
Towards a Modular and Extensible TCP Congestion Control
Implementation for the ns-3 Network Simulator

Allison Hume
University of California, Santa Cruz

Email: ahume128@gmail.com

Katia Obraczka
University of California, Santa Cruz

Email: katia@soe.ucsc.edu

Abstract—In contrast to live hardware testbeds, which are
largely used to measure performance, network simulators are
primarily used to test and validate new protocols and algorithms.
As such, a network simulator should be designed to be modu-
lar, extensible, re-usable, and robust. This work examines the
implementation of TCP congestion control in the ns-3 network
simulator and presents a new design, not specific to ns-3,
that is more modular and extensible. We also show that the
implementation in the current ns-3 release (version 3.25) is
not able to duplicate results presented in previous literature.
These findings, along with the improved design, are the main
contributions of this paper. To validate our design, we show
how its modular approach can be used to implement existing
TCP congestion control variants, e.g., TCP New Reno and TCP
Westwood.

I. INTRODUCTION AND MOTIVATION

Network simulators are an essential component of the
network protocol and application development cycle. They
complement live hardware testbeds as they enable experi-
mentation under a wide variety of networking environments
and conditions. They also allow reproduction of experiments,
which is a fundamental scientific methodology principle. Be-
cause network simulators are used primarily for testing and
validation, their main goal need not be performance but rather
to provide a robust environment that can be easily modified
and extended so that new protocols can be added to the existing
code base with minimal effort. As such, we believe that
modularity, extensibility, re-usability, and robustness should
be the main focus of network simulator code design.

One active area of research in the networking community
is introducing and comparing different TCP congestion con-
trol algorithms. Network simulation platforms have played a
crucial role in advancing TCP congestion control state-of-the-
art and ns-3, as well as its previous incarnation, ns-2, have a
long track record as essential tools for TCP congestion control
research [1], [6]. Like any software system, ns-3 has been
evolving, but there has not been enough of an effort to continue
to validate and understand the simulator itself.

The work in this paper was motivated by our experience
in working on a new variant of TCP congestion control, TCP
Inigo [14]. We were planning to use ns-3 as the simulation
platform to validate TCP Inigo and to complement experiments
run on a testbed. It became clear, however, that the exist-
ing TCP implementation in ns-3, while potentially sufficient
for comparing aggregate metrics such as throughput, or for
supporting higher level protocols, was not robust enough to

support the detailed analysis that is necessary to understand
and compare congestion control algorithms.

To illustrate the previous claim, Figure 1 shows a trace of
the congestion window in bytes (see Section II for a review
of congestion control in TCP) for TCP Westwood [7] using
an experiment found in Gangadhar et al [5]. The left plot
shows the experiment run on ns-3 release 3.24 while the
plot on the right shows the same experiment run on ns-
3 release 3.25. These results show that the implementation
of TCP Westwood has changed dramatically between the
two implementations. How can researchers trust simulators to
compare new versions of TCP when established algorithms
are not consistent between releases? The work we present in
this paper has been motivated by these findings and by the
difficulties encountered in adding a new congestion control
algorithm to ns-3.

The main contribution of this work is a new design
of the TCP congestion control implementation for network
simulators that targets modularity, extensibility, re-usability,
and robustness. The design will be presented after a brief
description of the history of TCP code design in the ns-3
simulator. We also present results that question the existing
TCP implementation in ns-3, lending weight to the argument
that a comprehensive design evaluation as well as a formal
validation process are very much needed.

II. HISTORY OF TCP DESIGN IN ns-3

The previous discussion helps to illuminate some of the
challenges that arise when attempting to implement TCP con-
gestion control in a way that is both efficient and extensible.
In particular, extensibility in a simulation platform is quite
critical as new versions of TCP congestion control have been
frequently proposed and added to network simulators for
validation and testing. If the TCP implementation in Linux
favors efficiency over extensibility that may be acceptable
since new TCP variants are not added to the Linux kernel very
often. In a network simulator, however, lack of extensibility
goes directly against the goals of the software. This section
discusses the recent history of TCP congestion control design
choices in the ns-3 network simulator [9], which motivate
our new design as described in Section IV. We should point
out that even though our work was motivated by ns-3’s TCP
congestion control implementation, our design is applicable to
network simulation platforms in general.



