering more data, faster, and using less networking
resources.

The remainder of this paper is organized as follows. Section
II presents DACCOR’s user mobility feature extraction tech-
nique as well as DACCOR’s deep learning based community
identification mechanism. Section III describes DACCOR’s
routing protocol which uses two data forwarding strategies,
namely: inter- and intra-community forwarding. In Section IV,
we describe the experimental methodology we use to evaluate
DACCOR’s performance, including the user mobility datasets
and performance metrics. Section V presents results from
our performance evaluation study. In Section VI, we review
related work and in Section VII, we conclude the paper with
some directions of future work.

II. DEEP AUTOENCODER COMMUNITY DETECTION

This section provides a detailed description of the proposed
Deep AutoenCoder Community-based Opportunistic Routing
protocol (DACCOR) for data forwarding in opportunistic
networks. We start by describing how user features and prefer-
ences are extracted from raw mobility traces. Then, we present
a novel, deep-learning-based approach that identifies user
communities based on user mobility features extracted from
the mobility traces. Once user communities are identified, we
then propose a similarity metric to measure levels of similarity
and dissimilarities between members within a community and
between distinct communities.

1 presents an overview of DACCOR. DACCOR’s data for-
warding component makes inter- and intra-community routing
decisions based on the user community structure it builds.
Inter-community routing uses members of the destination
community as relays, while intra-community routing forwards
messages to nodes that have higher geographical preference
similarity with the destination node when compared to the
geographical preference of the current node. For instance,
in Figure 1, node A (from the orange community) has a
message to deliver to node D (from the blue community)
and encounters node B (from the blue community). In this
case, the inter-community forwarding decision will be made
based on community labels assigned by DACCOR’s deep
learning based community identification component. Next,
node B encounters node C (also from the blue community).
Since they both belong to the same community as node D,

the forwarding decision will be made by comparing how
similar B’s geographical preferences are to D’s versus how
C’s geographical preferences are to D’s.
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Fig. 1. The DACCOR protocol

A. Extracting user features from mobility traces
Mobility traces provide mobile device location information

over time. By analyzing such information it is possible to
obtain user mobility characteristics, including distance traveled
by the user, distance to other devices, time they are within
communication range of one another (a.k.a., contact time),
etc. Since people move with a certain purpose (e.g. go to
work, go home after work), we assume that their locations and
mobility characteristics also reflect their interests and prefer-
ences. Conversely, if users do not share features and places
in common, we assume they have different interests and thus
are less likely to have social relationships. As such, we use
mobility traces to identify communities of users with similar
mobility behavior and geographical preferences/interests. We
contend that extracting and using features from real mobility
traces allows us to design more realistic mobility models, and
consequently more efficient communication networks, their
protocols and applications.

DACCOR extracts user mobility features from traces (e.g.,
GPS- and WiFi records) following a set of steps, namely: (1)
It extracts the two-dimensional maximum and minimum limits
of the area defined in the trace and divides this area into equal
sized squared cells, constructing a spatial-temporal feature
matrix. Such matrix holds user geographical and temporal
characteristics. The i-th row of the matrix represents the i-
th user ∀i ∈ [1, I], where I is the maximum number of
users. The c-th column of the matrix represents the c-th cell
∀c ∈ [1, C], where C is the maximum number of cells. Each
(i, c) matrix position holds the time spent by user i in cell c. It
is important to note that this feature matrix must be normalized
so that all attributes are uniformly accounted for; (2) Once the
normalized feature matrix is constructed, a nonlinear trans-
formation is applied using the logarithmic likelihood function



logit. When applied to the normalized data, this transformation
modifies the feature matrix values so that data between (0, 1)
takes real values, between (−∞,∞), and is symmetric at 0.5.
This transformation, besides evidencing the differences and
similarities between the observations for each variable, also
improves pattern identification and learning, as it will become
clear in the next section; (3) Finally, the i-th image for each
node i, by reshaping the i-th row of the mobility feature matrix
into a 2D-image, that reflects the dimensions of the area of
the trace in cells. To construct this image, we consider each
c-th position of the i-th row of the feature matrix as a pixel,
where the value of each position corresponds to the intensity
of that pixel. These images reflect actual user displacement
and thus indicate user movement patterns and geographical
preferences. They serve as input to DACCOR’s deep neural
network module, as discussed in the next section.

