
Dynamically Tuning IEEE 802.11’s Contention Window Using
Machine Learning

Yalda Edalat
Department of Computer Science and Engineering,

University of California Santa Cruz, USA
yalda@soe.ucsc.edu

Katia Obraczka
Department of Computer Science and Engineering,

University of California Santa Cruz, USA
katia@soe.ucsc.edu

ABSTRACT
The IEEE 802.11’s binary exponential backoff (BEB) algorithm plays
a critical role in the throughput performance and fair channel alloca-
tion of IEEE 802.11 networks. In particular, one of BEB algorithm’s
parameters, the Contention Window determines how long a node
needs to wait before it (re)transmits data. Consequently, choos-
ing adequate values of the Contention Window is crucial for IEEE
802.11’s performance. In this paper, we introduce a simple, yet
effective machine learning approach to adjust the value of IEEE
802.11’s Contention Window based on present- as well as recent
past network contention conditions. Using a wide range of network
scenarios and conditions, we show that our approach outperforms
both 802.11’s BEB as well as an existing contention window adjust-
ment technique that only considers the last two transmissions. Our
results indicate that our contention window adaptation algorithm
is able to deliver consistently higher average throughput, lower
end-to-end delay, as well as improved fairness.

KEYWORDS
machine learning, contention window, IEEE 802.11, backoff, experts,
Fixed-share

ACM Reference Format:
Yalda Edalat and Katia Obraczka. 2019. Dynamically Tuning IEEE 802.11’s
Contention Window Using Machine Learning. In 22nd Int’l ACM Conference
onModeling, Analysis and Simulation ofWireless andMobile Systems (MSWiM
’19), November 25–29, 2019, Miami Beach, FL, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3345768.3355920

1 INTRODUCTION
The IEEE 802.11 standard, also known as WiFi, specifies two types
of MAC protocols, namely the Distributed Coordination Function
(DCF) and the Point Coordination Function (PCF). DCF is IEEE
802.11’s most widely used medium access mechanism and uses the
Carrier Sensing Multiple Access/Collision Avoidance (CSMA/CA)
protocol1. CSMA/CA arbitrates access to the shared communication

1DCF provides two modes of operation: the Base Mode which uses CSMA and the
Collision Avoidance Mode, which uses CSMA/CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6904-6/19/11. . . $15.00
https://doi.org/10.1145/3345768.3355920

medium using a contention-based, on-demand distributed mech-
anism. One of the key components of IEEE 802.11’s DCF is the
Binary Exponential Backoff (BEB) algorithm which was introduced
to mitigate channel contention and prevent collisions of packets si-
multaneously transmitted by multiple stations. It delays the retrans-
mission of a collided packet by a random time, chosen uniformly
over n slots (n > 1), where n is a parameter called Contention Win-
dow, or (CW). The BEB algorithm works as follows: CW is initially
set based on a pre-specified minimum value, (CWmin). If a collision
happens, the station chooses an exponentially increased CW until
it reaches CW ’s pre-specified maximum value (CWmax). As such,
CW can significantly impact IEEE 802.11’s performance. Choos-
ing small CW values may result in more collisions and backoffs.
On the other hand, choosing large CW may result in unnecessary
idle airtime and additional delay. In either case, the channel is not
used efficiently. Therefore, the value of CW should be adjusted
considering the actual level of contention in the channel.

In this paper, we develop a simple, yet effective machine learning
approach based on the Fixed-Share technique [8] [9] to adjust the
value of CW based on recent past network contention. Unlike the
original BEB algorithm which increases or decreases CW based
solely on the status of the most recently transmitted packet, our
method also accounts for recent network contention conditions
in addition to last packet’s transmission status. We evaluated our
contention window adaptation algorithm using a wide range of
scenarios including infrastructure-based as well as multi-hop ad-
hoc environments. Our results indicate that our contention window
adaptation algorithm is able to deliver consistently higher average
throughput, lower end-to-end delay, as well as improved fairness.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief overview of IEEE 802.11’s Binary Exponential Backoff
(BEB) algorithm and presents related work. Our machine learning
based approach to dynamically adjust 802.11’s contention window
is described in Section 3. Section 4 and Section 5 present our exper-
imental methodology and results, respectively. Section 6 concludes
the paper and discusses directions for future work.

