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Abstract—Several network protocols, services, and 
applications adjust their operation dynamically based on current 
network states. Consequently, keeping accurate estimates of 
network conditions and performance as they fluctuate over time 
is critical. Notable examples include TCP and IEEE 802.11, both 
of which periodically adapt some of their key operating 
parameters, namely the retransmission timeout and the 
contention window size depending on the average round trip time 
and the number of collisions, respectively. 

In this paper, we present a novel mechanism to estimate 
"near-future" network performance based on past network 
conditions. We call our approach to network performance 
estimation SENSE for Smart Experts for Network State 
Estimation. SENSE uses a simple, yet effective algorithm 
combining a machine learning method known as Fixed-Share 
and Exponentially Weighted Moving Average (EWMA). SENSE 
also introduces novel techniques that improve the predictability 
of the Fixed-Share framework without increasing computational 
complexity. SENSE is thus able to respond to network dynamics 
at different time scales, i.e., long- and medium-term fluctuations 
as well as short-lived variations. We evaluate SENSE’s 
performance using synthetic and real datasets. Our experimental 
results show that, when compared to Fixed-Share and EWMA, 
SENSE yields higher estimation accuracy for all datasets due to 
its ability to more closely track data fluctuations.  
 

Index Terms—Machine learning, computation intelligence, 
network performance, network state estimation 

I. INTRODUCTION 
OMPUTER networks have become one of our society's 
essential commodities and, like power- and water 

distribution systems, are now considered part of our critical 
infrastructure. Consequently, it is crucial to keep them 
operating continuously and delivering adequate performance. 
This is especially true as networks become increasingly more 
complex and the services they provide increasingly more 
sophisticated and demanding. 

Like any complex dynamical system, computer networks' 
performance fluctuates over time influenced by a variety of 
factors such as traffic load, end system load, communication 
link conditions (e.g., propagation channel impairments 
especially in the case of wireless links), etc. In order to adapt 
to network dynamics, most computer network protocols and 
algorithms employ a number of operational parameters that 
constantly estimate current conditions in the network. Notable 
examples include the Transmission Control Protocol (TCP) 
and IEEE 802.11 (Wi-Fi) which adjust the retransmission 
timeout and contention window size, respectively, according 
to network congestion and wireless channel state. More 
specifically, to recover lost packets in a timely manner yet 

minimizing the number of unnecessary retransmissions, TCP 
periodically evaluates the degree of network congestion under 
the assumption that network conditions will stay almost the 
same until the next evaluation period. It uses the round-trip 
time (RTT), i.e., the time between sending a segment and 
receiving confirmation from the other end that the segment 
was received, as a way to gage network load. TCP adjusts its 
retransmission timeout, i.e., the interval of time the TCP 
sender will wait for a segment's acknowledgment from the 
TCP receiver before retransmitting the segment, based on 
TCP’s current estimate of the RTT. To compute its estimate of 
the RTT, TCP runs a simple mechanism known as 
Exponentially Weighted Moving Average (EWMA) with one 
tunable parameter, which determines the relative weight 
between the current RTT measurement and the previous RTT 
estimate. 

The IEEE 802.11 responds to congestion buildup in the 
network by exponentially inflating its back-off window, which 
stipulates the average amount of time that a node should wait 
to transmit after a collision has occurred. The rationale for this 
exponential back off is that collisions are used as congestion 
indicators; and, after a failed attempt to transmit due to a 
collision, the transmitter needs to wait longer before trying 
again. To estimate the "near-future" channel state, IEEE 
802.11 counts the number of consecutive collisions that took 
place during the current estimation time window and 
exponentially expands the size of the back-off window 
according to this collision count.  

Clearly, the performance of these widely used network 
protocols heavily relies on how correctly their prediction 
mechanisms forecast "near-future" network state. Their 
implicit assumption is that network conditions change 
smoothly, i.e., that "near-future" state is closely correlated to 
previous history. As a result, their performance can be 
negatively affected when their operational parameters are set 
without accurately accounting for network dynamics. TCP, for 
instance, statically presets the weight factor in its RTT 
EWMA equation irrespective of the target network 
environment and conditions. The fixed weight factor in TCP's 
RTT EWMA calculation is a relative ratio deciding how much 
the current RTT measurement and the current RTT estimate 
should influence the new RTT estimate. The more dynamic 
the network conditions, the more weight should be placed on 
the current RTT measurement. Therefore, to achieve better 
performance, the fixed weight factor should change 
dynamically depending on network conditions. 

IEEE 802.11 rigidly cold-starts and counts collisions at 
every new frame’s transmission without considering previous 
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channel state. This means that considerable resources may be 
wasted in the process of reaching an adequate congestion 
window since 802.11's network estimation technique does not 
keep track of the network state after successful transmissions. 

