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Abstract—In this paper, we introduce Distributed Grid Par-
tition, a distributed greedy deployment algorithm for outdoor
IoT camera networks. The proposed algorithm optimizes visual
network coverage over 2.5D terrain. The main idea behind
Distributed Grid Partition is that each deployment node tries
to find the best vantage point in its neighborhood that will
maximize the network’s overall visual coverage. It does so by
using information from its immediate neighbors. In order to
achieve a favorable cost-performance trade-off, Distributed Grid
Partition uses height as a proxy for visual coverage, or fitness,
avoiding expensive fitness computations. In addition, each node’s
contribution to network fitness is determined without knowledge
of the overall network using the concept of “Wonderful Life
Utility”. Our experimental results show that Distributed Grid
Partition results in deployments with superior coverage-cost
performance when compared to other distributed optimization
algorithms as well as a centralized greedy set cover heuristic.

I. INTRODUCTION

Outdoor camera IoT networks, i.e., wireless camera net-
works for outdoor deployment, have a wide range of applica-
tions, including surveillance of outdoor areas, environmental
monitoring, and event tracking. Deployment of IoT camera
nodes (that is, choosing their positions) on the surface of
a 2D plane has been well researched, using line of sight
(LOS) between cameras and targets to determine camera/target
visibility. Less is known about deployment in 3D regions,
where nodes are constrained to the surface of terrain, and
landforms block the cameras’ LOS views. We refer to such
deployments as 2.5D.

Deployment algorithms often attempt to maximize cover-
age, which is a measure of the number of visible target
positions, i.e., positions at which an event can be detected by
the network. We say that a target is covered if one or more of
the network’s cameras can see the target with an unobstructed
LOS view. In the case of visual sensors, besides LOS, the
camera’s “range” must be considered, as well. Visual target
resolution becomes limited as the distance to a target increases,
and so one should limit the maximum camera-to-target range
to some sensor radius. Combining visibility, i.e., unobstructed
LOS view, and sensor radius leads us to the concept of range-
limited visibility.

Range-limited visibility can thus be used to guide the
deployment of visual sensor networks. For any camera node
(or for any network of camera nodes), the set of all covered
targets forms a viewshed. A common and frequent goal in
visual sensor network deployments is to maximize the number
of targets that comprise the viewshed—or in the case of
continuous terrain, to maximize the area of the viewshed.
The area of a viewshed is called its cumulative visibility [1].
Accounting for the constraint of maximum camera-target range
yields the measure of network fitness that we use in this work:
range-limited cumulative visibility.

Often terrain is modeled using a grid of heights called a
height map, where each (x, y) or (latitude, longitude) position
has an associated terrain elevation. When using a grid-based
height map, a straightforward visibility algorithm will treat
each grid position as entirely visible or as entirely obstructed
[2]. As such, the range-limited cumulative visibility of a
deployment is given by the total number of grid positions that
have visibility from at least one of the network’s cameras.
As discussed in more detail in Section II, the problem of
achieving maximum coverage, or more specifically, maximum
range-limited cumulative visibility, can be formulated as an
optimization problem which aims at placing the camera nodes
such as to maximize the visual sensor network’s overall
coverage.

Greedy algorithms often are used to solve optimization
problems due to their simplicity and efficiency [3, Ch. 16].
As such, greedy algorithms usually can deliver adequate cost-
performance tradeoff, i.e., they are able to yield adequate
results with reasonable computational cost.

In this work we present a new distributed, greedy deploy-
ment algorithm for camera-based IoT networks. The proposed
algorithm uses a fixed number of camera nodes, each of
which uses information about their immediate neighbors’
positions to decide its best vantage point, i.e, the position
that will maximize the camera network’s overall coverage.
We evaluate our algorithm’s effectiveness using the Cooja
IoT simulator/emulator in a variety of terrain scenarios and
compare the algorithm’s performance against other greedy-
based deployment algorithms.



(a) Height map of terrain (hi). Lighter re-
gions represent higher elevations, such as hills
and plateaus, and darker regions represent lower
elevations, such as valleys.

(b) Range-limited cumulative visibility (vi) of
the terrain of Fig. 1a. Lighter regions identify po-
tential viewpoints that have greater range-limited
cumulative visibility.

(c) Wonderful Life Utility (wi) of the terrain
after placing two nodes. Lighter regions identify
viewpoint positions that provide the greatest im-
provement in range-limited cumulative visibility.

