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Abstract

BTS 2: A ROBUST, LOW-COST, REAL-TIME BUS TRACKING SYSTEM

by

Kerry Veenstra

This report describes the goals, design, and deployment of the prototype for the

BTS 2 bus-tracking system. It notes where the BTS 2 production system differs

from the BTS 2 prototype and where it differs from the original BTS system.

The author created the bus nodes and base stations of the BTS 2 prototype

and managed the creation of the production bus nodes. Tracking data from the

BTS 2 production system now is available to UCSC campus users through web

and smartphone apps written by others.
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Chapter 1

Introduction

Imagine a cold and wet night on campus. A young student stands at a bus stop,

quite aware that there is warmth and safety in the building behind her. She is

unsure when the bus will arrive, and she knows that when it does the driver must

see her waiting at the road or else he may drive by. She would like to wait indoors

and be certain of catching the bus, but she cannot do both without real-time

knowledge of the bus’s position.

We see this scenario every year, as students wait at the campus’s bus-stops.

However, the 2009–2010 school year at UCSC was different: on a web-browser-

based map of the campus, students could see markers representing campus shuttles

moving in real-time. The system that generated those maps was BTS[16].

Although the public face of the BTS system was its real-time transit map, its

creators had other motivations: the nodes of the BTS system served as part of

the SCORPION testbed for research in wireless networking[7]. The public service

provided by the BTS nodes was a beneficial side effect made possible by erecting

five base stations around UCSC and mounting small Linux boxes on the frames

of about 20 transit shuttles.
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BTS 2: The original BTS system met its initial goals, but unfortunately

it had shortcomings that prevented long-term deployment. This project report

lists those problems and describes the design and implementation of a new bus-

tracking system, BTS 2, that addresses the problems and provides more reliable

transit tracking and testbed features at the UCSC campus.

I have organized this report into five chapters. Chapter 1 introduces the sub-

ject of the report, discusses related work, and states the goals of BTS 2 and how

they differ from those of BTS. Chapter 2 presents the design and implementa-

tion of the new BTS 2 bus nodes. These nodes are entirely original and are the

heart the project’s contribution. Chapter 3 presents the design of the five cam-

pus base stations that receive data from the bus nodes and the design of the

server that stores their data. Chapter 4 focuses on using the nodes to make a

MANET testbed. Since testbed-management requirements are unchanged from

BTS, Chapter 4 merely documents the testbed-management programs that are

shared by both BTS and BTS 2. Finally, Chapter 5 reports results.

I created all of the BTS 2 prototype myself, but some parts of the proto-

type are modifications of original BTS designs by others. Here are my specific

contributions:

• All hardware design and construction (route sign, route selector, route pro-

grammer, base station)

• Firmware design and implementation (route sign)

• Firmware redesign and implementation (route selector—original firmware

by Ben Cizdziel)

• Software design and implementation (arrival-prediction)
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• Software redesign and implementation (base stations and backend-server

prototype—original BTS software by James Koshimoto and Matt Bromage)

• Database design

• Web app design and implementation

In addition to creating the BTS 2 prototype, I managed the deployment of

the BTS 2 production system. The production system is almost identical to the

prototype, but it integrates these new features which were made by others:

• New web app (Kevin Abas)

• Android app and new back-end server (Wade “Simba” Khadder)

• iOS app (Sterling Dreyer)

• Firmware for the route programmer—in progress (Christopher Villalpando)

1.1 Related Work

BTS 2 provides features that are similar to those of other tracking systems. Below

I describe other academic systems and some commercial systems that provide

tracking but lack testbeds. Since there are differences between commercial systems

and academic systems, I discuss these two kinds separately. I describe the original

BTS in section 1.2, where BTS 2 is defined.

1.1.1 Example Commercial Systems

Two well-known commercial systems are NextBus and TransLoc.
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NextBus

NextBus tracks buses of a transit system using GPS receivers. The system deter-

mines bus locations and predicted arrival times and displays them on web sites,

on mobile-phone apps, and on digital signs at bus stops[38]. To help riders decide

which of the approaching buses to take, some NextBus installations include on

each bus a Passenger Load Sensor System (PLSS) which estimates the number of

passengers on the bus[28]. NextBus applications receive data updates at a rate

that depends on the installation: from as often as every 10 seconds to as infre-

quent as every 2 minutes. The NextBus installations that have faster data-update

rates can support real-time location maps.

A full-featured NextBus system is expensive to install and maintain. For ex-

ample, the Washington Metropolitan Area Transit Authority (WMATA) reports

that installing NextBus on the Metrobus in the Washington, D.C. area added

$3,000,000 in capital investments. In addition, WMATA spends $223,000 annu-

ally in NextBus operating costs[37]. Since Metrobus has a fleet of 1,480 buses[42],

a rough per-bus cost estimate for NextBus is $2,000 per bus for installation and

$150 per year for maintenance. (This estimate amortizes the costs of any pur-

chased server equipment over the costs of the buses.) Reference [37] does not

state whether all of the buses had route signs at the time of system installation,

but likely they already did. WMATA bus stops do not have electronic message

signs, and so the capital investments did not include such signs.

Checking the NextBus web site, one finds that most NextBus customers run

entire metropolitan transit systems, like that of WMATA.

4



TransLoc

Another commercial bus-tracking system, TransLoc, provides basic features of bus

tracking and arrival prediction[35].

TransLoc installations appear to be less expensive and less extensive than those

of NextBus. A TransLoc installation at Louisiana State University (LSU) cost

$20,000 for GPS equipment and was installed in a day[36]. Since the LSU Tiger

Trails system has 23 buses (18 active plus 5 spares[41]), the per-bus installation

cost was about $870. The annual maintenance cost was not reported.

Checking the TransLoc web site, one finds that most TransLoc customers run

small, campus-based transit systems, like that of LSU.

1.1.2 Characteristics of Academic Systems

The primary difference between commercial systems and academic systems is that

academic systems sometimes limit tracking features but compensate by supporting

research testbeds.

Adding Testbeds

Network researchers can evaluate their algorithms on simulators, testbeds, and

complete deployments. Simulators, such as QualNet[26], ns-2[23], and ns-3[24],

test algorithms in controlled artificial environments. Using a simulator, a re-

searcher can test specific circumstances with manually or algorithmically gener-

ated stimuli, can improve test coverage with pseudorandom stimuli, or can model

operation under real-world conditions with network traces. Also a researcher can

repeat prior stimuli in subsequent simulator runs (to compare different algorithms)

and can design stimuli to include all system states. Simulators are best for making
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detailed observations and for subjecting the system under study to a wide variety

of conditions, but they have weaknesses.

While simulators can model real-world environments through network traces,

the use of traces presumes that a network’s responses will be unaffected by the

modeled algorithm. Instead of using a simulator, researchers who want to mea-

sure the effects of algorithms on network activity can deploy their algorithms to

testbeds and drive them with real-time stimuli, as in GENI[2], Planetlab[25], and

DOME[31]. Such testbeds may sacrifice repeatability and may limit observabil-

ity, but they can show the effects of real-world activity that may not have been

revealed by artificially generated stimuli. Using testbeds is even more important

in the case of wireless networks where the physical world plays a definitive role

and is much harder to capture than using mathematical abstractions and models.

Another benefit of using testbeds is the possibility of long-term experimental

runs[31]. Assuming that the nodes of the testbed are deployed reliably and are

available for use, a researcher can design an experiment that runs for weeks or

months. Observations collected during such longitudinal studies can help reveal

long-term trends.

Partnering to Share Costs

Researchers track the mobile nodes of testbeds because node mobility affects ex-

perimental results, however once one has tracking data, it can be used for other

purposes that may allow sharing the costs of system installation and maintenance.

Mobile wireless testbeds need vehicles for node mobility, and of course vehicles

cost money. Researchers can reduce these costs by partnering with transit au-

thorities to deploy nodes on existing vehicles, providing vehicle-tracking features

to transit passengers and transit managers as motivation to provide access to ve-
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hicles. Based on my own experience, which is consistent with that of DOME[31],

I believe that such a partnership is more likely to be successful when researchers

and transportation authorities find the resulting system jointly beneficial.

1.2 BTS 2 Compared to BTS

During the summer of 2009, UCSC’s original Bus Tracking System and Wire-

less Networking Testbed was successfully deployed to about 20 campus transit

shuttles. Over the 2009/2010 school year the system was evaluated, and several

improvements were identified. The following summer, when most of the campus

transit shuttles were retired and replaced with larger, more fuel-efficient vehicles,

the BTS hardware was removed from the retiring vehicles and stored.

Based on the BTS evaluation, and using feedback from that system’s users

(TAPS employees, wireless-networking researchers, and shuttle riders), I have de-

signed an improved BTS 2.

1.2.1 Updated Design Goals

My overall goals for BTS 2 remain the same as those for BTS: to create a combi-

nation transit-vehicle tracking system and ad hoc wireless-network testbed. How-

ever, there are several specific improvements. I summarize these in Table 1.1 and

detail them below.

Automatic Route Identification

Although the real-time location map of the BTS system identified and located

each of UCSC’s transit shuttles accurately, the route indicators displayed on the

map were incorrect. For example, regardless of the route that a vehicle followed,
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its indicator on the map was set permanently to “Loop” or “Night Core” or any

one of the other published route names. The cause of this problem was a user-

interface shortcoming rather than a programming error. The system as originally

designed required vehicle route assignments to be entered manually by a TAPS

shift supervisor using a web-browser-based GUI. Unfortunately, vehicles changed

routes frequently enough to make updating the GUI more of a hassle than route-

indicator accuracy was worth, and so TAPS stopped using this feature of the

system. For passengers, the lack of accurate route indicators reduced the map’s

value.

To address this problem with BTS 2, I note that each transit-shuttle driver

is responsible for setting the message on the shuttle’s route sign correctly. The

BTS 2 bus node reads this setting from the route sign to identify vehicle-route

assignments automatically. This setting is sent, along with the shuttle’s GPS

location, from the BTS 2 bus node to BTS 2 base stations for storage in the

tracking database.

Project
Common Goals BTS BTS 2
Real-time bus-location maps • •
Testbed for ad hoc network research • •

New Goals
Automatic route identification ◦ •
Vehicle arrival-time predictions ◦ •
Additional communications-error detection ◦ •
Improved hardware reliability ◦ •

Table 1.1: BST 2 goals.

8



Vehicle Arrival-Time Predictions

Imagine standing alone at a shuttle stop at midday, when all of a sudden students

pour out of dorms, cell phones in-hand, just as the shuttle approaches. This

scenario is not fiction. It happens every weekday during the school term at UC

San Diego, and it can happen at UCSC, too.

Although the real-time map on the BTS web site provided accurate geographic

locations of each shuttle, the map’s use as a forecasting tool was limited to those

riders who already were familiar with the routes and speeds of shuttles. Conse-

quently, the BTS 2 web-site adds predictions of shuttle arrival times1. In addition,

the web server provides the prediction data in an XML file that can be displayed

by mobile apps. While this project does not provide a mobile app, the predictions

can be used by students who want to make their own mobile app.

Additional Communications-Error Detection

BTS used Aerocomm CL4490 data radios, which support packet-error detection

and packet retransmission[1]. The support of error detection and retransmission

suggests that tracking data would be transferred from shuttles to base stations

error-free, but paradoxically the BTS database shows occasional errors, such as

records with an invalid shuttle ID of −122 (the integer portion of longitudes on

the UCSC campus!). Analysis of the BTS system design reveals the likely cause

of these errors.