Motivated by the need to accurately estimate near-term 
future network conditions whose rate of change may vary over 
time, this paper introduces Smart Experts for Network State 
Estimation (SENSE)1. SENSE is a simple, yet efficient 
machine learning predictor based on the Fixed-Share approach 
[1] [2] [6] [7]. Unlike conventional network state estimators, 
SENSE provides a general framework that can incorporate any 
traditional estimator as an "expert". SENSE can then 
dynamically select the best experts among the set of all 
experts being used depending on their performance. It swiftly 
chooses experts that more faithfully capture network dynamics 
by penalizing poorly performing experts. 

The original Fixed-Share algorithm [1] has four main 
drawbacks. First, for every dataset, a fix value within the 
range we are trying to predict is assigned to each expert. Thus, 
the range of the estimation is required for proper assignment 
of these values. Second, its accuracy is sensitive to the number 
of experts and typically, the more experts, the more accurate 
the prediction since the algorithm basically singles out a few 
well-behaved experts among the set of competing experts. 
There is clearly, a "diminishing return" effect after the number 
of experts gets too high. Third, the "loss function" penalizing 
experts, relies exclusively on the magnitude of the current 
error, instead of whether errors have recently increased or 
decreased. Additionally, all poorly performing experts are 
equally penalized. Depending on the recent error variation 
history, the loss function should intensify or alleviate the 
penalty for each individual expert to accelerate convergence. 
Finally, to promptly adapt to abrupt changes even when recent 
measurements become distinctly different from previous ones, 
the original Fixed-Share algorithm constantly tries to boost the 
weight given to poorly performing experts while offsetting the 
weight of well performing ones. This feature leads to precision 
degradation as too much emphasis is placed on poorly 
performing experts, especially when sudden changes rarely 
happen. 

To address these problems, SENSE introduces three 
techniques, namely: (1) smart experts, (2) META-learning, 
and (3) Level-shift. SENSE's smart experts reduce sensitivity 
to the number of experts and eliminate the need for a-priori 
knowledge of the data that we are trying to predict. SENSE 
employs EWMA equations with different weights as its 
experts and normalizes errors by the maximum observable 
output. SENSE's META-learning algorithm expedites 
convergence by tracing recent past history and adjusting each 
expert's penalty accordingly. Finally, the Level-shift 
mechanism [12] employed by SENSE improves its response to 
sudden data changes by bounding SENSE's learning time 
window, and upon detecting dissimilar data patterns, SENSE 
reinitializes its tunable parameters and starts to relearn. 

We evaluate SENSE using a variety of datasets including 

 
1 An earlier version of this work appeared in [3] 

synthetic and real data. In all cases, SENSE outperforms 
predictors based on pure EWMA as well as Fixed-Share. 
Furthermore, a key advantage of SENSE is that it 
automatically adjusts to the data it is trying to predict. As a 
result, SENSE yields superior performance for all datasets 
used in our experiments when compared to "pure" Fixed-Share 
and EWMA. Our results also indicate that the performance of 
EWMA is quite sensitive to its "smoothing" factor, which 
determines how much weight will be placed on the "past" 
versus the "present" when predicting the "future". Another key 
advantage of SENSE's ability to automatically adjust to the 
data is that, unlike Fixed-Share, it needs no a-priori 
information about the dataset and is minimally sensitive to the 
number of experts. In our experiments, SENSE yields higher 
prediction accuracy when compared to the Fixed-Share 
algorithm and EWMA.  

The rest of the paper is organized as follows. Section II 
presents some background on history-based prediction 
algorithms, namely EWMA, Fixed-Share, and its predecessor, 
Static Experts. Section III describes SENSE in detail and 
Section IV compares the performance of SENSE against 
EWMA and Fixed-Share algorithm. Section V evaluates 
SENSE’s new techniques and parameters, while Section VI 
provides an overview of related works. Finally, Section VII 
concludes the paper with directions for future work. 

II. BACKGROUND 
SENSE is based on a combination of history-based 

predictors, more specifically EWMA and Fixed-Share. In this 
section we review EWMA as well as Fixed-Share and its 
predecessor, Static Experts, both of which are examples of the 
Multiplicative Weight algorithmic family. 

 

A. EWMA 
EWMA based predictors, calculate an exponentially 

weighted mean of the previous data. Equation (1) shows the 
basic equation of exponential smoothing given by Hunter [14] 
where 𝑦! and 𝑥! represent, respectively, a sequence of data 
point that has been observed and a sequence of forecasts given 
by the predictor. Furthermore, 𝛼 in (1) is the "smoothing 
factor", a value between 0 and 1 specifying how much relative 
weight is given to previous estimates (i.e., the "past") versus 
new samples (the "present"). 

                       (1) 
The problem of using EWMA based predictors is choosing 

appropriate 𝛼, which should be based on the dataset. Even 
though there has been no generally accepted statistical 
technique for choosing  𝛼, our observations indicate that 𝛼 
needs to be determined based on the small-lag autocorrelation. 
Recall that the autocorrelation is a correlation coefficient that 
instead of measuring the correlation between two different 
variables, it measures the correlation between two values of 
the same variable at times 𝑡! and 𝑡!!!. The autocorrelation can 
be used to detect the degree of randomness in data i.e., 
whether data similar to the present data would appear in the 

 xt= α  ×  yt−1+ (1-α) ×  xt−1
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future. The autocorrelation parameter named "time lag" 
measures how soon the same data pattern will repeat. 