Fig. 1. Height map, cumulative visibility, and Wonderful Life Utility of example terrain. Comparing Fig. 1b and Fig. 1c, the darkening of the regions near
the viewpoints’ positions shows that there is less benefit from adding a third viewpoint close to either of the first two.

Finally, since computing cumulative visibility is computa-
tionally expensive, in addition to fitness caching, our solution
uses an easy-to-compute fitness proxy to reduce the number
of cumulative-visibility computations.

II. PROBLEM FORMULATION

Generally speaking, the deployment of outdoor IoT camera
networks is an optimization problem which aims to maximize
some measure of network fitness by adjusting node positions
subject to practical constraints, such as the number of camera
nodes. Often the measure of network fitness is some form of
coverage, which measures the network’s ability to perform its
functions, e.g., survey the region, detect events, etc [4]. As
discussed in Section I, one measure of coverage in camera
IoT networks is cumulative visibility, i.e., the total area of
terrain that is collectively visible by the IoT camera network
(when the terrain has a continuous representation) or the total
number of terrain positions that are collectively visible by
the IoT camera network (when the terrain representation is
discretized). Since practical sensors have limited range, a more
practical measure of coverage is range-limited cumulative
visibility, where not only must the target be visible from
the position of the sensor, but the target must be within the
sensor’s sensing range.

To illustrate the concept of cumulative visibility and range-
limited cumulative visibility, Fig. 1a shows a terrain height
map where bright regions of the map indicate positions of
the terrain that have greater elevation. Ridges appear as bright
linear regions while valleys appear as dark lines.

Fig. 1b shows the range-limited cumulative visibility corre-
sponding to the height map of Fig. 1a for a sensor range of 50
pixels. In this figure, bright regions indicate positions that can
see the greatest areas of the surrounding terrain. Compare the
dark region of Fig. 1a, which indicates a large valley, to the
corresponding region of Fig. 1b, which is bright and indicates
positions with superior range-limited cumulative visibility. The
concave-up shape of a valley means that many positions on a
valley’s wall can see a large portion of the opposite wall.

Paradoxically, the bright, central region of Fig. 1a, which
indicates an area of greatest elevation on the height map,
corresponds to a dark region in Fig. 1b. This correspondence
shows that higher node elevation does not necessarily lead
to greater visibility. Indeed, a sensor that is located in the
middle of a high plateau will be unable to see regions below
the plateau without first moving to the plateau’s edge. In
addition, while distant mountains might be seen from positions
anywhere on the plateau, the range limitation of a sensor may
prevent the sensor from usefully resolving such distant targets,
hurting visibility.

We desire to design a distributed algorithm that relies only
on knowledge of nearby nodes and their positions (instead of
requiring global knowledge). Consequently we need a means
of computing the effect that an individual node’s position has
on the fitness of the entire network. We use the Wonderful
Life utility (WLU), a concept from potential games [5]. Using
WLU, a node compares the global utility of the system with
the global utility of an alternate world in which it doesn’t
exist. The difference is the node’s WLU, that is, its individual
contribution to global utility.

Changes in a node’s WLU are the same as changes in the
global objective function g as long as no two nodes change
state simultaneously. That is

WLU′ −WLU = g′ − g (1)

For example, Fig. 1c shows the WLU for all positions
of the map after two nodes are placed at the positions
indicated by blue squares. Brighter regions indicate greater
WLU. Comparing the range-limited cumulative visibility of
Fig. 1b and the WLU of Fig. 1c, one can see that the WLU
in regions far from the placed nodes is identical to the range-
limited cumulative visibility of those regions. This observation
is expected because placing an additional node far from the
first two will increase the fitness of the network by the range-
limited cumulative visibility at the additional node’s position.
However, looking at regions close to the placed nodes, one



can see that the WLU is much lower than the corresponding
range-limited cumulative visibility. This result is also expected
since there is little benefit to locating an additional node near
either of the placed nodes.

The camera network deployment problem we set out to
explore can be formulated as follows: maximize line-of-site
visual coverage on 2.5D terrain as guided by node WLU
through a one-time deployment in which nodes are initially
placed at random (instead of incremental deployment) and
node-to-node communication is one-hop. Our goal is to design
a distributed deployment algorithm that cooperatively deter-
mines the positions of a fixed number of homogenous, mobile,
omnidirectional camera nodes [4] on the 2.5D terrain.

III. DISTRIBUTED GRID PARTITION

The proposed Distributed Grid Partition algorithm is in-
spired by landform classification [6]. Two of the simplest
landform classes, depressions and saddles that are primarily
concave up, define regions with superior cumulative visibility.
Nodes positioned within these two classes of landforms will
tend to contribute effectively to network fitness. Alternatively,
the two landform classes of hills and saddles that are primarily
convex up define regions with inferior cumulative visibility,
and nodes positioned within these regions should not be
expected to contribute effectively to network fitness.