B. Identifying user community structures using deep learning

Deep learning (DL) models have been widely employed
in recent years by researchers and practitioners to solve a
plethora of different problems in many areas [12], [2], [15].
Identifying user community structures from raw mobility data
requires unsupervised learning approaches since, most of the
time, there is no previous knowledge from these raw records
about the nature of the relationship between users, whether
they belong to certain communities, etc. An autoencoder is a
neural network architecture designed to learn data encodings in
an unsupervised fashion. It is typically used for dimensionality
reduction, where the complexity and variability of the data is
reduced into an encoded, more compact representation [3].
Along with data reduction, there is also a reconstruction step
that tries to reconstruct a representation as close as possible to
the original input. In other words, the autoencoder takes a set
of unlabeled data x ∈ Rn and tries to learn an approximation
to the identity function to force the output to be as similar as
possible to the input.

Autoencoders consist of three basic general components:
(1) the encoder, that is the portion before the most com-
pressed layer (or code) of the architecture. It compresses the
input vector x into a latent representation h using a weight
matrix ω; (2) the code, h, or latent space representation,
is a lower-dimensionality representation of the input. This
reduced representation allows interesting data features to be
uncovered; and (3) the decoder which maps h back to the
input, reconstructing it to obtain x′ with another weight matrix
ω′. Parameter optimizations are used to minimize the average
reconstruction error between x and x′. Usually, the input and
output layers have the same dimensionality. One category of
neural network that is widely used for image processing tasks
is the convolutional autoencoder (CAE). CAEs are designed
to process data inputs in the form of multidimensional arrays,
e.g. images composed of 2D arrays containing pixel intensities
in color channels. CAEs use the same principle as traditional
autoencoders discussed above, but instead of fully-connected
layers, it contains convolutional layers in the encoder and
deconvolutional layers in the decoder. The vast majority of

applications of convolutional neural networks focus on image
data, which is also the case in our work.

1) Convolutional autoencoder design: Training the neural
network means learning the weight matrix ω′ associated with
all the neurons in the network. The basic unit of computation
in a neural network is the neuron, often called a node or unit.
During the training, each unit located in any layer in between
input and output layers, also called hidden layers, receives
several inputs from the preceding layer. Analogously, CAE
architectures are structured in several stages of convolutional
and pooling layers [21]. The units in a CAE are organized
in features maps, also known as convolutional filters or even
convolutional kernels, that are connected through a set of
weights between the layers.

The unit computes the weighted sum of these inputs and
eventually applies an activation function, to produce the out-
put. The output of all, except the last of our convolutional
layers are activated by a Rectified Linear Unit (ReLU) activa-
tion function, where the output is f(x) = max(0, x). Only the
last layer, the output layer, is activated by a linear function.
The non-linear behavior of neural networks comes from the
choice of these activation functions. Other popular ones are
Linear, Logistic, ReLU, SELU, and Tanh. In this way, the
convolutional autoencoder is able to detect local groups of
values in an array of images that are often highly correlated,
and also detect spatial invariance patterns. In other words, if a
pattern is identified in a part of an image, it could appear also
in other parts. Hence, the convolutional layer is responsible
for detecting patterns from the previous layer, and the pooling
layer for merging semantically similar features to one. In CAE,
the pooling layer is responsible for reducing the dimension of
the representation and creating an invariance to small shifts
and distortions on the images.

After these steps, the output x′ (reconstructed node’s tra-
jectory image) is compared to the input x (original node’s
trajectory image), and the error will be propagated to every
individual unit using the back-propagation algorithm [12].
Finally, each weight’s contribution to the error is calculated
and the gradient descendent algorithm is adopted to adjust the
parameters at each layer (i.e., update the weights). We trained
our autoencoder to minimize the mean square error and the
optimizer used was Adam.