Our experiments with a variety of datasets indicate that 𝛼 
should be chosen based on the small-lag autocorrelation. If 
data is random, the small-lag autocorrelation should be near 
zero. In this case, low values of 𝛼 are desirable: low 𝛼 has 
EWMA act as a low-pass filter smoothing out sudden 
fluctuations occurred in the input data series. In other words, 
low values of 𝛼, favor the "past" over the "present" when 
computing the current estimate. On the other hand, if data is 
non-random, then small-lag autocorrelations will be 
significantly non-zero. In this case, high 𝛼 acts as a high-pass 
filter hardly filtering out measurement noise. It means that, 
with high 𝛼, the "present" plays a more important role.  

The problem of current EWMA based predictors is that they 
have to statically set 𝛼, for example, by trying to guess what 
the data will look like in the future. SENSE, however, runs a 
small number of EWMA experts with different 𝛼’s and, using 
the Fixed-Share technique, dynamically picks the best 
performing EWMA depending on network dynamics.  

 

B. Multiplicative Weights Method 
The Multiplicative Weight algorithmic family has shown to 

yield performance improvements in a variety of on-line 
problems [8]. Aiming at minimizing the prediction error, this 
family of algorithms combines predictions of a set of experts 
{𝑥!, 𝑥!,… , 𝑥!} to compute the overall prediction denoted by 
𝑦!. To denote the impact of each expert on the overall 
predictor, it associates each expert with a weight from 
{𝑤!,𝑤!,… ,𝑤!}. After each trial, the weight of each expert is 
updated depending on the difference between its prediction 
and the real data represented by 𝑦!. Weights of “well-
performing” experts are not changed, while the weights of 
experts that are not performing well are reduced. 

As an illustration, Fig. 1 shows the implementation of the 
Multiplicative Weight algorithm with N experts using a 
hardware block diagram. The shaded boxes on the left- and 
middle columns correspond, respectively, to the experts 
denoted as 𝑥! and the penalty function. The process of 
updating weights and generating the final predictions is 
represented as a circuit employing the addition, division, and 
multiplication operators. 

Equation (2) represents the circuit of Fig. 1 as a 
mathematical expression. As shown in (2), 𝑦!!! can be 
represented by a sum of products of 𝛼!,!  and 𝑥!,! where 𝛼!,! is 
the experts’ weights (0 < 𝛼!,! < 1) which are dynamically and 
systematically adjusted and 𝑥!,! is each expert’s prediction.  
Equation (2) confirms that the Fixed-Share algorithm is a 
selection process, which favors experts whose predictions are 
closer to the real data by incrementally growing their weights, 
while reducing other experts' weights. 

As highlighted in [1], several schemes have been proposed 
for updating experts' weights in multiplicative weight 
algorithms. In the remaining of this section, we discuss two 
well-known Multiplicative Weight algorithms, namely Static 
Experts and Fixed-Share.  

	
  
Fig. 1. Hardware block diagram of Multiplicative Weight algorithm 

 

 

Where             (2) 

 
1) Static Experts Algorithm 

Static Experts, whose pseudo code is presented in 
Algorithm 1, is the simplest version of the Multiplicative 
Weight algorithmic family. Its steps, as described in 
Algorithm 1, are common to all Multiplicative Weight 
algorithms with N experts. The Prediction step in Algorithm 1 
computes the current prediction by (1) summing, over N 
experts, the products of the expert multiplied by its current 
weight and then (2) normalizing the result by the sum of the 
weights. Using a given “loss function”, the Loss function step 
checks, at each prediction trial, how good of a prediction each 
expert yields. Then, in the Exponential updates step, the loss 
computed in the Loss function step is used to adjust the 
experts' weights, which will be used in the next trial.  

Algorithm 1. Static Expert Algorithm 
Parameters: 

𝜂 > 0,      0 ≤ 𝛼   ≤ 1 
Initialization: 

  𝑤!,! = ⋯ = 𝑤!,! =
1
𝑁

 
Prediction: 

𝑦! =
𝑤!,! ∗ 𝑥!!

!

𝑤!,!!
!

 

Loss Function: 
𝐿!,! 𝑥! , 𝑦!
= (𝑥! − 𝑦!)!                          , 𝑥! ≥ 𝑦!

2 ∗ 𝑦!                                        , 𝑥! < 𝑦!
 

Exponential Update: 
                                                                                                                      𝑤!,! = 𝑤!,! ∗ 𝑒!!∗!!,!(!!,!!) 