BTS bus nodes created variable-length data frames, but since the CL4490 ra-

1This report describes the BTS 2 prototype. The prototype used the INRG lab’s “skynet”
server for database, web-server, and arrival-prediction services. The production BTS 2 system
migrates the BTS 2 database and web-server functions to a VM that is managed by UCSC IT.
The arrival-prediction functionality provided by “skynet” has not yet been migrated, and since
“skynet” suffered a recent hardware failure, arrival-prediction services are not currently running.
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dios send fixed-length packets, at least occasionally a BTS frame was fragmented

across a pair of radio packets. Although the radio’s error detection and retrans-

mission of individual fragments should have guaranteed correct transmission of

complete frames, a mobile bus node could leave a base station’s coverage area

between fragment transmissions. Such a situation (the loss of the second fragment

of a BTS frame) causes a specific problem.

The CL4490 does not reassemble packet fragments into a single packet before

sending the packet to the base station. Instead, it sends each fragment to the base

station as it receives it. Also, the radio attempts only four retransmissions of each

fragment, and so if all of the second fragment’s transmissions are lost, the base

station’s input buffer will contain just the first packet fragment. This fragment

will act as a “prefix” to the next full frame that is received, creating a corrupt

frame in the base station’s input buffer. The original BTS base-station code lacks

error detection, and so the situation outlined above leads to invalid records being

written to the database.

While the scenario mentioned above explains the record corruption that is seen,

I cannot directly verify that there are occasional corrupt frames in base-station

buffers because nodes of the BTS system no longer are deployed. Nonetheless, this

explanation is the best that I have, and so while BTS 2 continues to use CL4490

radios, it also adds a frame checksum so that invalid frames can be detected and

discarded. (Invalid frames are discarded rather than retransmitted because fresh

BTS 2 frames are transmitted every three seconds.)

Evaluation of Sensors for Improving Localization Accuracy

BTS nodes use GPS receivers to identify each bus’s position (longitude and lati-

tude). Although GPS receivers have legendary accuracy, archive BTS data show
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that bus positions reported along Heller Dr. between Porter College and the Core

West parking structure often do not lie along the actual location of the road (see

Figure 1.1). Instead the GPS data from this area sometimes shows offset errors

more than 50 meters. These errors can confuse BTS map users who see a bus’s

icon traveling through the forest!

The cause of such offset errors likely is the forest canopy of the northern devel-

Figure 1.1: GPS repeatability demonstrated by BTS data that was collected at
UCSC on August 9, 2010. The rectangle in the upper-left corner marks a region
that often shows large GPS offset errors along Heller Dr. between Porter College
and the Core West parking structure. While Section 2.1.5 discusses an additional
cause of GPS error, the map clearly shows a lack of location repeatability in
forested areas of the campus.
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oped portion of the UCSC campus. While the U.S. Department of Defense reports

that civilian GPS receivers provide 3-meter accuracy 95% of the time, such ac-

curacy requires reception of 19-cm–wavelength signals from four GPS satellites

simultaneously[13]. GPS-receiver manufacturer Trimble Navigation explains that

materials with high water content—such as leaves of trees—become signal atten-

uators, and that consequently, “Forest canopy is one of the most limiting factors

in using the global positioning system for positioning and mapping”[22].

To help improve the accuracy of positioning data, the BTS 2 project adds

two sensors, an accelerometer and a magnetometer (magnetic compass). The

data from these sensors are stored in the database to improve localization in the

future; this project does not use the data to augment position data.2

Improved Hardware Reliability

The hardware for each BTS node was based on a Mini-ITX motherboard with

daughter cards for ad hoc wireless communication. Although such motherboards

are found in amateur automotive-computing applications, deployed bus nodes

showed more early failures than expected. Figure 1.2 shows the number of avail-

able BTS bus nodes over time.

Briefcase nodes of the SCORPION testbed use similar motherboards, and I

have discovered that those nodes often crash when their electromechanical connec-

tions are flexed. Based on this experience, I am reluctant to redeploy the original

BTS node hardware in BTS 2. Instead, bus nodes for BTS 2 adopt construction

techniques more like those used in industrial and automotive electronics, elim-

2While the original prototype node has accelerometer and magnetometer features, evaluation
of its archived data showed us that neither the accelerometer nor the magnetometer provide
sufficiently precise data to disambiguate GPS offset errors. Consequently, the production nodes
save cost by omitting these hardware modules. That said, each production bus node has sockets
for these two sensors should they be wanted in the future.
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inating electromechanical connections whenever possible. Consequently, BTS 2

nodes are constructed using custom printed-circuit boards (PCBs) and through-

hole and gull-wing surface-mount device packages. The leads of such packages

absorb the stresses that PCBs experience due to thermal and mechanical shocks

thereby avoiding connection disturbances.

Figure 1.2: Number of available BTS bus nodes vs. time. Each individual node is
continuously available from its first appearance in the tracking database through
its last. All nodes were deployed during the summer of 2009. Most had been
removed from retiring shuttles by the following summer.
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1.2.2 BTS 2 System Components

These are the most significant differences betweens the BTS and BTS 2 imple-

mentations:

• The BTS 2 bus node adds a route sign and a route selector.

• The BTS bus node has a single CPU which performs all tasks, but tasks of

the BTS 2 bus node are performed on three separate CPUs.

The rest of this section describes the BTS 2 system components.

As shown in Figure 1.3, each bus has a Front Route Sign and a Route Selector3.

The Front Route Sign sends data wirelessly to nearby base stations. Base stations

store any received data in the database. The Web Server retrieves information

from the database and provides it to riders’ web browsers and smart phones. At

any time, TAPS can reprogram a bus’s Route Selector with new messages by

attaching a Route Programmer to it (not shown).

Front Route Sign

The front route sign contains the following electronics:

• 13×64 LED message display. (Figure 1.4) The buses’ old route signs are

16×112 flip-disc displays. While it would have been possible to replace these

signs with identically sized LED signs, I know that usually only the central

regions of the signs are used. To reduce the cost of the new signs, I chose

a smaller array. Although the smaller LED array displays shorter static

messages, longer messages can be displayed through right-to-left scrolling.

3The optional Side Route Sign and optional Rear Route Sign are not part of this project,
but a connector on the Front Route Sign allows daisy chaining data signals to these signs in the
future.
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• Sign Controller (Figure 1.5) with a 900-MHz Aerocomm wireless radio, a

GPS receiver, an accelerometer (optional), and a digital magnetometer (op-

tional). The microcontroller retrieves GPS-position coordinates and sensor

data and sends it along with the bus’s numerical ID, its route name, and a

checksum to any listening Base Station.

• Testbed CPU (Figure 1.6, optional) with 2.4-GHz ad hoc wireless link.

The testbed CPU can be programmed over the 2.4-GHz link.

The Front Route Sign receives power from the vehicle (and the Route Selector

receives power from the Front Route Sign). The optional testbed CPU receives the

Front Route Sign

Route Selector

(inside)

900 MHz

Signal

Base

Station

Base

Station

Database

Server

Web

Server

Figure 1.3: BTS 2 System Block Diagram. Only two of the system’s five base
stations are shown.
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Figure 1.4: LED PCB. One of two identical PCBs in the LED Message Display.
These are mounted in the sign enclosure with the LEDs facing forward.

Figure 1.5: Sign controller. This board is mounted in the sign enclosure with its
back facing forward so that the mounted components are not visible through the
sign window.
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Figure 1.6: The Testbed CPU board of the route sign provides mounting holes
for a future testbed CPU. (The Testbed CPU board is just an unpopulated Sign
Controller board.

most recent GPS coordinates from the supervisor microcontroller and in exchange

sends its status updates to the supervisor microcontroller.

Route Selector

The Route Selector (Figure 1.7) is mounted within reach of the seated bus driver.

It has a mind-numbingly simple interface: twist a knob to change the route mes-

sage. The selected message always is shown on the Route Selector’s display and on

the Front Route Sign. Using non-volatile memory the Route Selector remembers

the message that was most recently displayed and will cause the Front Route Sign

to redisplay that message after power is cycled.
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Route Programmer

The Route Programmer is a sort of “master” Route Selector: TAPS fleet man-

agement can edit messages that are on the Route Programmer, and then at any

point, TAPS can copy the new messages to any Route Selector by plugging the

Route Programmer into the Route Selector using a short cable.

Base Station

BTS 2 Base Stations (Figure 1.8) use the same radios and roof antennas as the

BTS base stations, but they refresh the compute hardware from hard-drive-based

Mini-ITX computers to Raspberry Pis with solid-state memory cards. In addition,

base-station software has been completely updated.

Figure 1.7: Route selector.
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Database Server

The BTS 2 database contains a table that records the current location of each

bus. Compared to the BTS database, this table adds columns for acceleration,

compass heading, and for the bus’s route name4. Other tables that define the

bus routes and the expected inter-bus-stop delays were added to support arrival

predictions.

This database is updated by the five on-campus base stations, and it is queried

4Columns for acceleration and the compass heading were used by the prototype, but since
the production nodes omit the accelerometer and the magnetic compass, these two columns now
are ignored.

Figure 1.8: Base station.
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by a daemon that creates an XML file of shuttle locations5.

Web Server

We can use the BTS Web Server nearly unchanged. In the prototype, arrival pre-

dictions are static, based on a simple table. The database archives all information

so that a future project can compute predictions dynamically.6

5In the production version of BTS 2, a JSON file is created instead of an XML file.
6The arrival-prediction algorithms have not yet been migrated from the old “skynet” server,

which suffered a hardware failure, to the new VM-based UCSC IT-maintained server.
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Chapter 2

Design of the Bus Node

This chapter details the design of the vehicle portion of the BTS 2 system, in

particular, the Front Route Sign, the Route Selector, and the Route Programmer

(Figure 2.1). Each of these parts uses its own firmware-controlled microcontroller,

and so in the sections that follow I discuss both the hardware design and the

firmware organization.

2.1 Front Route Sign

The Front Route Sign is constructed using three custom printed-circuit boards

(PCBs), two custom fiberglass panels, a 900-MHz radio, a GPS receiver, and an

optional testbed processor. The sign reuses the aluminum enclosure from the bus’s

old route sign. See Figure 2.2.

2.1.1 Enclosure

(Figure 2.2, item 1.) Each of the TAPS buses already has a flip-disc[40] route

sign. But since these signs are difficult to program and nearly unreadable at
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night, TAPS plans to replace them. To control the project’s cost, BTS 2 reuses

the old signs’ aluminum enclosures. In reusing the enclosures, the BTS 2 project

replaces each of the old sign’s four flip-disc modules with four replacement PCBs

that have the same dimensions but improved or different functions. I describe the

replacement PCBs next, in Sections 2.1.2 and 2.1.3.

2.1.2 Fiberglass Mounting Panels

The two outermost flip-disc modules of the old route sign are replaced with bare

fiberglass panels (Figure 2.2, item 2). These panels have no circuit traces. In-

stead they support other parts of the sign. Viewed from the rear, the leftmost

panel supports the Control PCB, the 900-MHz radio, and the GPS receiver. The

rightmost panel supports the optional testbed processor. Pairs of these panels

are fabricated by a PCB company by etching all of the copper foil from both

GPS Receiver

900-MHz

Radio

From GPS Satellite(s)

To Base Stations

P
o

w
e

r

D
a

ta

24-V Power Front Route Sign

Route Selector Route Programmer
(temporary connection)

Figure 2.1: Block diagram for bus.
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sides of a raw 18-in × 24-in × 0.093-in PCB panel and routing it into the two

16.8 in× 10.85 in bare fiberglass mounting panels. While it would have cost less

to use unetched copper-clad fiberglass panels, leaving the copper in place would

have attenuated the radio signals of the sign (900 MHz, GPS, and WiFi).