2 BACKGROUND AND RELATEDWORK
IEEE 802.11’s Binary Exponential Backoff (BEB) algorithm was
introduced in order to decrease the chance of collision of frames
simultaneously (re)transmitted by multiple stations. In the original
BEB algorithm, if a node wants to transmit a data frame, it first
senses the channel for a DCF Inter frame Space (DIFS) interval to
check whether the channel is idle. If the channel is sensed idle,
the node transmits the data packet immediately. Otherwise, i.e., if
the channel is busy, the node selects a random backoff time value
between 0 and CW (as shown in Equation 1) to re-try and avoid

https://doi.org/10.1145/3345768.3355920
https://doi.org/10.1145/3345768.3355920

collisions. The backoff time is decremented every slot thereafter
when the node senses the medium idle. When the backoff time
reaches zero, the node can then initiate transmission.

Backof f time = random [0,CW] × slot time (1)

If the transmission is unsuccessful, CW will be doubled for the
next transmission up to a maximum value specified by CWmax . In
the case of a successful transmission, CW is reset to CWmin .

A number of drawbacks with the original BEB algorithm have
been identified. Fairness is one of them; for instance, resetting CW
to CWmin after a successful transmission may cause the node who
succeeds in transmitting to dominate the channel for an arbitrarily
long period of time. As a result, other nodes may suffer from se-
vere short-term unfairness. Additionally, the current state of the
network (e.g., load) should be taken into account in selecting the
most appropriate backoff interval.

Motivated by BEB’s impact on the performance of 802.11, con-
siderable attention from network researchers and practitioners has
focused on optimizing IEEE 802.11’s backoff algorithm.

We categorize related work on improving IEEE 802.11’s BEB
performance in two groups: the first group focuses on how to
increase or decrease the size of CW , whereas the second group
targets setting the values of CWmin and CWmax , i.e., CW ’s upper
and lower bounds. Due to space constraints, we only list references
to efforts more directly related to our work in each group.

Increasing/decreasing CW
Under this category we highlight the MACAW protocol [3], the
History-Based Adaptive Backoff (HBAB) algorithm [1], the In-
verse Binary Exponential Backoff (iBEB) approach [2], the Binary
Negative-Exponential Backoff (BNEB) [10] protocol, and the New
Binary Exponential Back-off (N-BEB) [14].

Setting CW ’s lower and upper bounds
Another group of papers focuses on optimizing the values ofCWmin
andCWmax . Approaches that fall under this category include IEEE
802.11e, [11], and [7].

Using machine learning to improve network
protocol performance
Recently, machine learning (ML) techniques have gained signifi-
cant traction and have been used in a wide range of applications.
Specifically in the context on computer networking performance
management, in [12], the Fixed-Share algorithm is used to estimate
TCP’s round-trip time. In our prior work [5], we estimate collision
rate using an algorithm called SENSE which employs a combina-
tion of Fixed-Share and Exponentially-Weighted Moving Average
(EWMA). In [6], SENSE estimates network contention which is then
used to enable/disable RTS/CTS in IEEE 802.11 networks.

3 AUTOMATICALLY ADJUSTING IEEE
802.11’S CONGESTIONWINDOW

In this section, we introduce the proposed machine learning based
contention window adaptation approach. As the complexity and
heterogeneity of networks and their applications grow, the use of

ML techniques to adequately manage network in order to meet
application requirements becomes increasingly attractive for a num-
ber of reasons. For instance, machine learning algorithms can learn
and adapt to network and application dynamics autonomically.
Some ML techniques do not require a-priori knowledge of the oper-
ating environment; they acquire this knowledge as they operate and
adjust accordingly without needing complex mathematical models
of the system.

To the best of our knowledge, our proposed algorithm is the first
to use ML to automatically adjust IEEE 802.11’sCW based on packet
transmission history.We should point out that one of ourmain goals
was to design an algorithm that achieves significant performance
gains, yet is simple, low cost, low overhead, and easy to implement.
To this end, we designed a simple, yet effective algorithm based on
the Fixed-Share algorithm [8] to tune IEEE 802.11’s CW . We start
with a brief description of the Fixed-Share algorithm.