 
The Static Experts algorithm has one main drawback: it is 

not able to adjust to abrupt changes in data fast enough. This is 

⌢yt+1 =
xi,ti=1

N
∑ ×wi,t × exp{−η × Li,t (xi, yt )}i=1

N
∑

wi,t × exp{−η × Li,t (xi, yt )}i=1

N
∑i=1

N
∑

= αi,t × xi,ti=1

N
∑

αi,t =
wi,t × exp{−η × Li,t (xi, yt )}i=1

N
∑

wi,t × exp{−η × Li,t (xi, yt )}i=1

N
∑i=1

N
∑



 4 

because it takes a relatively long time for the weight of an 
expert to either shoot up or down when the expert's 
performance suddenly changes following an abrupt change is 
the data.  

 
2) Fixed-Share Algorithm 

To solve the problem of slow convergence of well-
performing experts in the Static Experts algorithm, [1] 
introduced Fixed-Share. The main goal of the Fixed-Share 
approach is to improve Static Experts' performance, while 
keeping its simplicity. The basic idea of Fixed-Share is to 
prevent large differences among experts' weights; to this end, 
it shares a fixed fraction of the weights of experts that are 
performing well among the other experts. This additional step, 
called "Sharing weights" and shown in (3), redistributes 
evenly a certain fixed fraction of pool, which is the sum of a 
preset portion of each weight.  

            (3) 

Although the Fixed-Share algorithm has been shown to 
perform well when estimating network variables in [2], it 
exhibits four main weaknesses. First, it must have a priori 
knowledge of the dataset's range in order to properly set the 
value of its experts. Likewise, the degree of sharing in the 
Sharing weights step (3) cannot be appropriately determined 
unless the number of level shifts is known in advance. Level 
shift [12] is defined as a significant change in the mean of 
observed data and is discussed in detail in Section III. Second, 
the accuracy of the algorithm is quite sensitive to the number 
of experts whose values determine the granularity over the 
range of values that the variable in question can assume, and 
ultimately its accuracy. However, as discussed in Section 
II.B.1, more experts may also introduce additional errors. 
Third, since the loss function is pre-determined and not 
changed considering the target environment and application, it 
is not always able to exhibit adequate convergence. Finally, if 
experts perform consistently well for long periods of time, 
sharing their weight with other experts whose performance is 
not adequate, compromises the algorithm's overall 
convergence and performance.  

III. SENSE 
This section provides a detailed description of our online 

estimator, SENSE, which employs a combination of Fixed-
Share with EWMA. Then, we discuss SENSE’s accuracy 
compared to Multiplicative Weight algorithmic algorithms.  

 

A. SENSE Algorithm 
More specifically, SENSE, whose pseudo-code is shown in 

Algorithm 2, is an enhanced version of the Fixed-Share 
estimator, where, instead of fixed-value experts, EWMA 
filters are employed as experts. Table I summarizes SENSE’s 
variables and their descriptions. 

More specifically, in the EWMA experts step of Algorithm 
2, the prediction of each expert,  𝑥!,!, is calculated as a 

weighted sum of the previously observed data item 𝑦!!! and 
the previous prediction 𝑥!,!!! where 𝛼 represents the relative 
weight between  𝑥!,!!! and  𝑦!!!. Initially, each expert is 
assigned a weight, 𝑤!,! = 1/𝑁, where N is the total number of 
experts; each expert is also assigned an 𝛼! value between 0 
and 1 which differentiates experts from each other. In SENSE, 
EWMA experts replace numeric experts used in the Fixed-
Share algorithm, which results in making SENSE's accuracy 
less sensitive to the number of experts used.  

 
TABLE I 

SENSE’S VARIABLES 
Variable Description 

  𝑥! Prediction of expert i 
𝑦! Observed data at time t 
𝑦! SENSE’s prediction for time t 
𝑤! Weight of expert i 
𝑁𝐸! Normalized error of expert i 
N Total number of experts 

𝐿  (𝑥!,, 𝑡)!,! Loss of expert i at time t 
𝑦!"# Maximum data observed so far 
𝜂  ! Determines degree of penalizing expert i 

𝛽 Determines how much 𝜂  ! should be 
increased or decreased 

EL	
   Error limit (based on user’s desired 
accuracy) 

𝜂!"#, 𝜂!"# Limit experts’ weight 

j Determines the time window to evaluate 
expert’s performance (used to update 𝜂  !) 

 
As illustrated in the Prediction step of Algorithm 2, at every 

trial t, SENSE calculates the current prediction 𝑦! by adding 
the weighted predictions from N experts. After computing 𝑦!, 
the loss function step in Algorithm 2 calculates the absolute 
difference between the actual outcome, 𝑦! , and each expert’s 
forecast 𝑥!,!; Then it normalizes this error with the maximum 
outcome 𝑦!"#, which is updated with the largest outcome 
observed yet. We have experimented with different loss 
functions and picked the one shown in Algorithm 2 for its 
efficiency as well as simplicity. Finally, the loss function, 
𝐿  (𝑥!,, 𝑡)!,!, is set to either the normalized error 𝑁𝐸!,! or the 
NULL function depending on 𝑁𝐸!,!’s value. If 𝑁𝐸!,! lies within 
the satisfactory boundary EL, SENSE does not penalize 
experts differently than the original Fixed-Share algorithm, 
which constantly adjusts the weight until the prediction equals 
the outcome. Here, EL can be set to any fraction between 0 
and 1 according to the accuracy required by the application.  