Fig. 1. A 600 second trace of the congestion window (in bytes) of TCP Westwood. Experiment from Gangadhar et al [5] run on ns-3 release version 3.24
(left) and version 3.25 (right).

tcp-socket-base 

Minimal Shared Code Base

tcp-newreno

Defines all TCP 
functionality 

tcp-tahoe
tcp-westwood(+)

Fig. 2. Block diagram showing the implementation of TCP congestion control
for ns-3 version 3.24.

As shown in Figure 2, the second most recent ns-3 release,
version 3.24, is organized as follows: (1) it has a module called
tcp-socket-base that contains the code base shared by
all versions of TCP implemented in the simulator, and (2)
there is one main module for each TCP variant containing
most of the code required for that specific congestion control
algorithm [10]. The tcp-socket-base module contains
very little code. It has a function named ReceivedAck,
called upon the receipt of a new acknowledgment, which
serves mostly to call the NewAck and DupAck functions,
which are defined for each TCP variant in its respective
module. NewAck and DupAck do not just contain congestion
control functionality, but include all TCP functionality that
should be invoked upon receipt of a new or duplicate ac-
knowledgment, respectively. Consequently, although the code
is organized by congestion control algorithm, a significant
portion of code in each module is in no way specific to
the corresponding congestion control algorithm. The main
downsides of this design are the significant code duplication
and the high overhead required to maintain and extend it, e.g.,
add a new congestion control algorithm.

Recently, ns-3’s TCP implementation has undergone a refac-
toring effort. As shown in Figure 3, in the refactored code the
majority of the TCP code is shared and only specific conges-
tion control functions need to be implemented to define a new
version of congestion control [12]. The result of this effort is

Refactored Shared Code Base

Includes more common functionality:
All ACKs

Error/Flow Control
Fast Retransmit and Fast Recovery

tcp-congestion-ops: 

Defines basic congestion control 
functionality:

PktsAcked()
GetSsThresh()
IncreaseWindow()

Also includes TcpNewReno 

tcp-westwood(+) 

tcp-hybla
tcp-new-version

Fig. 3. Block diagram showing the implementation of TCP congestion control
for ns-3 version 3.25.

the recently released ns-3 version 3.25 [11]. In this version, the
ReceivedAck function in tcp-socket-base contains
much more shared functionality and calls more specific, well-
defined congestion control functions such as PktsAcked,
GetSsThresh, and IncreaseWindow. These functions
are defined in the congestion-ops module. TCP con-
gestion control variants are each implemented in a separate
module using the congestion-ops module as their base
class. The implementation for TCP New Reno, however, exists
in congestion-ops because New Reno is the default TCP
congestion control algorithm used by ns-3.

The refactored design in ns-3 version 3.25 is more exten-
sible than the previous design, although great care must be
taken to ensure that all shared code is truly generic. As will be
discussed further in Section III, that is not currently the case.
Another criticism of this design is that, since TCP New Reno
is used as the default implementation, the implementation of
other congestion control algorithms is not always completely
clear. It is not obvious, for example, that the TCP Westwood
implementation actually uses the SlowStart function de-
fined for New Reno, since SlowStart is not one of the three
functions specified in the base class. We argue that, although
the current design is moving in the correct direction, additional
improvements are needed.



TABLE I
SUMMARY OF SIMULATION PARAMETERS AND THEIR VALUES

Original Source Simulator Used Figure Bottleneck Link Access Link MTU Size Loss Rate
Gangadhar et al [5] ns-3: 3.15 or 3.18 ? 1 2 Mbps, 0.01ms delay 10 Mbps, 45ms delay 400 B 5 ∗ 10−3

tcp-variants-comparison N/A 5 0, 10−3

Casoni et al [3] ns-3: 3.22 * 10 Mbps, 25ms delay 100Mbps, 1ns delay 1500 B 10−3

Grieco et al [6] ns-2 4 2Mbps, 125ms delay 1Gbps, 0.01ms delay 1500 B 0, 10−3

III. VALIDATING ns-3 VERSION 3.25

Before presenting our proposed design, we further motivate
the need for a new design by presenting experiments we
conducted to validate the current state of the simulator. To
this end, we tried to reproduce results reported in the literature.
In particular, the experiments presented here are taken from
previous work by Gangadhar et al [5], Casoni et al [3], and
Grieco et al [6]. The simulation parameters and the values we
used for these experiments are summarized in Table I, which
also includes the reference to the work where the experiment
was originally carried out (”Original Source” column) and
the network simulator used to run the original experiments
(”Simulator Used” column). A “?” in that column indicates
that the simulator version was not specified in the original
paper, so we used the publication date and the simulator’s
version release schedule to infer the version used in the
original experiments. The “tcp-variants-comparison” row in
Table I refers to a version of the experiment developed by
Gangadhar et al that is provided as part of ns-3 release (in the
examples/tcp directory). Column ”Figure” in Table I specifies
the figure where the results of the experiments are plotted. A
”*” in that column indicates that the figure is not shown due
to space limitations.