2.1.3 LED PCBs

The two innermost flip-disc modules of the old route sign are replaced with LED

PCBs (Figure 2.2, item 5). These PCBs together form a 13× 64 regular array of

LEDs for displaying route names. This part of the sign is “dumb”: it’s merely a

peripheral and lacks its own CPU. Another part, the Control PCB, provides the

sign’s intelligence. The Control PCB is described later in Section 2.1.4.

1

2

3

4

5 5

6

2

7

Figure 2.2: New Front Route Sign: rear view, exploded diagram. (1) Aluminum
enclosure with transparent window. (2) Fiberglass mounting panel (2×). (3) Con-
trol PCB. (4) 900-MHz radio and GPS receiver. (5) LED PCB (2×). (6) Testbed
Processor. (7) Wiring harness.
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Design of the LED PCB

Each LED PCB holds 416 LEDs, organized into 13 rows and 32 columns. Aside

from power and ground, the only connections to the LED PCB are through a

50-pin ribbon-cable connector.

5-V Logic Supply

3.3-V LED Supply

Data/Addr/Ctrl

Figure 2.3: LED PCB connections.

The PCB’s control interface is simple: change any column of LEDs on the

board by providing the column’s data and address and strobing a latch-enable

signal. Figure 2.4 defines the pinout of the ribbon-cable connector, and Figure 2.5

describes the PCB’s basic logic. (PDFs of the LED PCB’s full logic schematic

can be found in the Supplemental Files listed in the table on page 84.)

Layout of the LED PCB

The LED PCBs have an unusual layout. While most PCBs have only a few physi-

cal constraints, such as the overall dimensions and the locations of mounting holes

and connectors, the LED PCBs fix the positions of almost all of the components

because the LEDs must form a visible, regular matrix. These are the constraints

that the LED PCBs must meet:

1. Proper physical dimensions, including thickness. To fit in the alu-

minum enclosure, the LED PCBs must have the same dimensions as the
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PCBs of the flip-disc modules, which are 16.8 in× 10.85 in× 0.093 in.

2. Maximum PCB size. All PCBs are fabricated in batches by arraying

them on standard-sized raw PCB panels. Comparing the sizes of panels

and PCBs, it appears that two LED PCBs can be arrayed on a standard

18-in×24-in raw panel, but there is further consideration. Panel-fabrication

steps require leaving a 0.5-in border on a two-layer panel or a 1-in border on a

multi-layer panel[6]. And assuming that fabrication uses a 0.1-in router bit,

the two PCBs on the raw panel are separated by 0.1 in. These constraints

limit the maximum size of a multi-layer LED PCB to 16.00 in × 10.95 in

(because 1 + 16 + 1 = 18 and 1 + 10.95 + 0.1 + 10.95 + 1 = 24). For

a two-layer LED PCB, the maximum size is 17.00 in × 11.45 in (because

0.5 + 17 + 0.5 = 18 and 0.5 + 11.45 + 0.1 + 11.45 + 0.5 = 24).

3. Cost-conscious fabrication. Since it has fewer fabrication steps, a two-

layer PCB costs less than a multi-layer PCB of the same size[5, 6]. Conse-

quently, as long as the dimensions of a PCB are fixed, using a two-layer PCB

Pins 9, 11, 17, 19, 21 A[4:0] Column addr
Pins 7, 5, 13, 3, 15, 1, 23, 49, 25, 47, 27, 45, 35 D[12:0] Column data
Pin 33 ALE Latch enable
Pin 29 OE Output enable

Pin 31 OEN Output enable
Pins 2, 4, 6, ..., 50 GND Signal ground

▽

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 2.4: Pinout of the LED-PCB ribbon-cable connector. The ▽ symbol on the
connector denotes pin 1. Every other conductor of the ribbon cable is connected
to GND.
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Figure 2.5: One column of the LED PCB logic. While holding the latch enable ALE
inactive, write the column address to A[4:0] and the column data to D[12:0].
Then strobe ALE active momentarily to write the column data. The LEDs will
display the data immediately. Note that since the driver is connected to the LED’s
cathodes, a data bit value of 0 turns the LED on, and a data bit value of 1 turns
the LED off. Immediately after power up, be sure to set the global signal OE = 1
and OEN = 0 to enable all drivers.
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is preferred to reduce cost. In addition, since PCB fabrication costs depend

on the number of PCBs that can be arrayed on a raw panel, if possible, it

is best to choose PCB sizes that array fully.

4. Proper physical spacing of LEDs. Since there are 32 LEDs per row

on the LED PCBs, the physical pitch of the LEDs in each row must be

16.8 in÷ 32 = 0.525 in. It is desired—but not necessary—that the physical

pitch in each column also is 0.525 in.

5. Adequate trace size and spacing. PCB-fabrication yield is affected

by the sizes of the PCB’s traces and the amount of space between them.

Finer features are more susceptible to fabrication errors due to contamina-

tion. Therefore, using larger traces and spaces can improve PCB-fabrication

yields[44]. Unnecessarily fine features should be avoided.

6. Device packaging that tolerates temperature extremes. The LED

PCBs are mounted in an outdoor windowed enclosure, and so they will be

“cooked” in the summer and “frozen” in the winter! For PCB-layer stability,

I use through-hole packages because thermal expansion of surface-mount

packages can sheer the printed traces off of the PCB1. (I am aware that

gull-wing surface-mount packages do not exhibit sheer problems, but the

PCB layout appears to benefit from the large lead spacing of through-hole

packages.)

7. Adequate power routing. Each LED PCB can draw as much as 8.32 A

(416 LEDs× 20 mA/LED). Power routing on the board must be sufficient

to avoid large voltage drops that would cause variations in LED brightness

1Actually, it’s differential thermal expansion that is important: the difference in the expan-
sion of the package and the PCB that it is attached to.
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or malfunctions of the driver chips. One can simplify the design of power

routing using dedicated power planes, whose use requires four or more layers

in a PCB, or one can add external sheet-metal power strips.

Considering all of these constraints, I conclude the following. Constraints 1

and 2 imply that a standard 18-in× 24-in raw panel can provide just one multi-

layer PCB or two, two-layer PCBs. So to limit costs (constraint 3) I must use

a two-layer PCB. Constraints 4 and 5 eliminate room between the LEDs and

force the drivers to the top and bottom edges of the PCB. Constraint 6 leads to

using through-hole devices.

The consequences of constraints 1 through 6 are straightforward, but then I

am left with constraint 7. When all of the through-hole devices are connected by

adequately sized PCB traces, there is not much room in the PCB layout for power

routing.

Power Routing Three options are available for routing power in the LED PCB.

Here they are presented, and the choice is justified. The first option is to route

power using 1-oz copper traces. With this option, to minimize total voltage drop,

we would drive the power traces from the middle of the board and drive the

ground traces from the ends. Then the PCB areas farthest from the power source

are closest to the ground source, and vice versa, equalizing each LED’s applied

voltage. The second option is the same as the first, but instead use 2-oz copper

foil, which has half of the R� (“square resistance”) or 1-oz copper foil. The third

option is to route power through sheet-metal strips with multiple connections

along the PCB.

Computations that justify my power-routing decision are in Section A.2 of the

Appendix. Using 1-oz copper traces is inadequate. Using 2-oz copper traces would
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be adequate, but the boards would cost more. Instead, I prefer using copper strips

because power cables need to be connected between the PCB’s anyway.

Computer-Aided Design I created the LED PCB design using EAGLE 6.2.0

Professional Edition schematic and PCB-layout software. I note that since most

components require exact physical locations on the PCB, I placed nearly all of

the design’s components algorithmically before routing the traces. My approach

was to write an AWK program that generates a text script file for EAGLE which

places and rotates each component correctly. Then I used EAGLE’s Follow-me

router to route the nets. Although EAGLE has a full Autorouter, I was not able

to successfully use it on this project with the amount of time that I devoted to

the effort (without manual configuration, the Autorouter was unable to route the

board completely). Using the Follow-me router actually was sufficient.

PDFs of the LED PCB’s logic schematic and PCB layout can be found in the

supplemental files on page 84.

2.1.4 Control PCB

Below I detail the design and implementation of the route sign’s Control PCB.

Design of the Control PCB

The Control PCB has the overall connections shown in Figure 2.6 below. It

provides the system’s power supply, it’s main microcontroller, and connections to

other PCBs and peripherals.

Power Supply The Control PCB has a custom power-supply circuit. Table 2.1

summarizes the route sign’s power supply’s requirements. The power supply draws
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from the bus’s 24-V unregulated electrical system and generates three regulated

voltages. The sign’s 832 LEDs use the 3.3-V supply, with each illuminated LED

drawing 20 mA, for a maximum LED current of 16.64A. (Although the sign’s

firmware never should illuminate all LEDs of the sign simultaneously, the power

supply is designed to support this state.) The system’s low-power CMOS digital

circuitry draws an insignificant amount from the 3.3 V supply as well. The gates

of the CMOS LED drivers use 5.0 V. Finally, the 900 MHz radio and the testbed

processor require 12.0 V.

Considering the power supply’s input voltage, understand that an automotive

electrical environment is unexpectedly harsh. While a designer can ensure that a

DC-to-DC power converter will operate properly over a range of battery voltages

(from a low voltage when the battery is cranking the starter motor to a high

voltage when the battery is being charged), such a battery-centric view of the

design space fails to reveal worse circumstances. For example, the 24-volt battery

of a bus could become disconnected while the engine is running. Then the bus’s

24 V

from Route Selector
Control PCB

from GPS Receiver

to/from Research Processor

to Side Sign (optional)

3.3 V,  5 V,  12 V

to LED PCBs

to 900-MHz Radio

Figure 2.6: Control PCB connections.

Input* 24 V @ 3 A
Output 3.3 V @ 17 A
Output 5.0 V @ 200 mA
Output 12.0 V @ 6 A

Table 2.1: Power Supply Requirements. *Note: the 24-V specification is nom-
inal. The power supply should accept voltage from a normally operating 24-V
automotive electrical system of a commercial vehicle.
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electrical system would be driven by the unloaded alternator, causing the system

voltage to exceed that of a charging battery. Or worse, consider the consequences

of a short circuit that blows a fuse. The long supply wire that leads to the short

circuit is not a perfect conductor: it’s an inductor. The opening of the circuit’s fuse

causes a rapid drop in current which induces a huge voltage along the inductive

supply wire. I hold that all of a vehicle’s powered accessories, including this

project’s route sign, should be designed to survive exposure to voltage transients

such as these.

The International Organization for Standardization publishes standard ISO 7637-2,

which covers transients along power lines in automotive vehicles[10]. The Control

PCB’s power supply is designed for immunity to the worst-case transients of this

standard: −600 V and +227 V. (See Test Pulse 1 and Test Pulse 3b in [10].)

To meet this specification, the power supply is split into three separate parts,

each of which provides a specific function: under-voltage protection, over-voltage

protection, and voltage conversion/regulation. See Figure 2.7.

Figure 2.7: Block diagram of power supply.

The under-voltage protection (UVP) circuit simply blocks negative voltages.

This circuit is a series-connected 600-V, 12-A Schottky diode. Mounted to a heat
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sink, the diode can conduct current sufficient to power the route sign. The UVP

circuit feeds the over-voltage protection (OVP) circuit.

The OVP circuit protects the voltage converter/regulator from voltages that

exceed the upper limit of the converter’s allowed input range. The OVP circuit

is based on the MAX6495 integrated circuit by Maxim Integrated Products[21].