3.1 Fixed-Share Algorithm
The Fixed-Share algorithm is part of the Multiplicative Weight
algorithmic family which has shown to yield performance improve-
ments in a variety of on-line problems [8], [12]. This family of
algorithms combines predictions of a set of experts {x1,x2,...,xN }
to calculate the overall prediction denoted by ŷt . Each expert has
a weight {w1,w2,...,wN } representing the impact of that expert on
the overall predictor. Based on the difference between each ex-
pert’s prediction and the real data represented by yt , the weight of
each expert is updated [5]. Algorithm 1 shows Fixed-Share Experts’
pseudo-code. Each expert is initialized with a value within the range
of the quantity to be predicted and the weight of all experts is ini-
tialized to 1

N , where N is the number of experts. At every iteration,
based on each expert’s current weight and value, the prediction
for the next trial is calculated as shown in the Prediction step of
the algorithm. The Loss Function step then checks how good the
prediction of each expert was using a loss function Li,t (xi ,yt). The
result of the loss function loss for each expert is used in the Expo-
nential Update step to adjust the experts’ weights by multiplying
the current weight of the i − th expert by e−η×Li,t (xi ,yt). The learn-
ing rate η is used to determine how fast the updates will take effect,
dictating how rapidly the weights of misleading experts will be
reduced. Finally, in the Sharing Weights step, a fixed fraction of
the weights of experts that are performing well is shared among the
other experts. The goal of this step is to prevent large differences
among experts’ weights [9]. The amount of sharing can be adjusted
through the sharing rate parameter α .

3.2 Proposed Approach
We propose a modified version of the Fixed-Share algorithm to
dynamically set IEEE 802.11’s CW . More specifically, as illustrated
in Algorithm 2, we design loss- and gain functions that account
for current network conditions. Our proposed technique works
as follows. Similarly to the standard Fixed-Share algorithm (Algo-
rithm 1), in the Initialization step in Algorithm 2, the weight of all
experts is set to 1

N , where N is the number of experts. Each expert
is assigned a fixed value within the range of [CWmin , CWmax]. In
our current implementation, we assign the values of 15, 22, 33, 50,

Algorithm 1 Fixed-Share Algorithm

Parameters:
η > 0, 0 ≤ α ≤ 1

Initialization:
w1,1=...=wN ,1= 1

N
Prediction:

ŷt=
∑N

1 wi,t×xi∑N
1 wi,t

Loss Function:

Li,t (xi ,yt) =

{
(xi − yt)

2 ,xi ≥ yt

2 × yt ,xi < yt

Exponential Update:
ẃi,t = wi,t × e−η×Li,t (xi ,yt)

Sharing Weights:
Pool =

∑N
i=1 α × ẃi,t wi,t+1 = (1 − α) × ẃi,t +

1
N × Pool

75, 113, 170, 256, 384, 576, 865, and 1023 to 12 experts forming a
geometric sequence with ratio of 1.5.

The reason we pick these values is that first of all we wanted to
keep CWmin and CWmax unchanged according to the IEEE 802.11
standard. Furthermore, since BEB’s adjustment is considered to be
quite aggressive [3], we employ a multiplicative factor of 1.5 which
yields less drastic backoff process.

Additionally, we have experimented with different numbers and
values of experts and have not seen any significant change in the
results. Due to space limitations, we do not include these results.

In the CW Calculation step, ˆCW t , which is CW ’s estimate for
time t , is calculated based on the current value of the experts and
their weights. Clearly, experts with more weight will have more
influence on the next CW . In the Loss/Gain Function step, the
performance of all experts is evaluated based on their value, ˆCW t ,
and whether the previous packet transmission was successful or
not.

Loss/Gain Function: The loss and gain functions are designed
to adjust CW based on present- as well as recent past network
conditions. Our loss/gain function works as follows: if a packet is
transmitted successfully, it means that theremay be additional band-
width available in the network. Therefore, we reduce the weight
of the experts higher than ˆCW t because they are less aggressive
experts. Weight reduction is done proportional to the difference be-
tween the value of that expert andCW which means the higher the
expert is, the more aggressively its weight will be reduced. We also
increase the weight of experts lower than ˆCW t because we want
to push for potentially more aggressive CW . This weight increase
is done proportional to the value of the expert. Experts with value
closer to the current CW will experience higher weight increase.
For the experts with value much lower than the current CW , the
risk of failure is higher, therefore their weight increase is lower.
These weight decrease and increase of experts will result in a lower
value for the next CW and, as a result, the next transmission will
be scheduled more aggressively.