All experiments involve a source and a sink connected
by a gateway with point-to-point links, and traffic sent from
the source to the sink using the BulkSendHelper traffic
generator, which continuously sends traffic to fill the network.
The link with the lower bandwidth is referred to as ”Bottleneck
Link”, and the other as ”Access Link”. Their bandwidth and
propagation delay are shown in the fourth and fifth columns of
Table I. Where applicable, packet losses are simulated using
a uniform distribution defined by the rate shown in the Loss
Rate column in Table I.

Different experiments show different degrees of variation
between the current ns-3 3.25 release and original results
obtained from either previous versions of ns-3, ns-2, or hard-
ware. One experiment is originally from Casoni et al [3],
in which results from ns-3 version 3.22’s TCP New Reno
were compared to Linux. Their results showed that cwnd
and ssth from ns-3 were both very close in scale and
pattern to the values obtained from Linux; however, cwnd
showed unexpected spikes in ns-3 that were attributed to fast
retransmit. When repeated on ns-3 3.24 we were able to
reproduce those results. We found, however, that the spikes
are due to fast recovery: the increase of cwnd by one segment
for every duplicate ACK after the three duplicate ACKs that

initiate fast recovery (section 3.2 of RFC 2582 [4]). These
results are not presented here due to space limitations.

This behavior, however, does not necessarily constitute an
error. The ns-3 code very closely follows the RFC while the
Linux TCP implementation handles fast recovery differently.
The Linux implementation does not follow RFC 2582 [4]
exactly and does not adjust cwnd for every ACK during fast
recovery [3] [13].

In order to confirm our theory, we wished to disable fast
recovery. To do so, however, we had to track down and
comment out the relevant code within the shared code base.
The current design of TCP in ns-3 allows no option for
changing or disabling the fast retransmit and fast recovery
algorithms. In different scenarios you may want different
implementations of the algorithm, or, as in this case, simply
to turn one off. Commenting out sections of code is a very
error prone method of achieving that result.

Although the fast recovery algorithm for NewReno is
correct, the same algorithm is applied to TCP Westwood,
which is not correct. The Westwood algorithm specifies that
the bandwidth estimation should be applied not just after a
timeout, but after n duplicate ACKs as well [7]. The New
Reno fast recovery algorithm specifies that after three duplicate
ACKs the congestion window is halved. Since this New Reno
code exists in the shared code base, after three duplicate
ACKs the congestion window is halved for TCP Westwood
as well, and the bandwidth estimation does not occur as it
should, according to the Westwood specification. Having one
fast retransmit and fast recovery implementation in the shared
code base is therefore not a viable design for an extensible
TCP implementation as it is not guaranteed that any two
congestion control algorithms will require the same behavior
for those components.

We also found, upon commenting out the fast recovery
implementations, that the new version of ns-3 responds dif-
ferently to the removal of the algorithm than did ns-3 3.24.
Specifically, slow start is initiated an order of 10 times more
frequently. Further discussion of this issue is outside the scope
of this paper, but it is clear that the current state of ns-3 is not
sufficiently validated.

Figure 4 shows the results of an experiment comparing ns-
3 versions 3.24 and 3.25. This experiment was first presented
in Grieco et al [6] and seen also in Abdeljaouad et al [1].
It originally included one forward flow with 10 back-flows
turning on and off but, due to the results obtained while at-
tempting duplication, the experiment is presented here without



Fig. 4. Congestion window and slow start threshold for New Reno in ns-3 3.24 (top row) and 3.25 (bottom row), with packet loss rates set to 0 (left column)
and 10−3 (right column). Full trace from a 1000 second experiment.

the back-flows. The top row of the figure shows results for
version 3.24 and the bottom row for version 3.25. The left-
and right columns show results using packet loss rates of 0
and 10−3, respectively.