The MAX6495 controls an N-channel MOSFET based on the voltage presented

to a simple resistor-divider network. When the OVP circuit’s monitored input

voltage is within the range allowed by design, the MAX6495 pumps the MOS-

FET’s gate to a voltage sufficient to turn it on strongly. If the OVP circuit’s

input voltage exceeds the circuit’s design limit, the MAX6495 immediately turns

off the MOSFET by pulling its gate to 0 V.

Computations for the OVP circuit design are summarized in Section A.1 of the

Appendix. (A full Excel file for the computations is included in the Supplemental

Files listed in the table on page 84.)

The OVP circuit is connected to a set of commercially available DC-to-DC

voltage converters/regulators. The converter network functions when the output

of the OVP is at least 18 V [18] and [19]. Since the actual voltage of a “24-V”

vehicle battery is 27 V and the UVP-circuit diode and the OVP-circuit MOSFET

together drop voltage only slightly (less than 2 V total), during normal operation,

the power supply’s input voltage is more than sufficient to power circuitry on the

route sign and all other PCBs.

Microcontroller The route sign must perform five tasks: accept instructions

from the route selector, read sensor data, control the sign’s LED display, commu-

nicate with the testbed processor, and send radio transmissions. The Control PCB

performs all of these tasks using a microcontroller and a number of peripherals.
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Figure 2.8: Pinout of the Control PCB’s microcontroller.

The route sign is controlled by an Atmel AT32UC3B064 32-bit microcontroller

with 64K bytes of Flash memory[3]. This integrated circuit includes not only a

CPU and Flash memory but also on-board RAM, several peripherals, and 44 I/O

pins. Among the microcontroller’s on-board peripherals, the route sign uses the

I2C controller, all three of the USARTs (Universal Synchronous/Asynchronous

Receiver/Transmitter serial ports), the timer, and the GPIO controllers (General-

purpose Input/Output pin controllers). Figure 2.8 shows the microcontroller’s

pinout. Various peripherals are connected as described below.

General-Purpose I/O General-purpose I/O pins (GPIOs) can be driven

high and low under firmware control. Almost all of the GPIOs control the route

sign’s pair of LED PCBs through microcontroller ports PA and PB (see Figure 2.9
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and Table 2.2).

The Control PCB drives the LED PCBs through a ribbon-cable wiring har-

ness. To ensure signal integrity, the microcontroller’s GPIO pins are not connected

directly through ribbon cables to the drivers on the LED PCBs. Such a direct

connection must be avoided for two reasons. First, the microcontroller generates

3.3-V-level outputs while the LVC CMOS-based LED drivers require 5-V-level

inputs (specifically VIH ≥ 3.85 V). Consequently the design passes the micro-

controller’s signals through a set of SN74LVC4245A active 3.3-V–to–5-V level

shifters[32].

Second, directly connecting the level shifters’ 24-mA drivers to ribbon cables
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Figure 2.9: Ports PA and PB of the Sign Controller.

D[12:0] Column data. Bit 0 is at the top of each LED PCB.
A[4:0] Column address; word 0 is on the left* edge of each LED PCB.
ALE0 Selector for left-hand* LED PCB.
ALE1 Selector for right-hand* LED PCB.
OEN Must set to 0 to enable all LED drivers†.
OE Must set to 1 to enable all LED drivers†.

Table 2.2: Port PA and PB bit functions. *Note that the left and right edges of
the LED PCB are defined when looking at the LED side of the PCB. †Note that
enabling the LED drivers requires both OE = 1 and OEN = 0.
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would result in an impedance mismatch and cause the signal waveforms at the

LED drivers’ inputs to overshoot and undershoot. Since the LED drivers are

CMOS devices, their inputs must not be driven above VSS or below GND by

more than a diode drop.

It is easy to match the impedance of a driver to that of a ribbon-cable wire us-

ing source termination[15] (that is, driving each signal of the ribbon cable through

a matching resistor). See Section A.3 of the Appendix for the design computations

performed to select the value for the termination-resistors.

Connectors

LED-PCB Connectors The two ribbon-cable connectors of the Control

PCB, J9 and J10, share the same pinout, shown in Figure 2.10.

Pins 9, 11, 17, 19, 21 A[4:0] Column addr
Pins 7, 5, 13, 3, 15, 1, 23, 49, 25, 47, 27, 45, 35 D[12:0] Column data
Pin 33 ALE0/ALE1 Latch enable
Pin 29 OE Output enable

Pin 31 EON Output enable
Pins 2, 4, 6, ..., 50 GND Signal ground

▽

49 47 45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 2.10: Pinout of the two ribbon-cable connectors J9 and J10. The ▽ symbol
on the connector denotes pin 1. Every other conductor of the ribbon cable—
and hence every even-numbered connector pin—is connected to GND. Note that
corresponding signals on both connectors are logically the same except for Pin 33
which is ALE0 on J9 and ALE1 on J10.
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GPS-Receiver Connector Localization is performed by a Pharos GPS-500

Global Positioning System receiver. This device generates NMEA 0183 messages

over an asynchronous serial data line at 4800 bps[29]. The serial data pin of the

GPS receiver drives the microcontroller’s USART1 RXD input via device pin 25.

(USART1’s corresponding TXD output on device pin 24 remains unused, but it

is routed on the PCB to a test point labeled PB2 for potential future use.)

The GPS receiver is powered by the Control PCB through its data connector

J13. The connector’s pins are defined in Figure 2.11. The GPS receiver’s wiring

diagram is shown in Figure 2.12.

The microcontroller extracts latitude and longitude from the GPS receiver’s

GGA message sentences. See [29] for the sentence format.

Connector J13 Pin Purpose Wire color
1 3.3-V power to GPS Red
2 Data from GPS Blue
3 GND Black

Figure 2.11: Pinout of the board connector to the GPS receiver.
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Figure 2.12: Wiring diagram for the custom Pharos GPS-500 cable. Solder three
wires to the circuit board of the GPS-500 receiver and insert them in the TE
640441 connector as shown.
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900-MHz–Radio Connector Communication with 900-MHz base stations

on campus is provided by an AeroComm CL4490-1000 RF transceiver[1]. The

microcontroller sends 9,600 bps serial data from its USART2 TXD output on

device pin 61, through a MAX3232CSE RS-232 level shifter and a DE-9M PCB-

mounted connector, and over a cable to the CL4490-1000 RS-232 serial input.

The radio connector’s pinout is in Figure 2.13.

Pin 3 TXD to radio
Pin 5 GND

9 8 7 6

5 4 3 2 1

Figure 2.13: Pinout of the Control PCB’s RS-232 connector for the 900-MHz
radio.

JTAG Connector One can program the microcontroller of the Control

PCB over a 2-pin × 5-pin JTAG connector. This connector remains accessi-

ble through an access door when the Route Sign is installed in the bus, and

so a firmware update, should one become necessary, is possible. The connector

follows the pinout that is required by the Atmel AVR ONE! device program-

mer/debugger.

Route-Selector Connector The Route Selector receives 3.3-V power from

the Control PCB and returns differential RS-422 serial data that indicates the

selected message. Communication and power use connector J2, whose pinout is

shown in Figure 2.14.
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Pin 1 RS-422 Data IN (+)
Pin 2 3.3 V out
Pin 3 (not connected)
Pin 4 RS-422 Data IN (−)
Pin 5 GND
Pin 6 (not connected)

3 2 1

6 5 4

Board Edge

Figure 2.14: Pinout of the connector to the Route Selector.

Side-Sign Connector This project supports future Side and Rear signs.

The control data from the Route Selector loops through the Control PCB to a

three-pin connector. Either a 100-Ω termination resistor connects the differential

data signals of this connector (pins 1 and 2), or the connector drives a cable that

sends data to the Side Route Sign. The pinout of the side sign’s connector is

shown in Figure 2.15.

Pin 3 GND
Pin 2 RS-422 Data OUT (−)
Pin 1 RS-422 Data OUT (+)

3

2

1

Board Edge

Figure 2.15: Pinout of the connector to the Side Sign.
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Testbed-Processor Connector The route sign’s microcontroller can com-

municate with the testbed processor over a full-duplex RS-232 port on USART0.

Through TXD the route-sign microcontroller sends the bus’s GPS location to the

testbed processor, and through RXD the testbed processor returns status mes-

sages. RXD is on device pin 57 and TXD is on device pin 58. See the connector

pinout in Figure 2.16.

Pin 2 RXD from testbed processor
Pin 3 TXD to testbed processor
Pin 5 GND

9 8 7 6

5 4 3 2 1

Figure 2.16: Pinout of the RS-232 connector to the testbed processor.

Sensors The Sign Controller includes an option to attach two sensor modules

whose data can be sent to the base stations. The data provided by the sensors may

improve the accuracy of arrival-time predictions. In addition, one of the sensors

provides system temperature readings that can be used during the prototype

phase to confirm that the route sign needs no additional thermal management.

The inclusion of sensors is motivated by archive data from the BTS project that

shows significant GPS offset errors in heavily wooded areas along Heller Drive

and McLaughlin Drive between Rachel Carson College and the Baskin School of

Engineering. Likely these errors are caused by tall trees attenuating GPS satellite

transmissions and preventing position fixes based on the required four satellites.

Since GPS reception cannot be improved, in an earlier project I attempted

to compensate for these GPS offset errors using a Kalman filter. I discovered
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that changes in the offset error are indistinguishable from bus acceleration when

the direction of the offset error is parallel to the road. Consequently, additional

information is needed.

To help disambiguate acceleration and changes in offset errors, the first op-

tional sensor is an MMA7361L accelerometer by Freescale Semiconductor[11]. The

accelerometer is mounted with its +X axis pointed right, its +Y axis pointed

down, and its +Z axis pointed forward. Its data are read through three of the

microcontroller’s analog inputs as shown in Table 2.3.

Axis Microcontroller Pin
X PA8
Y PA30
Z PA31

Table 2.3: Accelerometer connections.

Since the MMA7361L maps an acceleration range of [−1.5 g,+1.5 g] into a

voltage range of [0 V, 3.3 V], one obtains accelerations in g’s by converting the

accelerometer’s X, Y, and Z pin voltages using Equation 2.1.

g =
voltage− 1.65

1.1
(2.1)

The second optional sensor directly determines the orientation of a bus, and

therefore its direction of travel. Although one could use changes in a bus’s GPS

position to determine the bus’s orientation, this technique fails when the bus is

stopped. Therefore, the Sign Controller includes an optional Freescale Semicon-

ductor Digital Magnetometer[12]. The MAG3110 is mounted with its +X axis

pointed up, its +Y axis pointed right, and its +Z axis pointed backward. Its data

are accessed through the microcontroller’s I2C interface with 7-bit address 0x0E.
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EEPROM The Control PCB stores one small data value: a unique Bus ID.

To store this value, the Control PCB includes a 256-byte AT24HC02B EEPROM

by Atmel. The EEPROM is connected to the microcontroller’s I2C interface and

uses the 7-bit I2C address 0x50.

Layout of the Control PCB

The layout of the Control PCB is entirely conventional. Unlike that of the LED

PCBs, where nearly all components of the LED PCBs have exacting physical-

placement requirements, the components of the Control PCB have no such con-

straints, aside from a few power connectors and the corner mounting holes. In

addition, while the overall dimensions of the LED PCBs need to be identical to

those of the PCBs that they replace in the sign enclosure, the Control PCB has

no specific dimensional requirements.

The two relaxed layout constraints mentioned above are items 1 and 4 of the

LED PCB’s enumerated list. Since the remaining items can apply, I review the

list next.

1. Proper physical dimensions, including thickness. Does not apply to

Control PCB. I am free to use ordinary 62-mil material.