Usually, CAEs contain two or three stages of convolutional
layers, non-linear activations and pooling layers, followed
by more convolutional and/or fully-connected layers. Our
proposed architecture contains a convolutional network with
three 2D convolutional layers on the encoder, followed by a
fully-connected layer in the latent space, and three symmetric
2D convolutional layers to reconstruct the input. This network
has the following structure: the three convolutional layers on
the encoder side contain 128, 64 and 32 filters with sizes that
varies from (3x3) to (5x5) depending on the shape of the input
image, and strides over 2x2-pixels. The latent layer contains
a flatten layer with 8 units. The reshape image has size N
= 1 x 2 and 128 filters. This leads to feature representations
of dimensionality D = 8, which were used as input into the



clustering algorithm. The deconvolutional layer is symmetric
to the convolutional one with similar parameters.

2) Clustering: DACCOR employs the Model-Based Clus-
tering (MBC) algorithm to detect community structures from
the lower-dimensionality representation of the input obtained
from training the autoencoder (see Figure 1). MBC [16]
is a well-established method for cluster analysis and un-
supervised learning. It assumes a probabilistic model (e.g.,
mixture model) for the data and then estimates the model
parameters by optimizing an objective function (e.g., model
likelihood). To use the MBC method for clustering data as
well as automatically selecting the number of clusters, K,
it is necessary to generate a set of candidate models. The
Expectation-Maximization (EM) algorithm is often used for
estimating the parameters of the model, where clusters are
centered at the mean value, and the geometric features (shape,
volume, and orientation) are given by the covariance matrix.

MBC-based clustering algorithms have used the Gaussian
distribution to model clusters using three parameters: mean
vector, covariance matrix and an associated probability in the
mixture, where each point has a probability of belonging to
each cluster. The algorithm consists of the following steps:
(1) During initialization, it is necessary to specify the number
of clusters and randomly initialize the distribution parameters
for each group. The agglomerative hierarchical clustering is
used to obtain the initial partitions of the data; (2) Then,
the probability that each data point belongs to a particular
cluster is computed; (3) The EM algorithm is applied, which is
based on a maximum likelihood estimate used to estimate the
likelihood of the mixture parameters; (4) Finally, in the case
that the covariance matrix of the components lead to different
models, the BIC (Bayesian Information Criterion) is applied
to choose the best model.

C. Measuring community- and user afinity

Image quality comparison metrics work in our case as
similarity indexes for spatial displacement since the images
we use as input for our autoencoder architecture can be seen
as heat-maps of each user’s geographical preferences (i.e., time
spent at a given location). Analogously, we seek to establish,
rather than a spatial, also a temporal relationship metric. We
argue that users belonging to the same group would spend
more time together, as they would share similar interests,
routes and geographical preferences, even though we only used
data about users’ individual geographical preferences in order
to form groups.

In this way, we use the Structural SIMilarity (SSIM) Index
to compute the similarity in the mobility behaviour of two
nodes by comparing the similarities between the two user
trajectory images. The SSIM index identifies the information
structures found in the images and therefore is used to compute
the similarity between a pair of nodes. The SSIM algorithm
compares point by point two images aligned and scaled. Three
similarity functions are computed on the image data: (1)
luminance similarity, (2) contrast similarity, and (3) structural
similarity. Note that the more the value of SSIM approaches

1, the more similar are the two images, and also, the more
similar are the attributes of the two nodes.

The similarity for two images X and Y can be calculated
as follows:

SSIM(x, y) = [l(x, y)]α . . . [c(x, y)]β [̇s(x, y)]γ (1)

where the luminance comparison function l(x, y) is a func-
tions of the mean intensity of image x and y and is given
by

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(2)

The contrast comparison function c(x, y) is the comparison
of the standard deviation intensity of image x and y and is
given by

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3)

And, the structure comparison function s(x, y) is defined as

s(x, y) =
σxy + C3

σx + σy + C3
(4)

where σxy can be estimated as

1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (5)

The constants C1, C2 and C3 are small constants that
provide stability when the denominator approaches zero. More
details about the SSIM algorithm can be obtained in [24].

In summary, the encoding of features towards extracting
user mobility features using deep-autoencoder consists of the
following steps: (1) generate the mobility image based on
the feature matrix extracted from the real trace; (2) construct
the deep autoencoder architecture for the trace. It is not
possible to train a single architecture for general use, since the
models depend on the size of the input, and it varies with the
application scenario (i.e., the size of the area, number of cells
and feature matrix changes from scenario to scenario); (3) train
the deep autoencoder by using the input image representation
obtained from the mobility features described above; (4) once
the network is trained, extract the reduced features (code) from
the autoencoder latent representation space. These features can
be used to make predictions, and comparing the original input
with the reconstructed image; (5) use the reduced latent feature
representation as input for the MBC clustering algorithm; (6)
extract community labels from the clustering algorithm; (7)
extract node similarity from SSIM metric.