The differences in the plots with an error rate of 0 (left
column) are quite significant. The top left plot very closely
matches results previously obtained by Grieco et al [6] and
Abdeljaouad et al [1], which used the ns-2 network simula-
tor [8]. It appears, looking at the bottom left plot, that in ns-3
version 3.25, without packet loss, congestion events only occur
once the congestion window has grown to a much larger size
than in ns-3 version 3.24. Since the experiments have the exact
same setup, it is clear that some parameter is not enforced
properly in version 3.25. This is not visible in the equivalent
experiments with a non-zero packet loss rate (right column)
because even a very small loss rate creates enough perceived
congestion events to mask this issue. The difference in these
plots speaks to an insufficient validation effort between release
versions of ns-3. If such simple experiments are not repeat-
able, how can the implementation be used to support further
research?

Figure 5 shows behavior similar to the plots in Fig-
ure 4. The plots in this figure were generated using the
tcp-variants-comparison experiment that exists in the
examples/tcp directory in every ns-3 release (based on the
experiment presented in Gangadhar et al [5]). Similarly to
Figure 4, the top row shows experiments run on release 3.24,

the bottom row experiments run on release 3.25, the left
column plots packet loss rate of 0, and the right column loss
rate of 10−3. Again, the difference in the shape of cwnd for
0 loss rate indicates lack of repeatability even for an example
provided as part of each ns-3 release.

IV. PROPOSED DESIGN

The examples presented in the previous section motivate the
need for re-designing a TCP congestion control implementa-
tion for network simulators in order to increase modularity,
and consequently robustness and extensibility. Our design is
based on the following goals:

Extensibility: The primary goal of network simulators is
to allow researchers to test and validate new protocols or
variants/extensions to existing ones. TCP is a prime example:
as one of the most widely used Internet protocols, TCP has
attracted considerable attention from the networking research
and practitioner communities. In particular, the TCP conges-
tion control algorithms have evolved significantly over the
years, with new versions often appearing as minor mod-
ifications of existing algorithms. Consequently, it must be
straightforward to add new TCP congestion control variants
to network simulators’ existing TCP code base in order to
facilitate testing and validation.

Modularity: TCP congestion control has evolved signif-
icantly over time and currently has many variants, each of
which consists of a set of algorithms. Among those algorithms,
some may be unique and some shared with other variants. As



Fig. 5. Congestion window and slow start threshold for New Reno in ns-3 3.24 (top row) and 3.25 (bottom row), with packet loss rates set to 0 (left column)
and 10−3 (right column). Full trace from a 100 second experiment.

Refactored Shared Code Base
Includes common functionality:
All ACKs, Error/Flow Control

Will not include:
Fast Retransmit and Fast Recovery

tcp-congestion-ops: 

Defines basic congestion control 
functionality:

PktsAcked()
GetSsThresh()
IncreaseWindow()

Add:
FastRetransmit(), FastRecovery() 

tcp-IncreaseWindow
tcp-FastRetransmit
tcp-FastRecovery

tcp-GetSsThresh
tcp-PktsAcked

tcp-westwood(+) 

tcp-hybla
tcp-new-version

Fig. 6. Proposed design for a modular and extensible TCP congestion control
implementation.

such, modular design and implementation are critical, espe-
cially in network simulation platforms. Modularity will allow
different congestion control variants to share implementations
of common functions that have been well tested. It will also
facilitate experimenting and testing new congestion control
versions since modules that implement different functions can
be easily enabled/disabled. In addition, it will greatly reduce
the overhead necessary for implementing new congestion
control mechanisms, as they are often “small” modifications
to one component of existing algorithms.

While our design can be generalized to any network simula-
tor, we used ns-3 to showcase and test our implementation. As
such, we will continue to use ns-3’s TCP congestion control
implementation as the basis for our design changes.

The main modification to the shared code found in
tcp-socket-base is that it no longer includes
fast retransmit and fast recovery algorithms. The
tcp-congestion-ops module remains the base class for
all congestion control implementations with the following
changes: (1) it no longer contains the implementation of New
Reno, which now is implemented in a separate, dedicated
module, and (2) it now includes FastRetransmit and
FastRecovery function signatures. Each function in the
base class will have a corresponding module in which all
its variant implementations will reside. Lastly, each specific
congestion control algorithm will have a module that defines
the selection of its components.

Figure 6 summarizes the proposed design. We believe that
this design achieves modularity and extensibility, ensuring
implementations are clear and easy to understand. Specifically,
having a module for each algorithm, not just each congestion
control variant, allows developers to easily find and follow
implementations that already exist for one specific piece of
functionality, without having to root through all congestion
control modules and the shared code base.