SENSE then runs the META-learning step, which either 
multiplicatively increases or decreases 𝜂  !,! by 𝛽 if the 
normalized error keeps growing or shrinking, respectively, for 
j consecutive trials. Otherwise, it does not change 𝜂  !,!. This 
META-learning step aims at deciding how to adjust the 
experts' weights based on their recent-past predictions. 
Clearly, the less accurate an expert's prediction is, the more 
severe that expert is penalized. In our experiments, we 
considered a three-trial observation window (i.e., j = 2) to 
characterize the recent past but larger observation windows 

Pool = α
i=1

N
∑ × #wi,t wi,t+1 = (1−α)× #wi,t +

1
N
× pool
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can be used. To prevent each expert’s 𝜂 from becoming too 
small or too large, 𝜂  !,!’s range is specified as [𝜂  !"#, 𝜂  !"#]. 
We explore how 𝜂  !,!’s range impacts SENSE’s behavior in 
Section V.B. Recall that the goal of META-learning is to 
speed up convergence of each expert’s prediction to the 
observed outcome. Thus, the Weight update step updates 𝑤!,! 
with what has been learned, i.e., it multiplies 𝑤!,! by e to the 
power of the product of the loss function 𝐿  (𝑥!,, 𝑡)!,! and 
learning factor 𝜂  !,!.  

Algorithm 2. SENSE Algorithm 
Initialization: 

  𝜂!"# =   𝜂!"#!!"!#       𝜂!"# = 𝜂!"#!!"!#             𝛽 = 𝛽!"!# 

                𝐸𝐿 = 𝐸𝐿!"#$!!"#$%"!!!""#$!"%      𝑤!,! = ⋯ = 𝑤!,! =
1
𝑁

 
 
EWMA Experts: 

𝑥!,! = 𝑦!!! ∗ 𝛼! + 1 − 𝛼! ∗ 𝑥!,!!! 
Prediction: 

𝑦! =
𝑤!,! ∗ 𝑥!,!!

!

𝑤!,!!
!

 

Loss Function: 

    𝑁𝐸!,! =
𝑥!,! − 𝑦!     
𝑦!"#

   , 𝐿(𝑥!,, 𝑡)!,! =
𝑁𝑈𝐿𝐿                    , 𝑁𝐸!,! ≤ 𝐸𝐿
𝑁𝐸!,!                            ,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
META Learning: 

𝜂!,! =

min  (𝜂!"# , 𝜂!,!!! ∗ 𝛽   )          ,𝑁𝐸!,! > 𝑁𝐸!,!!(!!!) > 𝑁𝐸!,!!!

max 𝜂!"#,
𝜂!,!!!
𝛽

                         ,𝑁𝐸!,! < 𝑁𝐸!,!!(!!!) < 𝑁𝐸!,!!!

𝜂!,!!!                                                                                                                                        ,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Weight Update: 

𝑤!,!!! = 𝑤!,! ∗ 𝑒!!!,!∗!(!!,,!)!,! 
 

Restart Learning: 
If  Level  Shift  is  detected  at  𝑛𝑘  then, 
𝑤!,! =   𝑤!,! ∗ 𝑒 !!,!∗!

!!!!
!!!!! (!!,,!)!,! 

 
Finally, SENSE employs a Level-shift step [12] to detect 

any significant change in the mean of the observed data. 
Suppose {𝑋!,𝑋!,… ,𝑋!} is the sequence of data, where 𝑋! is 
the first data after the last detected level shift. The 
measurement 𝑋! is an increasing (decreasing) level shift if it 
satisfies the following three conditions: 

(1) Data {𝑋!,𝑋!,… ,𝑋!!!} are all lower (higher) than the 
data {𝑋! ,… ,𝑋!}, 

(2) The median of {𝑋!,𝑋!,… ,𝑋!!!} is lower (higher) 
than the median of {𝑋! ,… ,𝑋!} by more than a 
relative difference 𝜒, and 

(3) 𝑘 + 2 ≤ 𝑛. 
The last condition helps to prevent misinterpreting an 

outlier as a level shift by making sure that a long enough 
sequence of data is observed to filter out ephemeral 
fluctuations. Upon the detection of a level shift, SENSE 
restarts its experts by only considering data after the level shift 

occurrence and resetting  𝜂 for each expert. This means that the 
weight of each expert is determined only by the accuracy of 
prediction after the last level shift. In other words, the Level-
shift step slides its learning window to consider only data after 
the last level shift in the experts’ weight computation.  