We now have extracted mobility patterns and are in pos-
session of community structure and relationship indicators
between each pair of nodes. The community structure is
indicated by the community labels given by the clustering
algorithm. The relationship between every node is given by the
SSIM index values computed for every pair of nodes, which
indicates their geographical preferences similarity. We can



take advantage of these information to make more intelligent
and educated decisions on when and to whom forward a
message to in the context of opportunistic and delay tolerant
networks. The following sections introduce DACCOR, a new
forwarding protocol that takes advantage of the community
structure information.

III. DACCOR DATA FORWARDING PROTOCOL

The proposed DACCOR forwarding scheme uses com-
munity information to make forwarding decisions between
members of different communities and user geographical pref-
erences (based on the SSIM metric presented in Section II-C)
to make forwarding decisions within the same community.
This approach improves DACCOR’s scalability since users
do not have to carry geographical preferences from all other
users in the network; they just need to have information about
members of their own community.

A. Relay Node Selection

We consider the following features to determine the suitabil-
ity of a relaying node to carry a message to the destination:

1. Node community ID (cID) - The community label carried
by each node and extracted by the proposed deep learning
based community identification technique as detailed in Sec-
tion II-B.

2. Community affinity (CA) - The affinity between the
communities of the encountered node and destination node.
It is computed by averaging the SSIM for pairs of nodes
belonging to the two communities (i.e., the community of the
encountered node and the community of the destination node),
as further discussed in the following Section III-B.

3. Node similarity - The similarity between the encountered
node and the destination node in the case that both nodes
belong to the same community. It is computed using the SSIM
index for each pair of nodes in the community as described
in Section II-C.

We assume that all nodes know the information about which
community it belongs to, the community affinity between
all communities in the network, and the SSIM metric of all
members of their own community.

Data forwarding will be carried out by combining two
strategies: (1) Inter-community routing based on community
afinity and (2) Intra-community based on node afinity.

B. Inter-Community Routing

User communities are identified based on the user mobility
patterns as described in Section II-B. Every node knows which
community it belongs to. The inter-community forwarding
scheme uses community affinity information to make forward-
ing decisions. In DACCOR, each node maintains an N x N
community affinity matrix, which is defined as:

CA =


C11 C12 ... C1N

C21 C22 ... C2N

... ... ... ....
CN1 CN2 ... CNN

 ,

where Cn,m denotes the community affinity between com-
munity n and community m, for all n and m ∈ {1..N}, where
N is the total number of communities. Cn,m is obtained by

Cnm =

{
1, if n = m

E(SSIMn,m), if n 6= m.

E(SSIMn,m) is the average of SSIM between pairs of nodes
belonging to communities n and m. Thus, the community
affinity matrix CA determines how message forwarding be-
tween nodes belonging to different communities, i.e. nodes
that have different communities ID (cID) will be carried out.

Algorithm 1 Inter-community Routing
Input:noded, nodei, nodej , community ID (cID), M , CA
while noded without M do

current nodei encounters nodej without M
if nodej is noded then

nodej accepts M from nodei and the forwarding process ends
else

if nodej and noded in C then
nodei forwards m to nodej

else
if CA(cIDj ,cIDd) > CA(cIDi,cIDd) then

nodei forwards m to nodej
end

end
end

end

For example, assume that a node i has a message to
destination node d and encounters with node j. Also, assume
that node i and node d belong to different communities, n
and m, respectively, i.e. Cn,m 6= 1. If j is the destination
(i.e., j = d), i will forward the message M to j. If node
j belongs to the same community of node d, then node i
forwards the message to node j. If that is not the case, node
i will consult the community affinity matrix to decide if it is
going to forward M to node j or not, i.e. if Cj,d > Ci,d then
i is going to forward M to j. Otherwise, i will not forward
M and continue to carry message M . When the message has
reached the destination’s community, DACCOR looks for relay
nodes that are more similar to the destination node, by using
the SSIM metric as discussed in Section II-C. Algorithm 1
shows the detailed forwarding algorithm for the first phase.