While these landform classes can help predict superior
node positions, one must not ignore the physical size of the
landform. For instance, a node that is in a large valley normally
would be expected to improve cumulative visibility, but if
the node lands in a small depression, then its view of the
surrounding terrain will be completely blocked.

Following the above observations, the Grid Partition algo-
rithm attempts to find positions on landforms that will have
large viewsheds, such as valleys, while also positioning camera
nodes on small hills. By doing so, the algorithm tries to reduce
the number of fitness computations by avoiding positions that
are inherently unfit.

To start, Grid Partition is a distributed deployment algorithm
that runs on every node of the network. Each node alternates
several times between transmitting and moving, terminating
its search after a maximum number of iterations or after
discovering over several iterations that it is unable to find
an improved position. During one iteration of the algorithm’s
outer loop, a node broadcasts its current physical position
and recent position reports that it has received from other
nodes. Then the node searches for a new position with better
WLU than its current position. Since the WLU computation
is computationally expensive, the node limits the number of
WLU computations in two ways. Firstly, it considers only
candidate positions that are in a circle of radius r centered
on its current position. The effect of this first limit is create a
circular exploration region, as illustrated in Fig 2a. Secondly,
the node partitions the exploration region into n0 squares
(Fig 2b) and consults terrain height data to find the highest
position within each square (Fig 2c). Choosing a highest local
position helps the node avoid local visual obstructions. Then

Algorithm 1 Outer loop used in distributed algorithms.
1: xE ← initial node position
2: rE ← RE

3: for L times do
4: Move to a new position x based on the chosen algorithm
5: Communicate xE to other nearby nodes.
6: Decrease rE {see Section V}
7: if improvement in the network fitness is inadequate

then
8: exit for loop
9: end if

10: end for

the node computes the WLU at each of the identified positions
(Fig 2d) and identifies a set of candidate positions with the best
WLU. The final step of an iteration (Fig. 2e) is for the node to
choose a new position by computing the centroid of the best
candidate positions that were found in the previous step. The
process is repeated by looping back to Fig. 2b.

We present our Distributed Grid Partition algorithm in detail
below. Note that every participating network node runs the
algorithm independently from the other nodes and uses only
local information obtained from its immediate neighbors. For
clarity, we describe the algorithm in two parts, namely the
algorithm’s outer and inner loops. We should point out that
the outer loop is common to the other greedy algorithms
considered in the comparative performance evaluation we
conducted, whose results are presented in Section VI.

A. Outer Loop

As previously pointed out, the outer loop (Algorithm 1) is
executed by all of the distributed algorithms considered in our
study. These algorithms are described in Section V. In Step 4,
the corresponding node placement algorithm is invoked.

In Steps 1–2, the node is initialized with an initial position
and an exploration radius. The exploration radius is described
in Section III-B below. Steps 3–10 are the outer loop which
runs until the node’s fitness ceases improving for several
cycles or until a maximum number of loops L is executed.
The maximum loop count helps ensure that the algorithm
will eventually terminate. Step 4 calls the greedy algorithm
that determines the next position for the node and moves the
node to its new position. Step 5 broadcasts the node’s new
position to all its neighbors. The node includes in its broadcast
any current positions of its neighbors that it is aware of. In
other words, this step performs one-hop signaling, which also
includes the most recently received neighbor positions. We
assume that at any point a node may receive updated position
information from its neighbors, although in our simulations,
a node will not act on received positions until it returns to
Steps 4 and 5. Step 6 decreases the exploration radius rE ,
which is described in Section V below. Steps 7–9 terminate
the loop if there is inadequate fitness improvement, that is, if
there is no improvement for a given number of cycles. Each
node uses this strategy because the inability to find a better
position may be resolved when one of the node’s neighbors



(a) Exploration region. (b) Grid partition. (c) Highest positions. (d) Best positions. (e) Move, shrink, loop.

Fig. 2. Illustration of the Grid Partition algorithm (see text).

Algorithm 2 Inner loop of Grid Partition.
1: CE ← circle centered at xE with radius rE
2: C ← CE

3: x← xE

4: r ← rE
5: xbest ← x
6: for M times do
7: loop
8: Using a square grid, partition CE ∩C into n regions

R1 . . . Rn, where n ≈ n0. {see text}
9: xi ← highest position within Ri for i in 1 . . . n.