SENSE's level shift mechanism improves estimation 
accuracy when compared to Fixed-Share, which keeps weights 
of poorly performing experts from becoming negligible. 
It enables SENSE to adapt to persistent conditions as swiftly 
as Fixed-Share, while allowing poor experts’ weight to 
become as infinitesimal as in Static Experts algorithm. 

In summary, SENSE employs three main techniques as 
follows:  
− Smart experts reduce the sensitivity to experts and 

eliminate the need for a-priori data knowledge. SENSE 
employs EWMA equations with different weights as its 
experts and normalizes errors by the maximum 
observable output.  

− META-learning expedites convergence by tracing 
recent past history and adjusting each expert's penalty 
accordingly. 

− Level-shift improves SENSE's response to sudden data 
changes by bounding SENSE's learning time window; 
upon detecting dissimilar data patterns, SENSE 
reinitializes its tunable parameters and starts to re-learn. 

 

B. SENSE’s Accuracy 
According to [1], Static Experts’ inaccuracy or "loss" is 

bounded by the sum of two terms, the total loss of the best 
expert and the total number of experts involved. This is 
described in (4), where 𝐿 𝑆,𝐴   and 𝐿 𝑆,𝐸𝑥𝑝𝑒𝑟𝑡!  represent 
the loss of Static Experts algorithm A over the whole dataset S 
and the loss of the best expert i respectively. Furthermore, c is 
a constant determined by the type of loss function employed 
while n is the total number of experts. This upper 
bound represents how far Static Experts’ prediction will 
deviate from the corresponding real data. Equation (4) 
confirms that the more experts used, the higher the additional 
loss (i.e., on top of the best expert’s loss) incurred by the 
Static Experts algorithm. 

                                           (4) 

This upper bound on Static Experts’ loss is only valid under 
the assumption that a given expert acts as the best expert over 
the whole dataset. However, when data patterns change so that 
experts take turns as the best expert, this upper bound needs to 
be recalculated as follows. At first we need to count all 
possible scenarios that can happen under dynamic 
environments. When all samples (trials) l are divided into k+1 
segments, for example, the number of ways to place k+1 
segments over l trials is lCk+1. Here, a segment refers to a 
sequence of trials for which a given expert is the best one. 
Since the number of ways to map n experts to the best expert 
in each k+1 segments is n(n-1)k, then all possible cases 
amount to lCk+1n(n-1)k.  If we consider each case as a 
“partition” expert, a specific partition expert can act as the best 
one over the whole trial set so that we can adopt (4) to predict 

L(S,A) ≤ L(S,Experti )+ c lnn
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the accuracy of Static Experts under dynamic environments. 
Here, the sequence of segments and its associated sequence of 
best experts are called a partition. Namely under dynamic 
datasets, the additional loss of Static Experts due to the 
number of experts becomes c[(k+1)logn+klogl/k+k]. 

To mitigate the dependence of Static Experts’ upper bound 
on l and k, the Fixed-Share was introduced in [1]. Its main 
goal is to lessen the additional loss of the best partition, not the 
best expert like Static Experts, by introducing the Share 
Update operation. In Fixed-Share, the loss consists of three 
components as shown in (5), namely: the loss of the best 
partition 𝐿  (𝒫! 𝑆 ), the number of experts, and the final 
loss incurred by the Share update operation L(sharing). 
However, Fixed-Share has a problem of inappropriately 
distributing weights of experts. This is because L(sharing) has 
a term that depends on the number of whole trials l, similarly 
to Static Experts. Note that Fixed Share tends to cut down a 
relatively large portion of the best expert’s weight in 
preparation for sudden changes in the dataset, whose 
occurrence times are unpredictable. 

             (5) 
Unlike Fixed-Share and Static Experts, SENSE’s loss upper 

bound is independent of the length of whole trials. It is 
dependent on SENSE’s Level-shift mechanism, which restarts 
experts’ weights more rapidly without sacrificing of the best 
expert. 

IV. EVALUATING SENSE’S PERFORMANCE 
We evaluate SENSE using a variety of datasets and 

compare SENSE's performance against that of the original 
Fixed-Share algorithm and EWMA. 

In the first set of experiments, we use synthetic data that 
exhibit different periodic patterns. We use both sine and 
square wave signals with a range of frequencies. These 
experiments systematically test how well SENSE can track the 
variation of input data over a wide spectrum of frequencies 
when compared to Fixed-Share and EWMA with different 
values of its smoothing factor, 𝛼.  

 
TABLE II 

SENSE’S PARAMETERS 

Parameter Value 
𝛽 2 

EL 0.01 
𝜂!"# 10 
𝜂!"# 100 

N 4 
𝐸𝑥𝑝𝑒𝑟𝑡  1!𝑠  𝛼 0.2 
𝐸𝑥𝑝𝑒𝑟𝑡  2!𝑠  𝛼 0.4 
𝐸𝑥𝑝𝑒𝑟𝑡  3!𝑠  𝛼 0.6 
𝐸𝑥𝑝𝑒𝑟𝑡  4′𝑠  𝛼 0.8 

j 2 
 
For a thorough comparative study, we also apply SENSE to 

the RTT dataset used in [2] and compare its predictions 

against estimates obtained using: (1) the original Fixed-Share 
algorithm, (2) Jacobson's TCP RTT estimation algorithm [15] 
(which is a variant of EWMA), and (3) “pure” EWMA with 
different smoothing factors.  