C. Intra-Community Routing

For intra-community routing, the proposed protocol uses
the SSIM metric defined in Section II-C to determine
each node’s message forwarding "fitness" with respect to the
message’s destination. Thus, the SSIM metric dictates the
message forwarding between members of the same commu-
nity.

For instance, assume there is a node i carrying a message,
an encountered node j and a destination node d, all belonging
to the same community. DACCOR will search for the higher
geographic similarity, by comparing the SSIM metric between
the two nodes and the destination node. In other words, if
SSIM(nodej , noded) > SSIM(nodei, noded) the message is
forwarded from node i to node j. In addition, to increase
the probability of message delivery, even if node j and node
d are not part of the same community, the message can be



Algorithm 2 Intra-community Routing
Input:noded, nodei, nodej , community ID (cID), M , CA, SSIM, E[CA]
while noded without m do

current nodei encouters nodej without M
if nodej is noded then

nodej accepts M from nodei and the forwarding process ends
else

if nodej is in C and SSIM(nodej ,noded) > SSIM(nodei,noded) then
nodei forwards M to nodej

else
if CA(cIDj ,cIDd) > E(CA) then

nodei forwards M to nodej
end

end
end

end

forwarded using the community affinity metric. We understand
that a node may have a social relationship with more than
one community on the network and therefore if node j has
community affinity that is greater than the average community
affinity for all communities in the network, the message will
be forwarded. Algorithm 2 shows the detailed forwarding
algorithm for the second phase.

IV. PERFORMANCE EVALUATION

We evaluate DACCOR’s data forwarding mechanism
against two well-known opportunistic routing approaches,
namely PRoPHET [14] and Epidemic [22]. We use delivery
ratio, average latency, hop count and overhead as performance
metrics and drive our experiments using both synthetic and
real mobility records. Our rationale for choosing Epidemic and
PRoPHET in our comparative performance study of DACCOR
is as follows. Epidemic, despite its limitations, has been widely
used to evaluate opportunistic networks and serves as the upper
bound for reliability as well as cost. It stores messages locally
and uses opportunistic encounters to relay messages with the
goal that they will eventually reach their destination.

PRoPHET uses the delivery predictability metric based on
historical contact frequency between nodes to choose the next
relay nodes. The difference between DACCOR and PRoPHET
is that DACCOR selects the next relay nodes based on the
geographical similarity, whereas PRoPHET relies on node
encounter history to estimate which node has the highest
“likelihood” of being able to deliver a message to the final des-
tination. PRoPHET is a non-oblivious benchmark that has been
evaluated against several previous works, including social-
based protocols. For example, BubbleRap [9], the first social-
based protocol, compares its performance against PRoPHET.
As a result, the authors found a similar delivery ratio to
PRoPHET with half of the PRoPHET cost.

The following section presents the evaluation scenarios and
experimental setups used in our evaluation.

A. Experimental Datasets

To illustrate our approach, the datasets used in this study
were selected to cover a range of scenarios considering vehic-
ular and human mobile networks: GeoLife [28], San Francisco
(SF) cabs [20] and Helsink [11].

The GeoLife trace, refers to mobility in various scenarios in
the city of Beijing, including different modes of transportation

(e.g. walking, cycling and driving). The vehicular mobility
record is related to the movement of taxis in the city of San
Francisco/USA. The GeoLife and SF traces represent GPS
users trajectories. GeoLife was collected over a period of three
years and sampled every 5 seconds, and SF was collected for
24 days with samples ranging from 1 to 3 minutes.

Trace # users Type Speed (km/h)
GeoLife [28] 169 - -
SF Taxis [20] 483 - -
Helsink [11] 80 Pedestrians 1.8 to 5.4

40 Cars 10 to 50
6 Trams 25 to 36

TABLE I
SUMMARY OF USER MOBILITY TRACES CONSIDERED IN OUR STUDY.

Helsink is a synthetic mobility trace available in the ONE
simulator. Nodes move on the simulation area according to
a mobility trace generator, where 80 are pedestrians, 40 are
cars and 6 are trams. In this scenario, trams follow predefined
routes defined by the simulator, while pedestrians and cars
choose random destinations in their reach on the map and
move towards theirs next destination by following a shortest
path algorithm, such as Dijkstra algorithm.