10: Compute the fitness of each position x1 . . . xn.
11: Sort positions x1 . . . xn by decreasing fitness.
12: xbest ← x1 if x1 is better than xbest
13: if the grid in step 8 is smaller than the DEM grid

then
14: exit loop
15: end if
16: x← mean of positions x1 . . . x⌊Fn⌋
17: r ← Ar
18: C ← circle centered at x with radius r
19: end loop
20: end for
21: return xbest

eventually moves and allows a subsequent improvement in the
node’s WLU.

B. Inner Loop

The inner loop implements a greedy algorithm to compute
the node’s next position (Algorithm 2). This part of the
algorithm accepts an initial position xE , an exploration radius
rE , and an effort parameter n0. An additional parameter, F ,
indicates the fraction of the candidate positions that will guide
repositioning of the exploration region. Finally, parameter A
controls the rate at which the exploration region shrinks.

The rE parameter is used to prevent a node from traveling
too far before receiving position updates from its neighbors.
Since this is a distributed algorithm in which each node
guides its decisions using its WLU, we want to avoid the
situation where a node fails to recognize that its WLU has been
substantially affected by a change in a neighbor’s coverage due
to the neighbor’s movement.

Steps 1–5 initialize the algorithm. CE is the initial explo-
ration region, centered at xE with radius rE . The node will
not leave this region. C is the current exploration region,
centered at x with radius r. The current exploration region
will shift and shrink as the algorithm proceeds, focusing its
attention on regions around better positions. xbest is the best
position seen so far, which at initialization is the node’s current
position. In Steps 6–20 the algorithm searches for the best
next position for the node. This loop runs M times, where
M is a tuning parameter of the algorithm. We want to avoid
values of M that are too small, which will hurt solution
quality, or values that are too large, which will hurt algorithm
performance. For our experiments, M = 10 yields a good
compromise. Steps 7–19 form an inner loop that searches
within the exploration region that is centered on xE . Step 8 of
the algorithm partitions the exploration region using a square
grid. The result of this step is a square grid with approximately
n0 complete squares within the exploration region. Changing
the value of n0 will not lead to incorrect results, but too large
a value will negatively affect the run time of the algorithm,
while too small a value will negatively impact solution quality.
In Section VI we characterize the effect of changing the value
of n0. Steps 9–12 evaluate the fitness of the highest position
within each grid square and record the best position seen so
far. Recall that the fitness of a position is its WLU, that is,
the contribution that the node would provide to the range-
limited cumulative visibility of the network if the node moved
to that position. Steps 13–15 terminate the loop when the
algorithm degenerates to exhaustive search of the exploration
region. Steps 16–18 shift the current exploration region to the
mean of the top ⌊Fn⌋ positions just evaluated and shrinks
the exploration region. This reduction in the exploration area
while maintaining the value of n0 increases the density of the
evaluated positions. Step 21 returns the best position found.

IV. RELATED WORK

The placement of nodes with the goal of covering targets is
a well-known problem with applications in a variety of other
disciplines. For instance, in the Art Gallery Problem [7] the
floorspace of an art gallery is “guarded” by locating cameras
or guards. Variations of the problem include the inclusion of
“holes” in the floorspace (which can be considered columns



in the gallery), and guarding the outside of the building rather
than guarding the inside. Since a floorspace is 2D, this problem
is different than ours. A 3D version of the Art Gallery problem
considers the visibility of a polyhedron’s interior volume, but
once again we are concerned with a different problem: the
visibility of a polyhedron’s upper surface.

In operations research, the Location Set Covering Problem
(LSCP) strives to minimize the number of facilities needed
to satisfy 100% of a 2D area’s demand [8]. LSCP can be
formulated as a zero-one linear-programming problem with
one variable for each node’s candidate position and one
equation for each target whose coverage is desired [9]. As
LSCP assumes an unbounded number of nodes, we do not
consider it further.

Related to LSCP, the Maximal Covering Location Problem
(MCLP), strives to identify positions for a fixed number of
facilities that will maximize the total demand that is satisfied
[10]. This problem can be addressed by a Greedy Set Cover
heuristic that stops after placing all available nodes. We
include the Set Cover heuristic in our evaluation as an upper
bound in our evaluation of Grid Partition.