2. Maximum PCB size. Given a maximum panel size, the individual PCBs

that are cut from the panel have natural sizes themselves, just as the LED

PCBs do. Looking at preliminary layouts for the Control PCB, I chose a

PCB size that just arrays eight times per panel. Any reduction in size that

fails to increase the number of PCBs per panel is unnecessary.

3. Cost-conscious fabrication. I am able to use a two-layer PCB instead of

a multi-layer PCB. The layout of the PCB is sufficiently loose that there is
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room for power routing.

4. Proper physical spacing of LEDs. Does not apply to Control PCB.

5. Adequate trace size and spacing. As with the LED PCB, I use trace

widths and spaces that do not push manufacturing limits.

6. Device packaging that tolerates temperature extremes. As with

the LED PCBs I use through-hole device packages. I also use several gull-

wing surface-mount packages: their lead flexibility should prevent trace-

delimitation problems from differential thermal expansion. One device on

the PCB is in a non-gull-wing surface-mount package (the MAX6495 OVP

circuit controller). This device is available only in a “QFN” package (a small

rectangular package with no pins—just bottom pads). As I have explained,

I avoid such packages for PCB-reliability reasons, but the package’s small

3-mm×3-mm size makes the magnitude of any differential thermal expansion

small and unlikely to cause problems.

7. Adequate power routing. While the Control PCB does not have 416

LEDs, it does power them (actually it powers 832 LEDS, as well as sev-

eral 5-V and 12-V devices). The looseness of the PCB layout allows power

routing through “copper pours,” which are regions of mostly copper. This

layout technique reduces the “squares” of the power-supply traces substan-

tially: for the unregulated 24-V, 3-A power input N� < 2; for the 3.3-V,

17-A LED supply N� < 0.4; and for the 12-V, 6-A supply N� < 6 (which

is adequate given that it powers devices with regulated switching supplies

themselves).
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Computer-Aided Design As with the LED PCB, I created the Control PCB

design using EAGLE 6.2.0 Professional Edition schematic and PCB-layout soft-

ware. All gull-wing surface-mount devices are mounted on the same side of the

PCB to avoid needing to apply solder to both sides. As with the LED PCB,

I found that it was best to use the Follow-me router to route the PCB traces

manually. Figure 2.17 is a photograph of the top of the Control PCB.

2.1.5 BTS 2 Front-Sign Firmware

Requirements

The BTS and BTS 2 bus nodes perform different sets of tasks. While the GNU

Linux PC of BTS ran testbed algorithms, the BTS 2 route-sign processor controls

the LED display, communicates with the route selector, two sensors, the testbed

processor, and the EEPROM memory.

Consequently, just as with the BTS CPU, the BTS 2 sign controller also must

run multiple tasks simultaneously. See Table 2.4.

Controller
Task BTS BTS 2
Accept data from GPS receiver • •
Send data to digital radio • •
Run testbed algorithms • ◦
Control LED display ◦ •
Accept name changes from Route Selector ◦ •
Poll accelerometer and magnetic compass ◦ •
Accept status messages from testbed processor ◦ •
Update bus-ID of EEPROM when instructed ◦ •

Table 2.4: Controller task comparison. BTS bus nodes used a GNU Linux PC,
while BTS 2 bus signs are controlled by a microcontroller-based embedded system.
In BTS 2, testbed algorithms run on a dedicated testbed processor.
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Figure 2.17: Control PCB.
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BTS 2 Real-Time Task Management

The BTS 2 route sign’s firmware does not use an RTOS (real-time operating

system) or scheduler. Instead, it manages its real-time computations using a

cyclic executive[17, pp. 75–78]. This approach is not unusual. Results of the EE

Times 2012 Embedded Market Survey show that a third of embedded systems

projects lack an operating system or scheduler of any kind[34, slide 25].

An embedded system like BTS 2 can perform real-time computations without

a real-time operating system by following three specific design principles[9].

Principle 1. To ensure that tasks are completed on-time, one must design

for the peak load instead of the average load2. Microcontrollers of the bus node

receive periodic input events that have limited arrival rates or that come from

sensors whose values are queried at a fixed rate by the microcontroller itself.

Consequently, task scheduling can be static rather than dynamic, meaning that

several features of RTOSes can be ignored as unnecessary complications.

Principle 2. Given predictable, periodic events, one can split event servicing

into “hard real-time” and “soft real-time” portions. A hard real-time computation

is one whose deadline cannot be missed without causing a catastrophe. Retrieving

data from a serial-port peripheral before the buffer overruns is an example of

avoiding an embedded-system catastrophe. A soft real-time computation is one

whose completion time affects just performance, such as updating the message on

the LED display.

Given these two definitions, consider processing characters from an I/O device.

Split the processing like this: a small hard real-time interrupt routine moves one

2This idea is captured by the wry remark, “Then there is the man who drowned while crossing
a river with an average depth of six inches.” On page 7 of [9] this quote is attributed to the
notes of John Stankovic. John Stankovic, and many on the World-Wide Web, attributes it to
W.I.E. Gates. But the identify of W.I.E. Gates remains elusive.
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character from the single-byte hardware buffer into a longer, multi-byte software

buffer, and then a lower priority soft real-time routine processes the string of the

multi-byte buffer. The only connection between the two portions is that the hard

real-time part activates the soft real-time part through the existence of characters

in the multi-byte buffer[9, page 16].

Principle 3. The third principle that allows real-time computations with-

out an ROTS is to ensure processing predictability. One should avoid hardware

features that help the average case at the expense of the worst case, for example

DMAs and caches. This recommendation is easier to follow when using a 32-bit

microcontroller because such devices lack advanced hardware features but have

sufficient performance. Although using a single processor helps predictability, one

can use multiple processors (either symmetric or asymmetric) as long as each one

performs a predetermined set of tasks (static scheduling). The dynamic scheduling

of symmetric multiprocessing (SMP) would cause complications that are better

served by an RTOS, and so lacking an RTOS, it is best to avoid SMP.

On the software side, one should avoid dynamic data structures, demand pag-

ing, and recursion. One can (and should) prefer loops with a predetermined upper

bound on the number of iterations. Also, one needs to ensure that soft real-time

tasks are interruptible, and one should reduce interrupt service routines to bare

minimums. In addition, one must ensure that the interrupt rate is system-limited

and that interrupts are disabled for only a limited time—if at all.

The microcontroller and firmware of the Control PCB follow the principles

just described: short interrupt routines service I/O, and tasks are implemented

as functions that are called repeatedly from an infinite loop. The microcontroller

overprovisions the system with more than ample memory and performance, since

a 32-bit microcontroller with moderate capabilities is quite affordable.
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2.1.6 Wiring Harness

The Control PCB sends address, data, and control signals to the two LED PCBs

over a ribbon-cable wiring harness (Figure 2.2, item 7). Each of the existing

route signs has four ribbon cables with compatible connectors, at least two of

which appear to have sufficient length to be used in the harness, and so as long

as quality is maintained, I reuse the longest of the old ribbon cables in the new

route signs.

2.2 Route Selector

The bus driver twists the knob of the Route Selector to choose a new message

for the Route Sign. Each click of the knob shows a new message on the Route

Selector’s display and sends the message to the Route Sign over an RS-422 serial

link. (Figure 2.1.)

2.2.1 Enclosure

I have chosen a Hammond Manufacturing 1455J1202BK aluminum enclosure for

the Route Selector. The exposed metal of this model is anodized black to reduce

the glare of the sun from its surface. When one mounts the enclosure in the cab

area of the bus, it should be located for easy access by the driver and oriented so

that the driver can read the message on the LCD.

The enclosure has internals slots that align and hold the Route Selector’s PCB.

47



2.2.2 Route-Selector PCB

Design of the Route-Selector PCB

The Route-Selector PCB has a simple interface: power, rotary encoder, serial data

out, and serial data in. The 3.3-V input power comes from the Route Sign. The

same four-conductor cable that supplies that power also carries serial data back

to the sign to control the displayed message. The position of the rotary encoder is

determined by the states of the encoder’s contacts as sensed by a three-conductor

connection to the PCB. For programming, data from the Route Programmer is

received as serial input data.

The PCB is controlled by a microcontroller that has several peripherals, as

described below.

Power Supply A monolithic power converter creates 5 V for the LCD from the

3.3 V supply.

Microcontroller The Route Selector performs these tasks: determine the po-

sition for the rotary encoder, send selected serial messages to the Route Sign, and

receive a set of new messages from the Route Programmer.

To perform these tasks, the Route Selector uses the same kind of Atmel mi-

crocontroller that is used in the Control PCB of the Route Sign. Among the

microcontroller’s on-board peripherals, the Route Selector uses the I2C controller,

two of the USARTs, the timer, and the GPIO controllers. Figure 2.18 shows the

microcontroller’s pinout. Various peripherals are connected as described below.

General-Purpose I/O The microcontroller’s GPIOs set the LCD message and

read/write other peripherals through ports PA and PB (Figure 2.19 and Table 2.5).
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Figure 2.18: Pinout of the Route Selector’s microcontroller.
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Figure 2.19: GPIO of the Route Selector.

Figure 2.20: Rotary-encoder timing diagram. Clockwise direction.
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LCD-DB[7:0] LCD 8-bit command/data.
LCD-RS LCD register set: 0 = command, 1 = data.
LCD-RW LCD read/write: 0 = write, 1 = read.
LCD-E LCD falling-edge clock.
ENC-A Rotary-encoder phase A.
ENC-B Rotary-encoder phase B.
ENC-SW Optional pushbutton: 0 = pressed, 1 = released.

Table 2.5: GPIO purposes for the Route-Selector PCB.

Connectors

JTAG Connector One can program the microcontroller of the Route Se-

lector over a 2-pin × 5-pin JTAG connector. The connector follows the pinout

that is required by the Atmel AVR ONE! device programmer/debugger.

Route-Sign Connector The Route Selector receives 3.3-V power from the

Route Sign and returns differential RS-422 serial data that indicates the selected

message. Communication and power use connector J2, whose pinout is shown in

Figure 2.21.

Pin 1 RS-422 Data OUT (+)
Pin 2 3.3 V in
Pin 3 GND
Pin 4 RS-422 Data OUT (−)

3 2

4 1

Board Bottom Edge

Figure 2.21: Pinout of the connector to the Route Sign.

50



Route-Programmer Connector The Route Selector drives 3.3-V power

to the optional Route Programmer and receives differential RS-422 serial data that

specifies new EEPROM programming. Communication and power use connector

J3, whose pinout is shown in Figure 2.22.

Pin 1 RS-422 Data IN (+)
Pin 2 3.3 V out
Pin 3 (not connected)
Pin 4 RS-422 Data IN (−)
Pin 5 GND
Pin 6 (not connected)

6 3

5 2

4 1

Board Bottom Edge

Figure 2.22: Pinout of the connector to the Route Programmer.

EEPROM A 256-byte serial EEPROM stores two data structures. The initial

248 bytes of the memory contain a list of route names. The names are represented

as a series of '\0'-terminated strings with the final route name of the list followed

by a second '\0'. The second data structure is the index of the most recently

selected route name. It is stored as a 32-bit unsigned int at addresses 248–251 of

the EEPROM.

Layout of the Route-Selector PCB

1. Proper physical dimensions, including thickness. I chose an enclosure

that has internal PCB-alignment slots, which forces the PCB size to be

4.700 in× 2.933 in× 0.062 in. (These dimensions are the size recommended
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in the enclosure’s product drawing [14] less 0.020 inch in length and width

to allow for PCB fabrication tolerances.)

2. Maximum PCB size. (not applicable)

3. Cost-conscious fabrication. I am able to use a two-layer PCB instead of

a multi-layer PCB. The layout of the PCB is sufficiently loose that there is

room for power routing.