A summary of the traces are shown in Table I.

B. Experimental setup

We designed simulation experiments with the Opportunis-
tic Network Environment (ONE) simulator. Random source
nodes generate messages to a randomly chosen destination
on average once every interval of time. The length of such
interval was varied in order to change network load conditions,
i.e., smaller inter-message periods allow a greater load, while
larger intervals decrease the load in the network. Inter-message
periods are randomly chosen over the following average inter-
vals: 6, 8, 12, 18, 60 and 600 seconds (uniformly distributed).
Message sizes are uniformly distributed between 500 KB and 1
MB. Given average message sizes, inter-message transmission
intervals and channel capacity, these intervals were chosen to
represent the network load ranging from 0.1 to 1 proportion
of the channel capacity. A summary with these parameters are
shown in Table II.

Parameters values
Transmission rate 2 Mbps
Radio range 150m
TTL 12h
Buffer size 1GB
Simulation time 12h
Message sizes 500KB to 1000KB

TABLE II
SIMULATION PARAMETERS.

In all experiments, we compare each protocol using the
following routing metrics.



• Delivery probability: computed as the total number of
successfully delivered messages in the networks, divided
by the total number of messages created.

• Overhead: the total number of relayed messages in the
network, divided by the total number of successfully
delivered message, i.e. the amount of transfers required
to perform one successful delivery.

• Latency: the average elapsed time (seconds) from the
instant a message is generated to its successful delivery
at the destination.

• Hop count: the average number of hops for each success-
ful delivery.

• Buffer time: the average duration of time (seconds) a
message spend in a buffer.

• Dropped Message: number of messages dropped due to
buffer overflow.

V. RESULTS

Results are reported here for the Helsink, San Francisco
and GeoLife mobility traces with a 95% confidence interval
over 10 runs for each network load. We randomize the traffic
scenarios by varying the source and destination pairs of the
flows in each of the 10 runs.

Figures 2, 4 and 3 show the performance of the network
metrics varying the total network load for Helsink, GeoLife
and San Francisco mobility scenarios. We can see from those
figures that DACCOR achieves the highest delivery ratio
with the lowest overhead and Hop count when compared to
other protocols. The only exception is for Geolife scenario
considering a network load of 0.1. We argue that this reduced
delivery ratio can be explained by the scenario’s sparsity
associated with the selective nature of DACCOR, which does
not forward messages until it encounters a node with the
same geographical preferences as the destination node. In
fact for this scenario, where there are few messages to be
forwarded and a low contact number between nodes, the
best performing protocol is Epidemic. However, even though
Epidemic achieves best delivery probabilities for low load, it
costs more unnecessary transmissions and hops, dramatically
increasing battery consumption of mobile devices and at the
expense of network bandwidth, as shown in Figures 4(b) and
4(c), respectively.

It should be noted that the overhead metric considers only
the messages delivered to calculate the number of messages
replicated on the network. Therefore, we can observe that as
the number of messages dropped on the network increases
in Figures 2(f), 3(f), and 4(f), the overhead on the network
decreases in 2(b), 3(b), and 4(b). In other words, since there
are fewer messages delivered on the network, there is also a
smaller value of relayed messages counted in the overhead
metric as the load increases.

Figures 2(e), 3(e), and 4(e) show the buffer time for mes-
sages that were not delivered to the network due to buffer
overflow. The message discard policy is FIFO. We note that
DACCOR has the longest buffer time, especially for low
load, as it is more selective and therefore tends to buffer
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Fig. 2. Performance evaluation for buffer size of 1GB and no TTL for
DACCOR, Prophet, and Epidemic protocols under Helsink scenario.

messages longer. We can argue that in the case of the Epidemic
protocol, which forwards messages at each encounter, when
the node buffer fills the buffer time approaches the meeting
time between nodes. It is worth noting that Figures 3(e), and
4(e) do not have values for buffer time up to a load of 0.25 for
DACCOR protocol. This is because DACCOR protocol does
not reach the buffer limit, so there is no message loss until this
message generation rate. A possible downside for DACCOR
due to its selective behavior when forwarding messages is the
average latency for message delivery. However, the protocol
has clear advantages over other metrics.