Coverage in the area of wireless sensor networks (WSNs)
has received considerable attention from the research commu-
nity. In particular, the work in [11] provides a thorough survey
of the state-of-the-art in coverage over terrain. The various
approaches reviewed represent terrain using three different
schemes: contrived mathematical equations, regular matrix
terrain, and triangulated irregular networks (TIN). In our work,
we represent terrain as a regular matrix for simplicity. Using
a TIN terrain representation is one direction of future work
we plan to explore. WSN coverage models can be binary or
probabilistic. While we use a binary coverage model in our
evaluation, a probabilistic model could be used instead. WSN
research of terrain coverage has used several optimization
strategies, including simulated annealing, genetic algorithms,
and the CMA-ES variety of Evolution Strategy [12]. Greedy
heuristics, while sometimes used, are less common.

While there has been much work on WSN coverage, our
work is different because it is one of the few that uses a greedy
heuristic, and it includes an easy-to-compute fitness proxy to
improve algorithm performance. In addition, use of WLU as
a fitness function lets our algorithm make sound judgements
without needing to have a global understanding of the network.

While Distributed Grid Partition shares range-limited cu-
mulative visibility with some existing work [11], including
ours [13], it introduces the idea of using terrain height as
an easy-to-compute fitness proxy that reduces the number of
fitness computations. In addition, to the best of our knowledge,
Distributed Grid Partition is the first to use the WLU concept
to reduce communication and computation cost.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Platform, Datasets, and Parameters

To evaluate our Distributed Grid Partition approach, we
implemented the algorithm on the Cooja-Contiki IoT simula-
tor/emulator [14]. The Cooja simulator supports user-definable

Fig. 3. Selected subtiles of SRTM tile N37W123.

nodes in both homogeneous and heterogeneous wireless sensor
networks. Cooja nodes can communicate using standard or
user-provided protocols and propagation models. One de-
scribes a node’s operation using emulated microcontroller
binaries, compiled C code via a JNI interface, or native Java
code.

We chose to use native Java code, which Cooja calls
an “application level” node, because it avoids the memory
limitations of ordinary Cooja nodes that run emulated MSP430
binaries. Specifically, the model of our node uses the Abstract-
Application Mote class.

We use Cooja’s radio medium which employs a simple
model, i.e., limits packet reception based on propagation
distance, to simulate communication between nodes over the
wireless medium. As future work, we plan to investigate more
realistic propagation models.

For sample deployment regions, we use terrain datasets from
NASA’s 2005 Shuttle Radar Topography Mission (SRTM)
[15]. This mission collected elevation, or height, data for much
of the landmass of the Earth and provides this information
in datasets called digital elevation models or DEMs [1]. The
DEMs provide the height for positions on the Earth using
latitude-longitude coordinates that have a precision of 1 arc
second, which is about 30 meters (or 100 feet) in the latitude
direction.

The datasets are organized into “tiles” of 3600 × 3600
arcsecs (1 degree of longitude by 1 degree of latitude). We
selected tile N37W123, which is illustrated in Fig. 3, because
it includes regions that represent a wide variety of landform
shapes. To evaluate the effect of landform shapes on the
algorithms’ performance, we divided the full tile’s 13 million
elevation samples into smaller, more manageable 240 × 180
arcsec subtiles. We selected the 21 subtiles indicated in the
figure, as they represent a variety of terrains. Our strategy for



Algorithm 3 Pattern Search.
1: CE ← circle centered at xE with radius rE
2: x← xE

3: r ← rE
4: while r > rmin do
5: x1 ← x+ (0, r)
6: x2 ← x− (0, r)
7: x3 ← x+ (r, 0)
8: x4 ← x− (r, 0)
9: Compute the fitness of x, x1 . . . x4.

{Assign fitness 0 to any xi that falls outside CE .}
10: if x is more fit than all xi then
11: r ← r/2
12: else
13: x← fittest of x1 . . . x4

14: end if
15: end while
16: return x

TABLE I
ALGORITHM PARAMETERS AND THEIR VALUES

Parameter Value(s) Parameter Value(s)

A 0.9 M 10

F 0.25 n0 5, 10, 21

L 10 RE 10, 15, 21, 34, 51, 76

selecting subtiles is validated later in Section VI.
As mentioned above, the coordinates of the SRTM data

are measured in arc seconds of latitude and longitude, but
our algorithm uses Cartesian coordinates in arbitrary distance
units. One normally would perform a coordinate conversion
through a resampling of the DEM height data, which would
introduce some interpolation errors in the heights. However,
since we are not performing field verification, Earth-accurate
coordinates are not necessary. Instead, we treat the SRTM data
as if it had been measured at the Earth’s equator and interpret
each DEM sample as representing a flat 33× 33 meter patch
of terrain.