Analogously, in the case of unsuccessful transmissions, the loss/gain
function will increase the weight of experts with values higher than

ˆCW t and reduce the weight of experts with values lower than ˆCW t .

This will result in higher CW for the next packet transmission and
less chance of collision.

Overhead: The overhead incurred by our algorithm is a function
of the number of experts used. There is a cost-performance tradeoff
between the number of experts and how well the algorithm can
capture network dynamics. However, as previously discussed, there
is a diminishing returns effect, wherein beyond a certain number
of experts, there is minimal performance impact. As far as storage
overhead, additional storage is used to keep the experts’ values
and their weights. As for computation overhead, assuming the con-
tention window is adjusted at every attempted transmission, the
CW Calcultation, Loss/Gain Function, and Sharing Weights
steps in Algorithm 2 are executed. These involve simple arithmetic
operations and are not computationally onerous, which are consis-
tent with one of our main design goals, i.e., developing a simple,
light-weight algorithm that can run at line rate. In fact, one of our
directions for future work is to implement our algorithm in a real
testbed to validate its performance.

Algorithm 2 Proposed Algorithm

Initialization:
w1,1=...=wN ,1= 1

N
x1 = CW1,x2 = CW2, ...,xN = CWN ,

CW Calculation:
ˆCW t=⌊

∑N
1 wi,t×xi∑N

1 wi,t
⌋

Loss/Gain Function:
• If packet received successfully:

wi,t+1 =

[1 − xi− ˆCW t

xi] ×wi,t ,xi > ˆCW t

[1 + xi
ˆCW t

] ×wi,t ,xi ≤ ˆCW t

• If packet is not received successfully:

wi,t+1 =

[1 + ˆCW t

xi] ×wi,t ,xi > ˆCW t

[1 − ˆCW t−xi
ˆCW t

] ×wi,t ,xi ≤ ˆCW t

Sharing Weights:
Pool =

∑N
i=1 α × ẃi,t wi,t+1 = (1 − α) × ẃi,t +

1
N × Pool

4 EXPERIMENTAL METHODOLOGY
In this section, we describe our experimental setup including the
scenarios, traffic loads, as well as performance metrics used when
evaluating the proposed approach. We compare the performance
of our technique against both the original IEEE 802.11 contention
window adjustment technique as well as the History-Based Adap-
tive Backoff (HBAB) algorithm [1]. As such, we also provide a brief
overview of HBAB.

4.1 Experimental Setup
We ran experiments using the ns-3 [4] network simulator and its
implementation of the IEEE 802.11n for both infrastructure-based
and ad-hoc network scenarios. In our simulations, we use typologies
with 100 nodes randomly placed in a 1000x1000m2 area. In order to

vary network contention conditions, we vary the number of sender
nodes. We explore how dynamically our method is able to adjust the
contention window and its effect on network performance. Table 1
summarizes the parameters describing our experimental setup and
their values. Note that AODV [13] routing was used only in the
multi-hop ad-hoc experiments.

Traffic Load: We used synthetic data traces as well as traces
collected in real networks to drive our simulations. Table 2 sum-
marizes the synthetic data parameters and their values. Our real
traffic traces ere collected in two different settings, namely: (1) a
public hot spot and (2) a company campus network using a wireless
sniffer (Table 3). Note that since there are 10 and 5 individual flows
in the hot spot and company traces, respectively, we replicate these
flows in scenarios with higher number of nodes.

Performance Metrics: We evaluate our contention window
adjustment technique by comparing its performance against IEEE
802.11’s original mechanism as well as HBAB [1]. As performance
metrics, we use average throughput and average end-to-end delay.
Average throughput is calculated as the ratio between the number
of received packets and the total number of transmitted packets
averaged over all nodes. Average end-to-end delay is given by the
interval of time between when a packet was received and when
it was sent averaged over all received packets. Channel access
fairness is an important issue in MAC protocol design. As such,
we also evaluate the proposed approach’s fairness by comparing
its minimum, maximum, and average throughput against those of
IEEE 802.11’s BEB and HBAB.