Table II summarizes the changes made between ns-3 re-
leases 3.24 and 3.25, as well as our design changes. Each



TABLE II
SUMMARY OF DESIGN CHANGES

Design Shared Code Base Congestion Module Component Modules Algorithm Modules
ns-3 3.24 Minimal N/A N/A Whole implementations

ns-3 3.25 ACKs, Error/Flow Con-
trol, Fast Retransmit and
Fast Recovery

Defines congestion control as:
PktsAcked, GetSsThresh,
IncreaseWindow.
Contains NewReno implementation

N/A Unique components of
implementation

Proposed Remove Fast Retransmit
and Fast Recovery

Add FastRetransmit and FastRecov-
ery to congestion control definition.
Remove NewReno to algorithm module

Add module for each of:
IncreaseWindow, GetSsThresh,
PktsAcked, FastRetransmit,
FastRecovery

Uses components defined
in component modules

column in the table corresponds to a specific module and the
rows describe the state of that module for the three designs.
The table clearly shows the proposed design’s increased modu-
larity. The extensibility of the proposed design can be inferred
from the ease with which a new algorithm module can be
created, given an existing set of component modules.

V. DESIGN VALIDATION

A. TCP New Reno

Ideally we would like to fully validate our proposed design.
Unfortunately, as demonstrated previously, the starting point
for our design is not entirely correct. In this section we show
that we are able to obtain the same results for TCP New Reno
using our design and implementation when compared to the
results obtained with ns-3 3.25. The second part of this section
shows the same results for TCP Westwood and contains a
deep dive into an example illustrating our attempts at achieving
consistent results between ns-3 3.24 and 3.25. The goal is to
show how high a barrier poor validation between releases can
be for researchers trying to validate their results.

The plot on the left side of Figure 7 shows results ob-
tained by running the experiment by Casoni et al [3] us-
ing our implementation of TCP New Reno, and matches
the previous results obtained with that experiment. The
plot on the right side of Figure 7 shows results from the
tcp-variants-comparison experiment available as part
as the ns-3 3.25 release. It matches quite well Figure 5’s lower
left graph which was obtained by running the same experiment
using ns-3 3.25’s TCP NewReno.

B. TCP Westwood

For TCP Westwood, we used the experiment from Gan-
gadhar et al [5]. Figure 1 shows the original outcome of this
experiment, in which we observe considerable differences be-
tween ns-3 releases 3.24 and 3.25. As discussed in Section III,
one clear bug with the TCP Westwood implementation in
release 3.25 is that it uses New Reno’s implementation of fast
recovery, instead of the bandwidth estimate. We hoped that
fixing this problem with the TCP Westwood implementation,
which was done during the implementation of the proposed
design, would yield behavior similar to release 3.24. The
results, however, continued to look almost identical to those
shown in the second plot of Figure 1.

Although this confirms that our design does not add ad-
ditional errors, it did not enable us to fully understand the
Westwood implementation in ns-3 3.25. This prompted a
deeper investigation into the root cause of these differences
because, in contrast to the differences seen in TCP NewReno,
the differences in TCP Westwood are on a large enough scale
to be deeply concerning. This investigation is outlined here to
underscore the need for careful and comprehensive validation
between simulation releases.

In addition to the problem of using New Reno’s fast recov-
ery, instead of TCP Westwood’s original bandwidth estimator,
our investigation uncovered that in ns-3 3.25’s TCP Westwood
implementation, ssth was not being updated correctly. The
following trace shows the first few values of ssth recorded
in the simulation for ns-3 3.24 (“...” indicates value was
unchanged for several time steps):

t ime s s t h
0 . 0 65535
0 .0905768 262140
. . .
0 .5562 20225

And the following is the equivalent trace for ns-3 3.25:

t ime s s t h
0 . 0 0
0 .0905768 4294967295
. . .
0 .5562 680

The first obvious difference is that the initial ssth value
has changed. It is not clear why this initial value was changed
to 0 as the specification for ssth is “the initial value of [ssth]
SHOULD be set arbitrarily high” [2]. The next item in the
trace shows that there was an overflow event, as ssth is an
unsigned integer. Finally, the trace shows ssth being set to
680 which, for this experiment, is twice the segment size. This
is the smallest value to which ssth should ever be set, and it
should only be set to that value if the bandwidth estimator in
Westwood would cause it to be set to a value smaller than that.
In version 3.25, for every call of GetSsThresh, no value
other than 680 is ever returned, meaning that the bandwidth
estimator continuously produces very small bandwidth values.
For version 3.24 that value is only returned a handful of times.