For each algorithm considered in our study, we ran numer-
ous simulations per terrain subtile. Our experiments deploy
10 camera nodes, but our algorithm can accommodate any
number. Each data point reported in Section VI is an average
over ten different sets of random starting positions for the
nodes.

We also evaluate the effect of RE , the initial value of the
exploration radius, on the distributed algorithms, including
Distributed Grid Partition. Recall that rE defines the region
a camera node will explore as it tries to place itself such that
it maximizes its contribution to the camera network’s overall
coverage. We use six different values of RE , namely 10, 15, 21,
34, 51, and 76 arcsec. In Step 6 of the outer loop (Algorithm
1) rE sequentially decreases in value to focus the algorithm on
more promising regions. For our current experiments, we use
the following sequence of rE values: 0.92RE , 0.85RE , 0.77RE ,
0.69RE , 0.62RE , 0.54RE , 0.46RE , 0.38RE , and 0.31RE .

We set the sensor radius to 50 arcsec since this value

allows 100% coverage of a 240 × 180 arcsec subtile with
proper placement on a flat terrain. We set the communication
range to 130 arcsec, leaving the consideration of more realistic
radio propagation models for future work. We set both of the
maximum-loop limits L and M to 10, and we set A = 0.9
and F = 0.25. For a subset of experiments, we evaluate
three different values of n0: 5, 10, and 21. The parameter
values used in the experiments reported in Section VI below
are summarized in Table I. As future work, we will explore
the sensitivity of the algorithm to the values of parameters
L,M,A, and F.

B. Other Deployment Algorithms

Since Distributed Grid Partition is a greedy algorithm, we
compared it with two other greedy algorithms: Pattern Search
and Gradient Descent. For our comparative performance study,
we implemented distributed versions of both algorithms, which
are described below.

We also implemented a centralized Set Cover algorithm
which is also described in this section. We use Centralized
Set Cover as our performance upper bound because it is
centralized, and because it does not attempt to limit the number
of fitness computations, as Grid Partition does.

Finally, in addition to the algorithms just mentioned, we ran
simulations for “strawman” deployment approaches, namely
Random Placement, with 100 random seeds per subtile, as
well as placing nodes on a regular triangular grid.

1) Distributed Pattern Search: We implemented the classic
Pattern Search algorithm [16] [17, §9.3]. See Algorithm 3. The
algorithm accepts an initial position xE and an exploration
radius rE . In its termination condition, it uses a value rmin,
which is the horizontal resolution of the terrain’s height map.

Steps 1–3 initialize the algorithm, accepting a starting
exploration region that is defined by xE and rE . The value
of r determines when the algorithm will terminate. Steps 4–
15 loop until r ≤ rmin. Steps 5–8 compute four candidate
next-positions: x1 . . . x4. These positions are r away from
the current position x in all four cardinal directions. Step 9
computes the fitness of all of the positions under consideration,
using the special fitness value 0 for any position that falls
out of the exploration region. Using this special value ensures
that the algorithm always chooses positions that are inside the
exploration region. Steps 10–14 either move x to the fittest
position or, if x already is in the fittest position, cut r in half.
Step 16 returns the best position.

2) Distributed Gradient Descent: We implemented Gra-
dient Descent, whose goal is to minimize negative fitness.
Gradient descent is an iterative optimization algorithm that
chooses a sequence of step directions based on an objective
function’s derivative [17, ch. 3]. Although our WLU fitness
function lacks a derivative, it is possible to use gradient
descent with a derivative approximation. We describe the
approximation and our algorithm below.

A straightforward method of approximating a derivative is
to use finite differences, where one evaluates a function at two
points and then solves for a slope [17, §8.1]. During an initial



Algorithm 4 Gradient Descent.
1: CE ← circle centered at xE with radius rE
2: xnext ← xE

3: repeat
4: x← xnext
5: Fit a plane to the fitness of the 25 positions around x.
6: if the plane is level then
7: exit repeat-until loop
8: end if
9: xnext ← position adjacent to x in the direction of the

plane’s steepest upward slope
10: until xnext is outside CE or xnext already has been visited
11: return x

test of this method, we discovered that noise in the cumulative
visibility function passes into the derivative approximation and
interferes with the ability of the gradient descent algorithm to
find a good solution.