Table 1: Simulation setup parameters and their values

Area 1000mx1000m
Number of nodes 100
Traffic CBR and real traces
IEEE 802.11 Version 802.11n
Number of experts 12
CWmin 15
CWmax 1023
Routing protocol AODV

Table 2: Synthetic trace

Simulation time 200s
Traffic type CBR
Frame size 1024 Bytes
Data rate 54 Mbps

4.2 History-Based Adaptive Backoff
We use HBAB in the performance evaluation of our proposed con-
tention window adjustment mechanism as it represents mecha-
nisms that, similarly to ours, use transmission status history to
set CW . History-Based Adaptive Backoff (HBAB) [1] increases or
decreases the congestion window CW based on the current- as
well as past data transmission trials. HBAB defines two parameters

Table 3: Hot spot and company trace

Hot spot Company
Location Coffee shop Company campus
Number of flows 10 5
Duration 20 minutes 30 minutes
Frame size 34-2150 byte range 34-11000 byte range
802.11 version 802.11n 802.11n

α and N ; α is a multiplicative factor used to update CW and N
is the number of past transmission trials considered by the algo-
rithm. The outcome of the previous N transmission trials is stored
in ChannelState; failed transmissions are represented by 0 while
successful ones bt 1. For example, if N = 2, ChannelState = {0,1}
means that the last transmission succeeded but the previous one
failed. Larger values of N mean larger windows into the past but
require, albeit relatively small, additional memory.

Algorithm 3 shows HBAB’s pseudo-code. Note that we follow
HBAB’s implementation in [1] and use α = 1.2 and N = 2, i.e.,
HBAB examines the status of the two previous and consecutive
data transmissions, as well as the current one, to make a decision on
how to adjustCW . In case the current transmission is successful, but
the two previous transmissions failed, i.e.,ChannelState[0] = 0 and
ChannelState[1] = 0, the new value ofCW is set to the currentCW
divided by α . Otherwise, CW is set to CWmin . In case the current
transmission is unsuccessful, CW is multiplied by α .

As illustrated in Algorithm 3, HBAB’s original design presented
in [1] is described only for N = 2. Another reason that we do not
use N > 2 in our implementation of HBAB is because, as shown in
Algorithm 3, HBAB’s state space grows with N which means that
we would need to define "manually" how to adjust CW for all the
possible outcomes of the previous N transmissions.

Algorithm 3 HBAB Algorithm

Initialization:
CW = CWmin ,α > 1

ChannelState[0] = 1,ChannelState[1] = 1

If current transmission succeeds:

CW =

CW
α ,ChannelState[0] = 0

and ChannelState[1] = 0
CWmin ,otherwise

If transmission failed:
CW = CW × α

ChannelState update:
ChannelState[0] = ChannelState[1]
ChannelState[1] = 0, last transmission f ailed

ChannelState[1] = 1, last transmission succeeded

(a) Average throughput (b) Average delay

Figure 1: Average throughput and delay as a function of number of senders for hot-spot traffic trace in infrastructure-based
scenario

(a) Average throughput (b) Average delay

Figure 2: Average throughput and delay as a function of the number of senders for company campus traffic trace in
infrastructure-based scenario

5 RESULTS
As described in Section 4, we evaluate our approach using two
types of scenarios, namely: infrastructure-based and infrastructure-
less (or multi-hop ad-hoc) networks. We start by presenting results
obtained for the infrastructure-based scenarios followed by the
infrastructure-less scenario results. In all graphs, each data point
is calculated by averaging over 10 runs that use different random
seeds.

5.1 Infrastructure-based Scenarios
In the infrastructure-based experiments, randomly selected nodes
send traffic to the Access Point (AP) which is placed in the center
of the area being simulated. We drive the experiments using the
synthetic and real (i.e., hot spot and company campus) traffic traces
described in Section 4 and vary the number of senders as follows:
3, 5, 10, 30, 50, and 100.

Average Throughput and End-to-end Delay: We compare the
average throughput and end-to-end delay of our method against
IEEE 802.11’s BEB and HBAB for different number of nodes and
traffic traces, i.e., synthetic, hot-spot, and company campus data
traces. We observe in all traces, similar trends for both average

throughput and end-to-end delay. Figures 1, and 2 show the average
throughput and end-to-end delay of our method, BEB and HBAB.
Note that, due to space limitations, we do not include average
throughput and end-to-end delay results for the synthetic dataset.
As expected, average throughput decreases and end-to-end delay
increases as the number of senders increases. For lower number
of senders, e.g., 3 and 5, all three algorithms perform similarly.
However, as the number of senders increases resulting in higher
network contention, our approach is able to achieve better average
throughput and end-to-end delay performance when compared to
IEEE 802.11’s BEB and HBAB for all three traffic traces.