In addition, we run SENSE over real collision rate data 
collected from a production Wireless LAN environment where 
access points (APs) periodically collect traffic and load 
statistics such as the number of retransmissions, total number 
of frames transmitted, etc.  

Table II lists the default values of SENSE’s parameters 
common to all results presented in this section. The 
performance impact of SENSE's techniques and parameters is 
evaluated in Section V.B. 

 

A. Datasets with Periodic Patterns 
These first sets of experiments compare SENSE's accuracy 

with EWMA and Fixed-Share when estimating datasets that 
follow periodic patterns. We use a dataset consisting of 1,000 
samples. For the sine wave pattern, these samples create one 
period for 0.001 Hz and 200 periods for 0.5 Hz. The amplitude 
of our sine waves fluctuates between 0.25 and 0.75. For the 
square wave, these samples generate 40 periods for 0.025 Hz 
and 200 periods for 0.5 Hz. The amplitude of our square 
waves fluctuates between 0.1 and 0.7.  

Choosing the best 𝛼 value depends on data autocorrelation 
and is a key factor for EWMA based estimators’ performance. 
Values of 𝛼 closer to one have less of a smoothing effect and 
give more weight to recent changes in the data, while values 
of 𝛼 closer to zero have a greater smoothing effect and are less 
responsive to recent changes. Note that, choosing 𝛼 should be 
based on how quickly or slowly the dataset change; lower 𝛼 
worsens the accuracy for rapidly changing datasets, while 
higher 𝛼 degrades the accuracy when data fluctuations are 
smoother. We show that SENSE eliminates EWMA's 
dependency on 𝛼. 

In these experiments, SENSE uses four EWMA experts 
with 𝛼 values evenly spaced between 0 and 1, i.e., 0.2, 0.4, 
0.6, and 0.8. We compare SENSE against four EWMA 
equations with same 𝛼 values as SENSE, namely: 0.2, 0.4, 
0.6, and 0.8 which represent low, medium, and high EWMA 
smoothing factors. We also compare SENSE with Fixed-Share 
using 100 experts. In our prior work [2], we used the Fixed-
Share algorithm with 100 experts to estimate TCP's RTT and, 
as expected, observed that beyond 100 experts the resulting 
improvement in prediction accuracy is not significant given 
the additional processing cost and convergence time.   Each 
expert was assigned a value in the dataset’s range; recall that 
the expert's value represent its prediction. In the case of sine 
and square waves, each expert’s prediction in the Fixed-Share 
Expert algorithm is drawn from a uniform distribution from 0 
to 1. As for the input data function, we use two patterns: sine- 
(results plotted in Fig. 2(a)) and square waves (results shown 
in Fig. 2(b)).  

Fig. 2(a) plots the accuracy of the three approaches as 
measured by their average error as a function of the sine wave 
frequency. Each point in Fig. 2(a) is calculated by averaging 

L(S,A) ≤ L(Pk (S))+ c lnn+ L(sharing)
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the absolute error of all 1,000 samples. As expected, at higher 
frequencies, the input's current value tends to be further apart 
from the last outcome, which makes it harder to accurately 
predict. Fig. 2(a) confirms that SENSE produces lower 
average error than any of the four EWMA filters and Fixed-
Share over the entire frequency range. As the frequency goes 
up, errors from EWMA filters rise steeply regardless of the 𝛼 
value. EWMA with higher 𝛼 tends to exhibit better accuracy 
over the lower frequency range, while EWMA with lower 𝛼 
performs better for frequencies higher than 0.1 Hz.  

The reason for this phenomenon is that at lower 
frequencies, each sample tends to be similar to its previous 
one; consequently, tracking the sine wave with higher 𝛼 by 
placing more weight on recent trials, yields higher accuracy. 
At high frequency where recent trials are less correlated to the 
upcoming trial, however, it is better to stick to previous 
history that will repeat after a short period of time. Indeed, the 
higher 𝛼 causes some constant amount of error at every 
measurement while the lower alternatively results small and 
large errors.  

Fixed-Share’s average error for various frequencies does 
not change significantly and its graph has a smaller slope. For 
sine wave’s low frequencies, Fixed-Share shows larger error 
than other methods. The reason is that it takes longer for 
Fixed-Share to offset its large number of poor experts’ weights 
and boost few well performing experts’ weights. In the case of 
higher frequencies, it does not follow rapid data fluctuations 
and rather stays around the average value of sine wave due to 
a large number of experts and few trials for adaptation. 

In contrast to "pure" EWMA and Fixed-Share, SENSE 
dynamically adapts according to the frequency by choosing an 
appropriate EWMA expert for a given frequency range. As the 
frequency increase, SENSE shifts its reliance from EWMA 
with higher 𝛼 to EWMA with lower 𝛼.  