4. Proper physical placement of components. Sides of the 0.125-in-deep

PCB-alignment slots of the aluminum enclosure could touch the copper-foil

traces of the PCB. In the worst case, if power were routed on one side of

the PCB and ground were routed on the other, the metal fingers that form

the slots could cause a short circuit across the power supply! To avoid any

such troubles, all copper is etched back 0.020 inch from any enclosure metal

that contacts the PCB. In addition to trace placement, I must be mindful of

component headroom. The components on the PCB are placed to avoid any

physical obstructions of the enclosure and the rotary encoder that mounts

on it. In addition, the LCD display is mounted so that it just touches the

inside of the enclosure where a windows is cut in the enclosure.

5. Adequate trace size and spacing. As with all other PCBs, I use trace

widths and spaces that do not push manufacturing limits.

6. Device packaging that tolerates temperature extremes. As with all

other PCBs of this project, the Route-Selector PCB uses through-hole device

packages and gull-wing surface-mount packages for mechanical stability over

a wide temperature range.
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7. Adequate power routing. All components of the PCB use little power.

Regardless, copper fills on both sides of the PCB are connected to GND,

and all power traces are at least 2 mm wide.

Computer-Aided Design I created the Route Selector PCB using EAGLE

6.2.0 Professional Edition software. Lessons learned from designing this PCB are

mentioned in the Chapter 5. Figure 2.23 contains photographs of the resulting

PCB.

(a) Top view showing the LCD display, the
RS-422 receiver and transmitter chips, the
serial EEPROM, and connectors for the
JTAG programmer and the rotary encoder.

(b) Bottom view showing the 3.3-V-to-5-V
DC-to-DC converter, connectors J2 and J3,
the microcontroller and its crystal, and the
LCD contrast control.

Figure 2.23: Route selector PCB.

Firmware of the Route-Selector PCB

Undergraduate researcher Ben Cizdziel wrote the initial version of the firmware of

the Route Selector’s microcontroller. I replaced the first version’s interrupt-based

design with a cyclic executive when the interrupt-based design was shown unable
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to handle pushbutton debouncing.

The cyclic executive runs several tasks:

• Sample and debounce the rotary encoder and determine when a new route

name has been chosen.

• Transmit a newly selected route name to the route sign on the serial output

port.

• Receive new EEPROM programming from the Route Programmer on the

serial input port.

• Show the selected route name on the LCD display and animate the scrolling

of long names.

2.2.3 Route-Selector Cable

The pinouts of the cable that connects the Route Sign and the Route Selector can

be inferred from Figures 2.14 and 2.21, which show pinouts of the corresponding

board connectors.

2.3 Route Programmer

The Route Programmer performs two main functions: (1) let TAPS edit a local

copy of the route names and (2) transmit the new route names over a cable to a

bus’s Route Selector. Since the Route Programmer serves additional functions,

its interface has three rotary-encoder knobs instead of one, two pushbuttons, and

two LEDs.
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2.3.1 Enclosure

I have chosen a Hammond Manufacturing 1455J1202 clear aluminum enclosure for

the Route Programmer. Aside from color, this enclosure has the same dimensions

and characteristics as those of the Route Selector.

2.3.2 Route-Programmer PCB

The Route Programmer reuses the Route Selector’s PCB. The PCB lacks sites

for RC networks of two of the rotary encoders and one of the pushbuttons, and it

lacks sites for current-limiting resistors for the two LEDs. These components will

be soldered directly to the LEDs, encoders, and pushbutton. Figure 2.24 shows

the Route Programmer firmware-development prototype in all of its glory.

Firmware of Route-Programmer PCB

The firmware for the Route Programmer is being written by Christopher Villal-

pando.

2.3.3 Route-Programmer Cable

The pinouts of the cable that connects the Route Programmer to the Route Se-

lector can be inferred from Figures 2.21 and 2.22, which show pinouts of the

corresponding board connectors.

2.3.4 Wall Power Adapter

To power the Route Programmer when it is not plugged into a bus’s Route Se-

lector a 3.3-V “wall-wart” style power supply is wired to a connector. The power
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connections to the connector can be inferred from the corresponding board con-

nector in Figure 2.21. The RS-422 data pins 1 and 4 of the connector are left

unconnected.

Figure 2.24: Route Programmer firmware-development prototype.
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Chapter 3

Base Stations and Servers

Figure 1.3 in Chapter 1 shows that the base stations, the database server, and

the web server are connected through a communications network. Information

packets, starting with character strings that are sent over a 900-MHz radio link

from a bus node to a base station, pass between selected pairs of these computers.

This chapter presents the system design and the design and implementation of

the programs that run on these computers. Since I influenced the overall design

of this portion of the BTS system architecture, and since BTS 2 programs are

modifications of the original BTS programs, I present both the BTS and BTS 2

systems here.

I modified this portion of the BTS system for BTS 2 rather than use it un-

changed for three reasons. First, I want to improve usability and tracking quality

by allowing transmission, storage, and analysis of additional data from the bus

nodes (route name, acceleration, and compass heading). Second I want to correct

an unchecked buffer overflow error that I discovered in the BTS base-station code.

Third, I want the system to detect and reject erroneous packets that pass through

the 900-MHz link by adding a badly needed checksum.
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In both BTS and BTS 2 systems, packet processing proceeds in four unsyn-

chronized phases which I define below. The foremost goal of this organization is

to ensure that the web-server load does not affect the loads of the system’s other

computers, although my organization isolates load effects in other parts of the

system, too. Like some kinds of sensor networks, the system uses aggregation in a

hierarchical network to control computational bandwidth as data travels from the

bus nodes to the system’s “sink” (the web server). That said, I must be careful

when using the sensor-network analogy because the system does not form an ad

hoc network for collection of node-location data. The network diameter is fixed.

All data traverses similar paths as it travels through the processing phases:

(Phase 1) Bus node: store GPS coordinates. This event occurs once per second

on a bus node when the GPS receiver sends location data over its wired 4800-baud

link. Only the most recent location is retained; old locations are overwritten.

(Phase 2) Bus node: transmit data to a base station: The bus node periodically

assembles location coordinates into a data string and then transmits the string

over a 900-MHz radio link toward a base station. The base station extracts data

from the data string and writes it into the BTS 2 system’s MySQL database.

Such transmissions are limited to a rate of twenty times per minute for each bus

node. (Phase 3) BTS 2 server: periodically query the database to create an XML

data file of bus locations. Once the XML data file is created, it is written to the

BTS 2 web server. Creation of the XML file occurs every three seconds. (Phase

4) BTS 2 web server: serve the XML file to any desktop and mobile clients that

demand it. The rate of this event depends entirely on the number of clients using

the bus-location data.1

1For the BTS 2 project, Kerry updated the XML-file generation algorithm that ran on the
INRG lab’s “skynet” server. The XML file from this prototype algorithm was served to several
smartphone apps and the bts.ucsc.edu web site. Later, to move these computations off of the lab

58



3.1 Processing on the Base Station

Processing for phase 2 started on a bus node with a data transmission. Phase 2

continues on the base station when the data transmission is received.

3.1.1 Evaluation of the Original BTS

The base-station program

/trunk/basestation/aero.cpp

receives the data transmission from the bus node. The program creates a file

UNIT#.TXT containing the packet data, formatted slightly differently. (Each bus

has its own UNIT#.TXT file on the base station, where # is the bus ID.)

Reading the code, I discovered that the areo.cpp program can suffer from a

buffer overflow because it does not limit the number of received packet characters

that it writes to its buffer. Also, since the packets lack any sort of checksum, the

file UNIT#.TXT may contain data from more than one source, or it may contain

partial data. Archive data in the BTS database’s coordinates table shows that it

is likely that these kinds of receive errors have occurred.

For example, three records have bus IDs of −122 (valid bus IDs are positive),

three records have subversion revisions of −122 (subversion revisions are positive),

four records have latitudes < 4 (should be ≈ 37 for Santa Cruz), and three

records have longitudes > −25 (should be ≈ −122 for Santa Cruz). All of these

records strongly suggest that there has been a misalignment of data during packet

processing.

server, undergraduate Wade “Simba” Khadder and graduate Kevin Abas wrote the production
algorithm and migrated it to UCSC IT-maintained servers. They also switched from an XML
file format to a JSON file format, wrote the Slug Route iPhone and Android apps, and wrote the
bts.ucsc.edu web app. Since all of the production apps access the JSON file, the prototype
XML file generator no longer is running on “skynet”.
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The separate base-station program

/trunk/basestation/btsManager.py

inserts data from the file UNIT#.TXT into the MySQL database using functions

found in btsFunc.py.

A final comment on the original BTS base stations concerns reliability. Occa-

sionally BTS-related daemons on the base stations would terminate. The solution

chosen by the BTS team was to schedule a cron job to reboot each base station

automatically every day.

3.1.2 Improvements for BTS 2

The base stations for BTS 2 use completely new hardware and extensively updated

software. Here are the specific changes made in creating the BTS 2 base stations.

First, to address the BTS base-station reliability problem, I observe that the

base station code relied on a daemon compiled from GCC code and a separate

daemon that interpreted a Python script. Also, some processing was performed

through an sh shell script. Since the quality of any system is the product of its

subsystems’ qualities, it is best to reduce the number of unique subsystems. To

that end, I replaced the sh script and the Python-based daemon with a completely

new GCC-based daemon, thereby eliminating the system’s reliance on a Python

interpreter and on sh scripts. Base-station quality appears to have improved.

I also corrected the BTS base-station’s buffer-overflow bug, and I added code

to parse each data frame and verify the checksum before writing data to the

MySQL database.

60

/trunk/basestation/btsManager.py
UNIT##.TXT
btsFunc.py


3.2 Servers

3.2.1 Evaluation of the Original BTS

In the original BTS system, a daemon on the server (/etc/init.d/xmlManager)

ran a Python program called xmlManager.py. This program queried a MySQL

database table (coordinates_new) which contained current bus coordinates. The

daemon wrote the database information to an XML file (/var/www/bts/coord.xml).

Then an Apache web server process served this XML file to clients that requested

it (as http://skynet.soe.ucsc.edu/bts/coord.xml)2. The Python program

was fairly simple and reliable.

The XML file contained the most recent longitude and latitude of each bus

as well as each bus’s bus ID. A timestamp helped identify active buses. This

information was sufficient to plot active buses on a map.

3.2.2 BTS 2 Server

For BTS 2, the xmlManager.py program remains essentially unchanged, but it

adds columns for each bus’s current route name and its arrival predictions. The

route names come directly from each bus node’s route sign. The arrival predictions

are generated by an additional cron job and script.

To help with arrival predictions, the BTS 2 database adds these new tables:

Table Description
busstops Latitude and longitude coordinates of the campus’s bus stops.
routes Segments of routes and their estimated stop-to-stop durations.
zones2 Latitudes and longitudes of rectangular geofence zones that are

used by the arrival-prediction algorithm.

2The prototype server no longer is running. The production server generates a JSON file at
http://bts.ucsc.edu:8081/location/get .
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Creating arrival predictions is straightforward. A cron job performs these

tasks:3

1. Identify each bus’s location using geofences defined in the zones2 table.

2. Determine the next bus stop and direction of travel for each bus based on

the last three zones that it has passed through.

3. Predict each bus’s arrival times for its future bus stops by summing esti-

mated stop-to-stop durations from the routes table.

4. Update each bus’s MySQL database entry with the new arrival predictions.

All steps except for 3 are performed in the MySQL database using update com-

mands. Step 3 is performed by a script.

It is possible in a future student project for arrival predictions to respond

dynamically to the time of the day and the day of the week, and whether the

campus is open or not.