Table 4 summarizes the throughput and delay improvement
achieved by our congestion window adaptation algorithm when
compared to BEB’s andHBAB’s for 100 senders in the infrastructure-
based scenario for all traffic traces. We observe that in such more
heavily loaded environments, our approach is able to achieve sig-
nificant gains both in throughput (up to 220% over BEB and 92%
over HBAB) as well as in end-to-end delay (up to 33% over BEB and
up to 21% over HBAB).

Fairness: In order to evaluate the ability of our contention win-
dow adaptation algorithm to provide a fair share of the channel to
participating stations, Table 5 shows the minimum, average, and

Table 4: Throughput and delay improvement of proposed
congestion window adaptation algorithm compared to IEEE
802.11’s BEB and HBAB in infrastructure-based scenario
with 100 senders for all traffic traces

BEB
Throughput

HBAB
Throughput

BEB
Delay

HBAB
Delay

Synthetic 180% 90% 28% 12%
Hot-spot 220% 92% 33% 20%
Company 170% 64% 31% 21%

Table 5: Minimum, average, and maximum throughput, and
standard deviation achieved by our approach, BEB, and
HBAB for synthetic data trace in infrastructure-based sce-
nario with 100 senders

Minimum Average Maximum Standard
(Mbps) (Mbps) (Mbps) Deviation

Proposed 0.64 1.2 1.96 0.48
BEB 0 0.51 2.12 0.89
HBAB 0 0.75 1.56 0.62

maximum throughput reported by stations when using our algo-
rithm compared against BEB and HBAB for the synthetic data trace
in the infrastructure-based scenario with 100 senders. Both the
difference between the maximum and minimum throughput as well
as the standard deviation (also reported in Table 5) show that our
approach yields superior fairness performance when compared to
both BEB and HBAB. As previously discussed, the main reason
for BEB’s less fair channel allocation is due to the reset of CW to
CWmin upon a successful transmission, which gives certain nodes
higher chance to seize the channel. HBAB shows improvement
over BEB’s fairness by avoiding immediate reset of CW to CWmin
after single successful transmission, but still only considers short
term packet transmission history which results in less fair channel
allocation when compared to our approach. We should point out
that BEB is able to yield the highest maximum throughput which
is consistent with its resetting of CW to CWmin upon a successful
transmission.

The graphs in Figure 3 showing CW variation over time for the
nodes with minimum and maximum throughput for the synthetic
trace in the infrastructure-based scenario with 100 senders reiterate
our observations. We notice from Figure 3 that for both BEB and
HBAB, CW for the node that reports the minimum throughput
stays practically constant at CWmax for almost the whole experi-
ment. In the case of the maximum throughput node, its CW varies
considerably between CWmin and CWmax , i.e., 1023, during the
whole run under both BEB and HBAB. Under our approach, the
maximum throughput node’sCW is able to reach steady state quite
fast around 400.

CW Variation: In Figure 3a which shows the CW variation for
the node with maximum throughput, we observe significant CW
oscillation between CWmin and CWmax under BEB and HBAB. In
the case of our approach, CW stays fairly constant throughout the

experiment. The reason is that, after each successful transmission,
the weight of experts with value higher than the currentCW will be
reduced and the weight of experts with value lower than CW will
be increased. Therefore, for the next transmission, since the CW is
calculated as the weighted sum of all experts, its value decreases
slowly. Also, in the case of unsuccessful transmission, the weight of
experts with values higher than current CW are increased and the
weight of experts with values lower than CW are decreased. And
again, since theCW is calculated as the weighted sum of all experts,
the next CW will be slightly higher for the next transmission. In
other words, through the experts and their weights, our approach
is able to account for recent past as well as the present.