Results presented in this section confirm the efficiency of
introducing geographical preference in the design of commu-
nity based routing schemes. It is also worth to emphasize
the extremely reduced energy fingerprint of DACCOR, as
observed by the network overhead. With an overhead that is
orders of magnitude lower than the other protocols, DACCOR
activates the devices radio much less, saving energy and
increasing battery life.

VI. RELATED WORK

In opportunistic networks, best forwarding nodes are chosen
based on chances (utility of node) they have to delivery
a message to their destination. Next, a strategy to forward
message to relay nodes with high utility and lower cost
has to be taken. Several forwarding messages protocols on
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Fig. 3. Performance evaluation for DACCOR, Prophet, and Epidemic proto-
cols under San Francisco scenario.

opportunistic networks, including DACCOR, use the concept
of communities as a strategy for choosing the next hop.

The use social relationship information for selecting the
best relay node was used in [27], [1], [13], [5]. The first
community-based proposed was BUBBLE [9], that uses the
well known centrality metric and community structure to
forward data. More recent works, such as [25], [26] to name a
few, still proposing community based protocols to forwarding
data. For example, [18] uses relationship information contain-
ing node’s profile (such as name, address, workplace, hobbies,
etc.) to calculate the probability with destination.

In [23] the relay node is selected in the neighbourhood
based on the highest probability to reach the destination. The
probability is calculated, using information that the sender
knows about the destination, based on the behavior of repeat-
ing patterns at different times during day, week, and month.
Authors in [8] proposed effective schemes that consider the
existence of other relays carrying replicas of the same mes-
sage in the network. The schemes eliminate this redundancy
with some global network information. The authors found an
interesting result, they observed that some messages replicas
contribute little on improving the delivery ratio. The impact of
less popular nodes on the diffusion of messages on the network
was studied in [26]. More specifically, the authors removed
nodes that were less “important” (low centrality) and found
that message delivery performance was degraded.
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Fig. 4. Performance evaluation for DACCOR, Prophet, and Epidemic proto-
cols under GeoLife scenario.

Hui and others [10] proposed a distributed detection scheme
for Pocket Switched Networks, where each device senses
and detects its own community by analyzing the mobile
device history it encountered. Just encounter events are used
to build social relationship between them. This work use
data obtained from opportunistic networks traces, which only
contains information of the meetings between the mobile
devices. More recently, [4] proposed an expected encounter
based routing protocol that makes the routing decision by
comparing the minimum expected meeting delay to the des-
tination. Besides, they proposed a community aware routing
protocol using the expected number of encountering commu-
nities. The paper studies how the failures of some nodes in
opportunistic networks can affect the performance of social-
based forwarding strategies. These nodes can fail due to
energy exhaustion, or intermittent connectivity where they can
be out of communication range. It was shown that the non
participation of only some important nodes can significantly
degrade the performance of the entire network. The authors
concludes that the community-based forwarding and routing
methods in DTNs are really sensitive to the change of network
communities.

In this paper, we have also shown how to detect social struc-
tures from real mobility traces. However, our approach uses
the mobility behavior and the user geographical preference



for community identification and to decide how to forward
the data.

VII. CONCLUSIONS

In this paper we introduced DACCOR protocol. Thus, we
hypothesize that users that have similar geographical pref-
erences have also similar interests and as such we used a
deep autoencoder to pre-process raw mobility datasets. This
autoencoder approach was able to more accurately uncover
community structures which identifies groups of users sharing
common geographical interests and temporal relationships.

The proposed protocol used the community information
and user relationship to make an efficient next hop selection
decisions. Through extensive experimentation using one syn-
thetic and two real mobility records representing diverse urban
mobility scenarios we show the effectiveness of the proposed
opportunistic protocol.

Our results show that the proposed deep autoencoder com-
munity based routing protocol lead to an improvement of
the performance of the studied network metrics, i.e. delivery
probability, overhead ratio, hop count, latency and dropped
messages when compared with Epidemic and Prophet routing
protocols. Finally, we show that DACCOR is able to outper-
form other opportunistic forwarding protocols, not only on
the networks metrics, but also in the fact that, by using less
bandwidth and less radio, DACCOR is able to dramatically
decrease energy consumption, optimizing battery life.
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