3Arrival predictions used to be provided by “skynet”, but since its hardware failure, arrival-
prediction services have been offline. Those services will at some point return on the new UCSC
IT-maintained servers.
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Chapter 4

Testbed Management

This chapter documents work performed by SURF-IT students who

worked in the Inter-Networking Research Group on testbed manage-

ment for SCORPION. The students’ work never was published outside

of SURF-IT papers and posters. The PI of the iNRG, Katia Obraczka,

who also is the chair of this project-report’s reading committee, asked

me to review the testbed-management code, uncover student presen-

tations, and create a single usage and implementation guide for the

SCORPION testbed-management system. On the PI’s recommenda-

tion, portions of that document are included here, as Chapter 4. I

discuss management of an ad hoc network that is formed by optional

testbed processors of the bus nodes via WiFi links. The commands de-

scribed below managed the Mini-ITX version of the testbed. Be aware

that that version of the testbed has been retired, and no replacement

has been created yet.

Fixed wireless nodes can be controlled continuously since they can remain

connected to their network backchannel. This is the case of MoteLab[39] and

63



ORBIT[27]. To achieve the same level of management with mobile wireless nodes

(particularly those that test disruption-tolerant networks, or DTNs) testbeds re-

quire either a dense network of WiFi access points or nodes with secondary 3G

links, as are provided with DieselNet[8][30]. However, including such communica-

tions infrastructure in a testbed adds to both deployment costs and maintenance

costs. When inclusion of backchannels does not fit into researchers’ budgets or

plans, DTN testbeds must be designed to operate properly when they are managed

through only sporadic connections.

The design of a testbed interface for network researchers needed to confront

SCORPION’s lack of a continuous administrative backchannel. Although the

designers contemplated using the testbed’s DTN network itself for administrative

communication, they decided that it is prudent not to require perfect operation of

an experimental network in order to retrieve the data generated by the networks

experiments. Consequently, they created a simple but robust set of commands

that do not rely on the DTN working correctly.

Network researchers can reprogram nodes and can control them using the

commands described in Sections 4.1 and 4.2. Since all nodes are deployed from a

location near a gateway at the beginning of a test and then collected later at the

test’s end, initial configuration and final data collection tasks assume that nodes

are one hop away from a gateway. This single-hop assumption relieves the nodes

of the additional task of routing data logs to a sink, since researchers do not want

to require the routing protocol under test to operate correctly in order to diagnose

its operation! Additionally, they do not want collection of experimental logs to

interfere with data transmission carried out by the protocols under test.

Tests using bus nodes require special planning because bus nodes are con-

figured by a gateway near the transportation service’s fuel pumps. Network re-
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searchers must allocate sufficient time for all bus nodes to be configured before

the start time of a test, and they also must wait for a sufficient time after a test

for stored data logs to be collected from all buses1.

4.1 Test-run Management

A researcher configures and initiates tests on the testbed’s nodes wirelessly by

running a set of four commands on a gateway. Usually the gateway is a laptop

computer with a wireless port that has been configured to communicate with the

nodes. The utilities, which are named after Linux commands, are simple enough

for interactive use, but they can be scripted as well.

4.1.1 nodels

Pronuncation: node-L-S. For the purpose of learning the statuses of nearby nodes,

this gateway command lists the numbers and characteristics of testbed nodes in

range. The listed characteristics include the operating-system kernel version, the

time since booted, the latitude and longitude (and whether a GPS fix is available),

the subversion revision number of the source-code directory, disk usage, and CPU

usage.

The nodels command listens for responses from nodes for 1.5 seconds. With

the optional -t parameter, one can change this duration. The value following

-t is a floating-point number representing the time to wait in seconds.

1Evaluation of the original BTS project revealed that bus drivers turn off bus power while the
vehicle is being fueled. Consequently, each bus node’s Mini-ITX computer lost power immedi-
ately after the bus arrived at the fuel pumps, shortening node-management time. I recommend
that testbed nodes of BTS 2 include a small backup battery that will run the testbed CPU for a
sufficient period of time for node management. The testbed CPU will need a power-fail detector
to trigger a system shutdown once maintenance is complete.
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Usage is nodels [ -t seconds ] .

4.1.2 nodediff

For the purpose of verifying the contents of files on nodes, this gateway command

compares a file on the gateway with a specified file on the testbed nodes. To

limit communication overhead, the program compares the MD5 sums of the files

instead of sending the files themselves. The command prints a sequence of lines,

one per responding node. Each line indicates a responding node’s number and

the result of its MD5 comparison: Same, Different, or File not found.

The optional -n parameter lets one specify a comma-separated list of node

numbers and/or node-number ranges. The nodediff command listens for re-

sponses from nodes for 1.5 seconds. With the optional -t parameter, one can

change this duration. The value following -t is a floating-point number repre-

senting the time to wait in seconds.

Usage is nodediff localfile remotefile [ -n nodes ][ -t seconds ] where

nodes ::= range(,range)∗

range ::= node | node-node

node ::= (0|1|2|...|9)+

4.1.3 noderun

For the purpose of performing arbitrary management tasks, this gateway com-

mand runs a remote program or script on one or more testbed nodes. With the

-c option, the command that runs on the nodes may print text to stdout, and

this text will be echoed by noderun to stdout on the gateway. One purpose of
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using the -c option is to retrieve succinct status information from the nodes.

Consequently, the format of the noderun output appears best when each node’s

command returns a single line of text. Using the -c form of noderun, one may

add the optional -n and -t options as described under nodediff. Lacking the

-n option, noderun broadcasts the command to all nodes.

Executing noderun with the -s option, a script on the gateway is transmitted

to a node or nodes and then is run there. For each node that runs the script,

noderun prints “Success” or “Fail” to stdout on the gateway depending on whether

the return code of the script is zero or non-zero, respectively. Using the -s form

of noderun, one must include the -n option and specify the node or nodes to

receive the script. The -t option can be added, as described earlier. Including

the -r option specifies the number of times that the noderun command should

attempt to establish a connection.

As described below, the implementation uses UDP packets to transmit com-

mand results from the node back to the gateway. Consequently, it is possible for

a command to be run but its report of success or failure to be lost. In order to

allow for regeneration of lost results, one should run only commands that can be

re-run harmlessly.

Usage is noderun -c command [ -n nodes ] [ -t seconds ]

or noderun -s script -n nodes [ -t seconds ] [ -r retries ] .

4.1.4 nodecron

For the purpose of scheduling experiments, this gateway command uploads a new

cron file to one or more testbed nodes. For each node specified, nodecron prints

“Success” to stdout on the gateway when the cron file is successfully installed and
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prints “Fail” otherwise. Command options are identical to those of noderun -s.

Usage is nodecron cronfile -n nodes [ -t seconds ] [ -r retries ] .

4.2 Data Collection

4.2.1 nodegs

Pronuncation: node-G-S, an abbreviation of “get syslog”. A researcher collects

logged data from the testbed nodes using the nodegs command on a gateway.

The nodegs command first runs nodels to create a list of visible testbed nodes

and then copies the log file of each node using scp.

To generate a data log, one links one’s C program to a library that provides a

function called logInfo(). The logInfo() function works exactly as printf()

except that it sends its data through syslog instead of to stdout. The logInfo()

function formats its output distinctively to allow easy identification within a re-

trieved system log. The nodegs command uses this distinctive format to identify

node data within the log.

Usage is nodegs .

4.3 Implementation

4.3.1 Client-Server Interaction

The implementation follows the client-server model, where each gateway is a client

running node client as commanded, and each node is a server running a back-

ground process node server. The node client program is itself run by the

commands described in Section 4.1.
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Figure 4.1: The client-server model used by the SCORPION testbed management
suite.

When node client is run on a gateway, it communicates with nodes using

either TCP or UDP, depending on whether the command that runs it transfers a

file. (See Figure 4.1.)

Since nodels, nodediff, and noderun -c are short commands that receive a

short text result from each node, the commanded request can be transmittted in

a single UDP packet, as can each of the nodes’ results. And so node client uses

UDP for these cases. However noderun -s, nodecron, and nodegs all transfer

files between the client and the node, making UDP inadequate because data of

the transferred file may be split into multiple packets, some of which may not

arrive error-free or at all. In this case node client uses TCP, which ensures that

all packets of a transmitted file will arrive error-free and in-order. The extra time

required to establish a TCP connection is a small cost for data integrity.

4.3.2 Client-Server Communication Protocols

node client and node server communicate using a simple request/response pro-

tocol. When using UDP, messages are sent as text strings of whitespace-delimited

tokens representing a command followed by server arguments. For example, when

the gateway executes nodels -t 5, which has the client argument -t 5, it sends
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to the node just the message nodels (but not the -t parameter because -t controls

the client’s retransmission behavior). As a second example, executing the gateway

command noderun -c ’uname -a’ sends the message noderun -c uname -a

to the node.

When node client and node server communicate using TCP (i.e., when a

file is transmitted), the TCP message consists of both length fields and data fields:

the first field is one byte long and represents the length of the command string,

the next field is three bytes long and encodes the length of the file that is being

transmitted, the third field is the command string, and the fourth field is the

contents of the file.

Except in the case of nodegs (whose “reply” is a syslog file that is obtained

using scp), a reply from node server is transmitted as a UDP packet that consists

of two space-separated fields: the first field is the node’s number encoded as a text

string, next is the space-character field separator, and the second field is the first

line of the result that is returned by the command that was executed.
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Chapter 5

Results

This project is an astounding success! Not only is the original prototype node

(UCSC bus 7855) still operational, but the node’s design, nearly unchanged, has

been deployed to all but a couple of the remaining UCSC buses. Buses currently

serve route and location data to the project’s five base stations.

My production deployment of BTS 2 nodes and base stations supports other

parts of the BTS 2 production system which are designed by other students: the

production server (by Wade “Simba” Khadder), the web app (by Kevin Abas),

the “Slug Route” Android smartphone app (by Wade “Simba” Khadder), and the

“Slug Route” iOS smartphone app (by Sterling Dreyer). Firmware for the route

programmer is being written by Christopher Villalpando.

5.1 Comparing SCORPION and DOME

When surveying existing wireless network testbeds, DOME [30] is most similar to

SCORPION. Although the two systems have similar goals, their selection of dif-

ferent technologies for administrative backchannels necessitates major differences
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in system management.

DOME’s 3G network provides sufficient bandwidth to distribute configuration

images and provides continuous connectivity for node management. Consequently,

updates to nodes can be performed at any time, as long as the node is powered

up. SCORPION has a much slower 9,600-baud monitoring link for real-time node

localization. This link is too slow for image distribution, and so image updates to

each SCORPION node must be performed via the node’s WiFi link. Although the

campus has only a few WiFi access points in buildings close to transit routes, we

are fortunate that transit buses must be refueled periodically. Therefore, the BTS

project located a WiFi access point in a building near the campus filling station

to provide necessary connectivity for updates. A feature of the Linux computers

used on the original BTS bus nodes caused them to remain powered for a few

minutes after the bus’s engine was turned off for fueling, thereby allowing time

for image transfers. Future BTS 2 testbed must be designed to have this feature.

Another consequence of managing the testbed over a disconnected network is

that researchers must adapt their tasks to the nodes presently nearby. nodels

helps identify nearby nodes, nodediff provides a low-bandwidth means of con-

firming the contents of files on nodes, nodecron lets one schedule experiments

quickly by uploading cron files, and noderun provides a means of executing Linux

commands and scripts to prepare the testbed’s nodes for experiments.