So instead, to smooth its derivative approximation around a
point, our algorithm uses least-squares estimation [18, p. 363].
A plane is fit to a set of 25 WLU values fi = f(xi,0, xi,1)
arranged in a 5 × 5 grid that is centered on the position of
interest. Then an optimization step is taken in the direction
of the plane’s steepest ascent (b0, b1) by solving the linear
equation[∑

xi,0fi∑
xi,1fi

]
=

[∑
x2
i,0

∑
xi,0xi,1∑

xi,0xi,1

∑
x2
i,1

] [
b0
b1

]
(2)

The 5 × 5 arrangement of points simplifies (2) when we
use a spacing that matches the DEM data. Our algorithm
considers the positions shifted so that xi,0 ∈ {−2,−1, 0, 1, 2}
and xi,1 ∈ {−2,−1, 0, 1, 2}. Then

∑
xi,0xi,1 = 0, which we

can substitute into (2), and also
∑

x2
i,0 =

∑
x2
i,1, which we

use for further simplification. Because our algorithm relies on
the gradient (b0, b1) for the direction of steepest ascent and not
its magnitude, we can scale both b0 and b1 by

∑
x2
i,0 without

affecting the direction. This change uses a simpler gradient
(b′0, b

′
1) that yields the same ascent direction.[∑

xi,0fi∑
xi,1fi

]
=

[
1 0
0 1

] [
b′0
b′1

]
(3)

We then can solve directly for (b′0, b
′
1).

(b′0, b
′
1) =

(∑
xi,0fi,

∑
xi,1fi

)
(4)

Finally, using two-argument arctangent, we compute the di-
rection of the steepest ascent of WLU.

θ = atan2
(∑

xi,1fi,
∑

xi,0fi

)
(5)

See Algorithm 4. The Gradient Descent algorithm accepts
an initial position xE and an exploration radius rE . The
algorithm uses (5) in Step 9.

Steps 1–2 initialize the algorithm. CE is the initial explora-
tion region, centered at xE with radius rE . The node will not
leave this region. xnext is set to a value that readies the repeat-
until loop. Steps 3–10 form a loop that moves the node along

Algorithm 5 Centralized Set Cover.
1: for every node i do
2: Place node i at the position that best improves network

fitness.
3: end for

the computed WLU gradient. The loop will terminate either
when the slope of the computed WLU gradient is 0, or when
the algorithm attempts to revisit a position that it already had
visited in a prior loop iteration. (The derivative approximation
uses 25 points in a 5 × 5 grid. We evaluated using 9 points
in an earlier version of this algorithm and were not satisfied
with the results.) Step 11 returns the best position found.

3) Random Placement: For the Random Placement algo-
rithm, ten nodes are placed according to a uniform random
distribution. This exercise is repeated 100 times and the
average of the range-limited cumulative visibility is reported.

4) Regular Grid: For the Regular Grid algorithm, ten nodes
are placed in a triangular grid on a subtile. The range-limited
cumulative visibility is computed for that deployment.

5) Centralized Set Cover: The deployment problem that
we address differs from the set cover optimization problem
in that instead of minimizing the number of nodes needed
to achieve 100% coverage, our deployment problem is to
maximize coverage using a limited number of nodes.

We implemented the Greedy Adding algorithm [10], which
is a Centralized Greedy Set Cover heuristic [3, §35.3] that has
been modified to stop after placing all nodes of the network
(Algorithm 5). Fig. 4 shows a demonstration of the set cover
algorithm as it finds positions for ten nodes.

VI. EXPERIMENTAL RESULTS

In this section, we show performance results of our Dis-
tributed Grid Partition deployment algorithm compared against
Centralized Set Cover and distributed versions of Pattern
Search and Gradient Descent. We also compared all algorithms
to random- and triangular grid placement.

Since the results of Distributed Grid Partition, Distributed
Pattern Search, and Distributed Gradient Descent all depend
on the initial node positions, we ran these algorithms under
the same conditions: for each subtile we ran each algorithm
ten times using ten different initial node placements.

Random placement was evaluated using 100 seeds, and the
results for each subtile were averaged over these 100 runs.
Placement on a regular grid was performed only once per tile
since the algorithm has no random aspect in its operation.

We start by presenting the results of our comparative study
followed an analysis of the algorithms’ parametric sensitivity.

Fig. 5 compares the coverage provided by all algorithms
considered in our study. Each data point represents the range-
limited cumulative visibility as determined by the indicated
algorithm for one of the 21 terrain subtiles. The horizontal
axis is the range-limited cumulative visibility that Centralized
Set Cover computes for each subtile. We note that the uniform
horizontal distribution of data points suggests that the 21
subtiles that we selected represent a sufficient variety of terrain



(a) Placing the first node. (b) Adding the second node. (c) Adding the third node. (d) Adding the fourth node. (e) All ten nodes.