Fig. 7. Comparison between simulation results obtained with our design and implementation of New Reno and ns-3 3.25’s New Reno. Right-side graph can
be compared with Figure 5’s lower left graph.

The bottleneck bandwidth for the experiment is 2 Mbps
but the values returned by the bandwidth estimator were on
the order of 50 Kbps. The bandwidth estimator is calculated
using the following equation in the Westwood implementation:
BW = PktsAcked ∗ SegementSize/RoundTripT ime.
RoundTripTime is estimated using send and receive time
for packets and ACKs, respectively, and was consistently close
to the 90ms which was expected for this experiment. One
obvious problem is that the segment size is not the full size
of the packet, but this would not account for such a large
difference between expected and estimated bandwidth. The
problem must, therefore, be an issue with the counting of the
number of acknowledged packets.

At this point three bugs have been discovered in ns-3
3.25’s TCP Westwood implementation, namely: (1) incorrect
usage of the New Reno fast recovery algorithm, (2) incorrect
initialization of ssth, and (3) incorrect operation of the
bandwidth estimator. To understand if the bandwidth estimator
was the major factor contributing to the differences observed
in TCP Westwood between the two releases, the result of the
bandwidth estimator was multiplied by 40 (the average factor
between the expected result and actual result of the estimator).
This plot is much closer in scale to the plot on the left of
Figure 1, from ns-3 3.24, but is still different enough to suggest
that there may be additional problems with ns-3 3.25’s TCP
Westwood implemention.

The large number of issues encountered while trying to
reproduce such simple experiments demonstrates the need for
modular, extensible design as well as comprehensive imple-
mentation validation.

VI. CONCLUSIONS

This paper presented a modular and extensible TCP con-
gestion control design for network simulators. We showcase
our design using the ns-3 network simulator. In addition, we
showed that the recent ns-3 code refactoring caused errors to
be introduced in the TCP implementation and the difficulty
that those errors create when trying to work with- and extend
the existing TCP implementation. We argued that in addition to
a modular and extensible design, a comprehensive validation

process for network simulators must be adopted. This is critical
in order to support protocol and application developers who
rely on simulators to understand, propose, validate, and test
their work.

REFERENCES

[1] I Abdeljaouad, H Rachidi, S Fernandes, and A Karmouch. Performance
analysis of modern tcp variants: A comparison of cubic, compound and
new reno. In Communications (QBSC), 2010 25th Biennial Symposium
on, pages 80–83. IEEE, 2010.

[2] M Allman, V Paxson, and E Blanton. Tcp congestion control. RFC5681,
2009.

[3] Maurizio Casoni, Carlo Augusto Grazia, Martin Klapez, and Natale
Patriciello. Implementation and validation of tcp options and congestion
control algorithms for ns-3. In Proceedings of the 2015 Workshop on
ns-3, pages 112–119. ACM, 2015.

[4] Sally Floyd, Andrei Gurtov, and Tom Henderson. The newreno modifi-
cation to tcp’s fast recovery algorithm. RFC2582, 2004.

[5] Siddharth Gangadhar, Truc Anh N Nguyen, Greeshma Umapathi, and
James PG Sterbenz. Tcp westwood (+) protocol implementation in ns-3.
In Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques, pages 167–175. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), 2013.

[6] Luigi A Grieco and Saverio Mascolo. Performance evaluation and
comparison of westwood+, new reno, and vegas tcp congestion control.
ACM SIGCOMM Computer Communication Review, 34(2):25–38, 2004.

[7] Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and
Ren Wang. Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 287–297. ACM,
2001.

[8] NSNAM. The network simulator - ns-2: http://www.isi.edu/nsnam/ns/.
[9] NSNAM. ns-3 https://www.nsnam.org/.

[10] NSNAM. Ns-3 version 3.24 tcp implementation: http://code.nsnam.org/
ns-3.24/file/e8634b0101f7/src/internet/model.

[11] NSNAM. Ns-3 version 3.25 tcp implementation: http://code.nsnam.org/
ns-3.25/file/3316e06767e7/src/internet/model.

[12] Natale Patriciello and Tom Henderson. Ns-3 version 3.25 tcp imple-
mentation: https://www.nsnam.org/bugzilla/show bug.cgi?id=2188.

[13] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in linux tcp. In
USENIX Annual Technical Conference, FREENIX Track, pages 49–62,
2002.

[14] Andrew G Shewmaker, Carlos Maltzahn, Katia Obraczka, and Scott
Brandt. Tcp inigo: Ambidextrous congestion control. Technical Report,
2015.