Clearly a backchannel network that maintains continuous connectivity would

reduce and possibly eliminate the need for management tools as they have been

implemented, but using such networks—e.g., 3G—tends to incur large recurring

costs. For some research groups these costs are prohibitively high compared to

their benefits, and for these groups, a management system more like ours is nec-

essary.
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5.2 PCB Design

Since I had designed only one PCB before this project, the experience of designing

five new PCBs provided me with a few lessons.

(1) I discovered the benefits of placing surface-mounted devices on just one side

of the PCB. The route-selector PCB has surface-mount components on both sides.

I can solder the fine-pitched microcontroller on one side using a reflow soldering

oven, but then I must hand-solder the remaining “coarse-pitched” surface-mount

packages on the other side. The sign-controller PCB, which was designed after

learning this lesson, places surface-mount components all on the same side.

(2) I also discovered that the hardcopy plots that I had hand checked should

have been printed 1:1 to reveal package/footprint size mismatches. My error

was significant enough that I was unable to rework the PCB. I needed to create a

second revision of the route-selector PCB before I could solder a working assembly.

(3) I learned the advantage of having all components in-hand during the design

process. PCB footprints were checked against measurements of physical compo-

nents that were obtained using digital calipers. Also, although data sheets have

package sizes, it is easy to miss physical obstructions during the design when the

packages are not physically present.

All of the PCB designs have performed well. The original prototype, which is

mounted in UCSC bus 7855, still functions flawlessly. The only failures discov-

ered in production nodes were caused by failures to hand-solder all through-hole

components on a PCB.
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5.3 Base-Station Design

The original Mini-ITX BTS base stations occasionally failed. Sometimes a base

station needed manual rebooting, and sometimes a hard drive would crash. Aside

from a single network-reconfiguration issue in September 2015, the current BTS 2

base stations have been working flawlessly since their installation in February

2015.

The improved quality may be due to any of several changes:

• Completely new hardware (Replace Mini-ITX PC with Raspberry Pi).

• Completely rewritten software (check array bounds in existing C++ daemon

and replace interpreted Python program with new daemon written in C++).

• Uninterruptible power supplies were installed on all base stations in Novem-

ber 2015.

5.4 Server Design

The original BTS server, “skynet”, was an Apple Mac Pro running GNU Linux.

Since this server was located in the E2-311 lab, unreliable UCSC power often

brought the server down, and it occasionally needed manual restarting. Generally,

the “skynet” server was not production-worthy.

For the BTS 2 prototype, the Mac Pro server remained mostly unchanged

because we knew that it would be replaced with a new server that was maintained

by UCSC IT. I celebrated when the production apps were cut over from “skynet”

to the UCSC IT server because I no longer would need to try and maintain the

illusion that “skynet” was a production server.
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Appendix A

Design Computations

A.1 MAX6495

Given the harshness of an automotive electrical environments, the Route Sign’s

over-voltage protection (OVP) circuit is an indispensable part of the system. Al-

though I would have preferred to use a commercial product, none could be found

for a 24-V system. My design of the OVP circuit considers guidelines from the

MAX6495 data sheet and suggestions from Maxim Application Note 4081. I pro-

totyped the completed design on a modified MAX6495 evaluation kit and verified

the threshold of the OVP-circuit. (For reasons of safety and lack of proper equip-

ment, I did not confirm operation at −600 V and +227 V.)

The supply pin of the MAX6495 is not connected directly to the UVP circuit.

While a MAX6495 itself can tolerate a 72-V input, my power-supply specifica-

tion requires that the OVP circuit function with a much larger 227-V input. To

tolerate the larger voltage, my OVP circuit follows a design idea that is pre-

sented in Maxim Application Note 4081 ([20], Figure 2). Instead of powering the

MAX6495 directly, this circuit adds a resistor/Zener-diode regulator that limits
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the MAX6495’s supply voltage to 54 V. In addition, proper selection of voltage-

divider resistors safely limits the voltage of the MAX6495’s comparator input.

These design considerations, among others, are presented in three reference doc-

uments: the MAX6495 data sheet, the MAX6495 Evaluation Kit documentation,

and Maxim Application Note 4081.

Table A.1 on page 77 and Figure A.1 on page 78 organize the design computa-

tions. Note that resistor names in the worksheet are from Figure 2 of Application

Note 4081.
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VOV = 48 V Overvoltage Threshold. This
value is somewhat arbitrary. It is
comfortably above the highest volt-
age of a 24-V electrical system dur-
ing normal operation while remain-
ing below the MAX6495’s regulated
54-V supply (VZ in the worksheet).

VOV,MAX = 400 V Maximum Overvoltage. An ear-
lier reading of ISO 7637-2 led to this
value. Now it appears that 227 V
would have been adequate.

MOVSET = 100 From page 9, column 2 of the data
sheet.

R1 = 976E+03 Ω Sets Threshold. I enter a com-
mercially available resistor value that
is approximately equal to the ideal
value computed in the worksheet.

R2 = 26.1E+03 Ω Sets Threshold. I enter a com-
mercially available resistor value that
is approximately equal to the ideal
value computed in the worksheet.

TOL = 1.0% Tolerance of R1 and R2. Used in
worst-case computations.

ID,MAX = 3.0 A Worst-case Current. I sum all of
the supply’s output powers, divide
by 24 V, divide by efficiency, and
round up.

VSUPPLY,MIN = 16 V Minimum Supply Voltage. Be-
low this value, the MAX6495 may
not power the N-MOSFET.

R3 = 43E+03 Ω Part of the 54-V supply. I
choose a commercially available re-
sistor value R3 < R3,MAX.

Table A.1: Explanation of selected MAX6495 design values. Use with Excel
worksheet on the following page.
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Figure A.1: MAX 6495 Design Worksheet
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A.2 LED-Sign Power Routing

Here I compute the amount of routing required in the PCB layout to ensure

uniform LED illumination. The result of this computation, which reveals that

routing power using 1-oz copper is insufficient, justifies the power-routing strategy

described in Section 2.1.3.

First, through direct observation I determined that a 10% reduction in LED

current causes a just noticeable variation in LED brightness. And so I chose

to limit the reduction in LED current—and hence the reduction in the current

of each LED’s series-connected current-limiting resistor—to 10%. Since current-

limiting resistors are linear devices, Ohm’s law implies that I need to limit the

reduction in the voltage across each resistor to 10%. So what is the voltage across

a current-limiting resistor normally?

The PCB uses a 3.3-V LED supply. With a worst-case 2.4-V LED forward

voltage[4] and 0.44 V across the LED driver[33], the voltage across the resistor is

3.3 − 2.4 − 0.44 = 0.46 V. Ten percent of this value is 0.046 V; I need to check

whether the total voltage drop across both the power and ground traces is less

than this value.

The power and ground routes run along the PCB horizontally, connecting

directly to the power pins of horizontally-arrayed components. I compute the

voltage drop along these traces as a function of trace size measured in “squares”

(a measurement unit that is useful when computing trace resistance[43]). These

computations are for so-called “1-oz” copper foil, which has a “square resistance”

R� = 0.5 mΩ. This means that a square of the foil, independent of its absolute

dimensions, has a resistance of 0.5 mΩ across opposite edges.

I start with the assumption that the power and ground traces are fed from the
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middle of the board, which minimizes the worst-case voltage drop. Each column of

LEDs draws current ICOL. Since the voltage drop across the power trace reduces

the LED current, I use the 10% current reduction in my computations, for an

LED current of 18 mA.

ICOL = NLED × ILED

= 13× 0.018 A

= 0.234 A

Connecting pairs of adjacent columns is a power-trace segment with a fixed re-

sistance that depends on the dimensions of the segment, measured in squares,

N�.

RCOL = R� N�

= 0.0005N�

The voltage along each power-trace segment drops slightly due to its resistance

and the current flowing through it. The current depends on the number of columns

that the segment feeds: the farthest segment feeds one column; the segment next

to it feeds two, etc. The segment that feeds n columns has a voltage drop estimated

by the equation below. I am aware that the power-trace segment that is closest

to the power source is shorter than the inter-column segments, but for simplicity

in later computations I use the same length for all segments.

VDROP,n = n ICOL RCOL

= 0.234× 0.0005nN�
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= 0.000117nN�

Summing the voltage drops along all of the segments

VTOTAL =

16∑

n=1

VDROP,n

=

16∑

n=1

0.000117nN�

= 0.000117N�

16∑

n=1

n

= 0.000117
16(16 + 1)

2
N�

= 0.0159N�

Now I can use this equation to compute the voltage drop along the power trace and

the ground trace. Using the actual PCB layout, the power trace is divided into

segments with dimension 1.66�. The same layout shows that the ground trace

segments have dimension 2.63�. So the total drop is across a series connection

of these two traces, or 4.29�:

VPOWER + VGND = 0.01768N�

= 0.0159× 4.29

= 0.068 V

This computed voltage drop of 0.068 V is more than the upper limit of 0.046 V

that I had determined must be met to preserve uniform LED brightness, and so I

cannot route power and ground traces solely through 1-oz copper foil as described.
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A.3 Ribbon-cable Termination Resistors

Each ribbon cable wire is driven through a source-termination resistor. I can esti-

mate the required value of each termination resistor by comparing the impedance

of a ribbon cable wire to the impedance of its driver.

Ribbon-cable wires have an impedance of approximately 100 Ω. Level-shifting

drivers have an impedance of approximately 22 Ω to 33 Ω (using data sheet values

to compute VOH/IOH and VOL/IOL). These figures lead us to estimate that a

terminator should have a resistance of approximately 67 Ω to 78 Ω.

To settle on a single value, I performed a bench test using an actual driver, a

68-Ω resistor, a ribbon cable, and one of the system’s LED boards. Subfigures (a)

and (c) of Figure A.2 show the waveform at the far end of the ribbon cable (at the

LED driver’s input) when the level shifter drives the ribbon cable directly. I see

that without source termination, the signal at the LED driver’s input shows unac-

ceptable overshoot and undershoot of 1.20-V and 1.08-V respectively, magnitudes

that far exceed the 0.7-V limit. Subfigures (b) and (d) show that adding 68-Ω

source termination eliminates the overshoot and undershoot while maintaining

fast edges.

With these observations, I chose to use 68-Ω source terminators on every

ribbon-cable signal wire. (Ribbon-cable ground wires are connected directly to

ground.) In addition, since each level shifter usually drives two ribbon-cable wires

(one for each LED PCB), each ribbon-cable signal wire is driven through its

own termination resistor (Figure A.3). The alternative arrangement of driving

two parallel-connected ribbon-cable wires through a single 68 Ω resistor must be

avoided: with little resistance between the far ends of the two connected cables,

the level shifter would induce oscillations due to reflections at the cable ends.
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(a) 0-Ω source termination. (b) 68-Ω source termination.

(c) 0-Ω source termination. (d) 68-Ω source termination.

Figure A.2: Effect of source termination on ribbon-cable signal integrity. Wave-
forms show the voltage on a CMOS device pin that is driven by a ribbon cable
both with and without source termination.

from Microcontroller

68 Ω

Level

Shifter

68 Ω

to Ribbon Cable 0

to Ribbon Cable 1

Figure A.3: Termination for ribbon cables.
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Supplemental Files
Number Description File Format

1 Computations: MAX6495 Excel file
2 Source Code: Route Sign Source-Code Directory
3 Source Code: Route Selector Source-Code Directory
4 PCB: Control Directory of PDFs
5 PCB: Filler Directory of PDFs
6 PCB Raspberry Pi Serial Port Directory of PDFs
7 PCB: Route Selector Directory of PDFs
8 Source Code: Base Station Source-Code Directory
9 Bill of Materials Excel file
10 PCB: LED Display Board Directory of PDFs
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