Fig. 4. Choosing node positions using Greedy Set Cover for ten nodes. In height map (a), the colored terrain shows the coverage that is provided by the first
node, which is placed at the position with the largest viewshed. Height map (b) shows the improved coverage that is provided after the algorithm positions
the second node without moving the first. This is the position that provides the second node with the greatest WLU (“wonderful-life utility”). Height maps
(c) and (d) show improvements in coverage that are seen after the algorithm positions the third and fourth nodes, respectively. Height map (e) shows the final
coverage that the algorithm achieves after it positions all ten nodes.
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Fig. 5. Results of algorithms compared to the Centralized Set Cover Heuristic.

in the 20, 000 to 30, 000 cumulative visibility range. The
vertical axis is the range-limited cumulative visibility that
the other algorithms computed for each subtile. The 45° line
indicates the results for Centralized Set Cover. Considering
the algorithms evaluated, as expected, Centralized Set Cover
is the best. Our Distributed Grid Partition algorithm comes
in second, appearing as red dots immediately under the 45°
line. The figure shows the results of the remaining algorithms
clearly are ranked from best to worst as Distributed Pattern
Search, Distributed Gradient Descent, Regular Grid, and Ran-
dom Placement.

Table II provides a quantitative comparison between each
algorithm and Set Cover by computing each algorithm’s result
relative to Set Cover for each subtile and then averaging these
relative results over all subtiles.

In these experiments, all three distributed algorithms use
RE = 51. Remember that this parameter helps prevent nodes
from moving too far during a single iteration of the distributed
algorithms’ outer loop. Having too small a value of RE will
hurt an algorithm’s results, as a node is unable to travel a
sufficient distance to discover its best position. On the other
hand, too large a value of RE could let a pair of nodes

TABLE II
AVERAGE ALGORITHM RESULTS COMPARED TO SET COVER

Set Grid Pattern Gradient Regular Random
Cover Partition Search Descent Grid Placement

100% 90% 82% 58% 44% 36%

“overshoot” their best positions as they move toward each
other, each node being unaware of the other node’s effect on
its own WLU. Once discovering the overshoot, the nodes will
need to retreat, which increases the algorithm’s execution time.

We explored the sensitivity of Distributed Grid Partition,
Distributed Pattern Search, and Distributed Gradient Descent
to different values of RE ∈ {10, 15, 21, 34, 51, 76}. Fig. 6
shows the average range-limited cumulative visibility for 210
runs at each value of RE . (Ten runs on each of the 21 subtiles.)
As a measure of execution time, the plots also show the
number of uncached fitness computations for the different
values of RE .

Fig. 6a shows that, for these terrain samples, Distributed
Grid Partition is well tuned with RE = 51 since either
increasing or decreasing RE hurts the average result.

Similarly, Fig. 6b shows that Distributed Pattern Search also
performs well at RE = 51, since an increase in RE yields only
a small improvement in the average range-limited cumulative
visibility but a more pronounced increase in execution time.

Finally, Fig. 6c illustrates that Distributed Gradient Descent
is essentially unaffected by the value of RE . Since Gradient
Descent performs best when its gradient is smooth, we suspect
that Gradient Descent’s insensitivity to RE is because the
algorithm gets “stuck” when it responds to “noise” in the
gradient approximation.

Recall that the n0 parameter controls the amount of effort
performed by Grid Partition. Specifically, n0 is the number
of grid squares that the algorithm tries to partition the ex-
ploration region into, where each square will cause a fitness
computation. So a larger value of n0 will cause the algorithm
to examine the WLU of more positions, resulting in longer run
times. A smaller value for n0 will reduce run time but may hurt
coverage by examining too few positions. Fig. 7 shows that
our chosen value n0 = 10 provides adequate cost-performance
trade-off for the sample terrains examined.
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Fig. 6. Comparison of Range-Limited Cumulative Visibility and the number of uncached Fitness Computations in the distributed algorithms that were tested.
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Fig. 7. Effect of the value of n0 on Grid Partition results.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel distributed greedy al-
gorithm we call Distributed Grid Partition. Extensive experi-
mentation shows that the proposed algorithm yields superior
performance when compared to other distributed algorithms
as well as centralized Set Cover. Using the WLU lets nodes
estimate the effect of their actions on network fitness, and us-
ing an easy-to-compute fitness proxy helps reduce the number
of fitness computations needed.

We measured Grid Partition’s sensitivity to primary control
parameters, and as one direction of future work, we plan to
extend the sensitivity analysis to confirm the effects of other
parameters of the algorithm. We also plan to consider the effect
of more realistic radio propagation models.
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