Figure 3b shows the variation ofCW over time for the node with
the lowest average throughput in the infrastructure-based scenario
with 100 senders using the synthetic traffic trace. As the results
in Table 5 indicate, BEB’s and HBAB’s minimum throughput is
0 which indicates that there are some nodes in the network that
suffer from starvation. From Figure 3b, we observe that, relatively
early in the experiment, CW of the node with the lowest through-
put stabilizes at CWmax which considerably decreased the node’s
chance to acquire the channel, ultimately resulting in "starvation",
i.e., zero throughput.

5.2 Infrastructure-less Scenarios
In the ad-hoc experiments, randomly selected senders send data
traffic to randomly selected receivers according to the three traffic
traces described in Section 4. Similarly to the infrastructure-based
experiments, the number of senders vary as follows: 3, 5, 10, 30, 50,
and 100.

Average Throughput and End-to-end Delay: We compare the
average throughput and end-to-end delay of our method compared
with BEB and HBAB for different number of senders and traffic
traces in the ad-hoc scenario. Similarly to the trend reported in
the infrastructure-based experiments, we observe that, for lower
number of senders, all three methods perform similarly. However,
when the number of senders increase, which result in higher net-
work contention, our method is able to achieve higher average
throughput and lower average end-to-end delay when compared to
both BEB and HBAB. Figures 4 and 5 show the average throughput
and end-to-end delay of our method compared versus BEB and
HBAB. Similarly to the infrastructure-based experiments, we do
not include average throughput and end-to-end delay results for
the synthetic dataset due to space limitations.

Table 6 summarizes the throughput and delay improvement
achieved by our congestion window adaptation algorithm when
compared to BEB’s and HBAB’s for 100 senders in the ad-hoc sce-
nario for all traffic traces. Similarly to what was observed for the
infrastructure-based experiment, in high contention networks, our
approach yields significant improvement both in average through-
put (up to 257% over BEB and 78% over HBAB) and average end-to-
end delay (up to 37% over BEB and 23% over HBAB).

Fairness: To evaluate our algorithm’s fairness in ad-hoc scenarios,
we show the minimum, average, and maximum throughput for the
synthetic traffic trace with 100 senders in Table 7. Like the results

(a) Maximum throughput (b) Minimum throughput

Figure 3: Contention window size variation over time for the nodes with minimum and maximum throughput for synthetic
trace in infrastructure-based scenario with 100 senders

Table 6: Throughput and delay improvement of proposed
congestion window adaptation algorithm compared to IEEE
802.11’s BEB and HBAB in ad-hoc scenario with 100 senders
for all traffic traces

BEB
Throughput

HBAB
Throughput

BEB
Delay

HBAB
Delay

Synthetic 230% 75% 31% 21%
Hot-spot 240% 78% 37% 23%
Company 257% 63% 35% 17%

Table 7: Minimum, average, and maximum throughput, and
standard deviation achieved by our approach, BEB, and
HBAB for synthetic data trace in ad-hoc scenario with 100
senders

Minimum Average Maximum Standard
Deviation

Proposed 0.43 1.05 1.6 0.41
BEB 0 0.3 1.8 0.75
HBAB 0 0.6 1.2 0.52

reported for the infrastructure-based experiments, our approach
is able to reduce the gap between the minimum and maximum
average throughput with a lower standard deviation, an indication
of its ability to deliver improved fairness when compared to BEB
and HAB.

CW Variation: Figure 6 showsCW variation over time for both the
nodes that yield the maximum and minimum average throughput
under our approach as well as under BEB and HBAB in the ad-hoc
scenario with 100 senders using the synthetic traffic trace. Like
the trend observed in the infrastructure-based experiments, our
approach is able to achieve steady state relatively quickly for both
the nodes with maximum- and minimum throughput. The graphs
in Figure 6 also show that our approach is able to close the gap
between the CW s of the highest- and lowest throughput nodes
which is another indication of improved fairness.

6 CONCLUSION
In this paper, we introduce a simple, yet effective machine learning
approach to adjust the value of IEEE 802.11’s Contention Window
based on present- as well as recent past network contention con-
ditions. Using a wide range of network scenarios and conditions,
we show that our approach outperforms both 802.11’s BEB as well
as an existing contention window adjustment technique that only
considers the last two transmissions. Our results indicate that our
contention window adaptation algorithm is able to deliver consis-
tently higher average throughput, lower end-to-end delay, as well
as improved fairness. As future work, we plan to explore alternate
loss functions as well as validate our approach in real testbeds.

ACKNOWLEDGMENTS
This research has been partly supported by grant CNS 1321151 from
the US National Science Foundation.

REFERENCES
[1] Maali Albalt and Qassim Nasir. 2009. Adaptive backoff algorithm for IEEE 802.11

MAC protocol. International Journal of Communications, Network and System
Sciences 2, 04 (2009), 300.

[2] Khaled Hatem Almotairi. 2013. Inverse binary exponential backoff: Enhanc-
ing short-term fairness for IEEE 802.11 networks. In ISWCS 2013; The Tenth
International Symposium on Wireless Communication Systems. VDE, 1–5.

[3] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. 1994.
MACAW: a media access protocol for wireless LAN’s. ACM SIGCOMM Computer
Communication Review 24, 4 (1994), 212–225.

[4] Gustavo Carneiro. 2010. NS-3: Network simulator 3. In UTM Lab Meeting April,
Vol. 20. 4–5.

[5] Yalda Edalat, Jong-Suk Ahn, and Katia Obraczka. 2016. Smart experts for network
state estimation. IEEE Transactions on Network and Service Management 13, 3
(2016), 622–635.

[6] Yalda Edalat, Katia Obraczka, and Bahador Amiri. 2018. A machine learning
approach for dynamic control of RTS/CTS in WLANs. In Proceedings of the
15th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services. ACM, 432–442.

[7] Lassaad Gannoune. 2006. A Non-linear Dynamic Tuning of the Minimum Con-
tention Window (CW min) for Enhanced Service Differentiation in IEEE 802.11
ad-hoc Networks. In 2006 IEEE 63rd Vehicular Technology Conference, Vol. 3. IEEE,
1266–1271.

[8] David P Helmbold, Darrell DE Long, Tracey L Sconyers, and Bruce Sherrod. 2000.
Adaptive disk spin-down for mobile computers. Mobile Networks and Applications
5, 4 (2000), 285–297.

[9] Mark Herbster and Manfred KWarmuth. 1998. Tracking the best expert. Machine
learning 32, 2 (1998), 151–178.

[10] Hyung Joo Ki, Seung-Hyuk Choi, Min Young Chung, and Tae-Jin Lee. 2006.
Performance evaluation of binary negative-exponential backoff algorithm in

(a) Average throughput (b) Average delay

Figure 4: Average throughput and delay as a function of the number of senders for hot-spot data in ad-hoc scenarios

(a) Average throughput (b) Average delay

Figure 5: Average throughput and delay as a function of the number of nodes for company data in ad-hoc scenarios

(a) Maximum throughput (b) Minimum throughput

Figure 6: Contention window size variation over time for the nodes with minimum and maximum throughput for synthetic
trace in ad-hoc scenario with 100 senders

IEEE 802.11 WLAN. In International Conference on Mobile Ad-Hoc and Sensor
Networks. Springer, 294–303.

[11] Adlen Ksentini, Abdelhamid Nafaa, Abdelhak Gueroui, and Mohamed Naimi.
2005. Determinist contention window algorithm for IEEE 802.11. In 2005 IEEE 16th
International Symposium on Personal, Indoor and Mobile Radio Communications,
Vol. 4. IEEE, 2712–2716.

[12] Bruno Astuto Arouche Nunes, Kerry Veenstra, William Ballenthin, Stephanie
Lukin, and Katia Obraczka. 2014. A machine learning framework for TCP round-
trip time estimation. EURASIP Journal on Wireless Communications and Network-
ing 2014, 1 (2014), 47.

[13] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. 2003. Ad hoc on-demand
distance vector (AODV) routing. Technical Report.

[14] Mohammad Shurman, Bilal Al-Shua’b, Mohammad Alsaedeen, Mamoun F Al-
Mistarihi, and Khalid A Darabkh. 2014. N-BEB: New backoff algorithm for
IEEE 802.11 MAC protocol. In 2014 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE,
540–544.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Automatically Adjusting IEEE 802.11's Congestion Window
	3.1 Fixed-Share Algorithm
	3.2 Proposed Approach

	4 Experimental Methodology
	4.1 Experimental Setup
	4.2 History-Based Adaptive Backoff

	5 Results
	5.1 Infrastructure-based Scenarios
	5.2 Infrastructure-less Scenarios

	6 Conclusion
	Acknowledgments
	References