Fig. 2(b) shows the average error of SENSE, four EWMA 
filters and Fixed-Share method when driven by square waves. 
This figure exhibits very similar trend as Fig. 2(a) where 
SENSE outperforms other methods at all frequencies. 
SENSE’s smart experts are able to automatically switch 
between EWMA with high 𝛼 value at low frequencies and 
EWMA with low 𝛼 over the high frequency range. 

 

 
(a) Sine waves 

 
(b) Square Waves 

Fig. 2. Average error comparison over periodic data 

B. Estimating TCP Round-Trip Times (RTT) 
We also evaluated SENSE's accuracy when applied to real 

datasets. As discussed in Section I, TCP, one of the most 
widely deployed Internet protocols, uses round-trip time 
(RTT) as an indication of network load. TCP employs its RTT 
estimates to trigger TCP's core functions such as error- and 
congestion control. Motivated by how critical accurate RTT 
estimates are for TCP's performance, we evaluate SENSE's 
accuracy in estimating RTTs in comparison to the Fixed-Share 
algorithm employed in [2], as well as TCP's original RTT 
estimator based on Jacobson’s well-known EWMA variant 
[15] as shown in (6), where 𝛼 is typically set to 0.85. 

            (6) 

For these experiments, we use the RTT dataset in [2]. These 
RTTs were measured when a 16 MB file was transferred over 
a real network. As shown in Fig. 3, SENSE is able to keep 
track of the RTT variations more faithfully than Fixed-Share 
and Jacobson over the entire observation period.  

 

 
Fig. 3. RTT prediction by SENSE, Fixed-Share and Jacobson for each data 
sample (represented by a trial number) 
 

Table III summarizes the average normalized error of 
SENSE, the four different EWMA filters, Fixed-Share and 
Jacobson’s algorithms when applied to the same RTT data of 
Fig. 3. In order to calculate the average normalized error, we 
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first divide the absolute error of each sample by the real data it 
is trying to predict; then, we average these normalized errors. 
To compute the error ratio, we choose SENSE’s average 
normalized error as baseline. Then, we calculate the other 
methods' relative error compared to SENSE as the difference 
between their average normalized error divided by SENSE’s 
average normalized error. The resulting error ratio confirms 
that SENSE's accuracy outperforms both Fixed-Share and 
EWMA.  
 

TABLE III 
AVERAGE NORMALIZED ERROR COMPARISON FOR RTT DATASET 

 AVERAGE 
NORMALIZED ERROR ERROR RATIO (%) 

SENSE 0.26 - 
FIXED-SHARE 0.33 26% 

JACOBSON 0.79 191% 
EWMA-0.2 0.63 142% 
EWMA-0.4 0.44 71% 
EWMA-0.6 0.34 32% 
EWMA-0.8 0.29 11% 

 

C. Estimating Collision Rates 
To further evaluate SENSE's ability to forecast network 

dynamics in real environments, we applied SENSE to collision 
rate datasets measured in a production Wireless LAN 
(WLAN) environment. Collision rates were collected at access 
points (APs) as they send traffic to a node associated with it 
while other associated nodes concurrently communicate with 
the AP, as they usually do. Specifically, we transmit 100 Mbps 
of UDP traffic from the AP to a node for 200 seconds while 
we simultaneously run different types of traffic between 
interfering APs and interfering nodes (i.e., located close to the 
node receiving data from the AP). Collision rates are 
calculated every second as the ratio of the number of 
retransmitted packets to the total number of transmitted 
packets. Since the test AP and the test node are physically 
close to one another, we assume that retransmitted packets are 
solely due to collision, and not to noise interference. 

Fig. 4 depicts how SENSE and Fixed-Share track a time 
series of real collision rates gathered from the test network for 
200 seconds. Similarly to the previous experiment, we use 100 
experts for Fixed-Share and, based on the collision rate data, 
Fixed-Share's 100 experts are uniformly distributed between 0 
and 0.2. We observe from Fig. 4 that, initially, the dataset 
contains considerable "noise" caused by bursty traffic 
generated by short-lived flows from applications like the Web. 
After 100 trials (seconds), longer-lived flows resulting from 
traffic such as wireless video transmission becomes dominant, 
yielding "smoother" collision rate variations. Fig. 4 shows 
that, while SENSE does not exactly follow the sudden jumps 
in the first half of the time series, its accuracy is significantly 
higher than Fixed-Share's. And, in the second half of the 
graph, SENSE is capable of accurately tracking variations in 
the data.  

As shown in Fig. 4, Fixed-Share does not exhibit adequate 
accuracy and, according to Table VI, results in an 

unacceptably high error ratio. These results confirmed that 
Fixed-Share's lack of agility is due to the very short-lived data 
variations, which do not allow enough time to "train" Fixed-
Share's experts. 

 

 
Fig. 4. Trace of SENSE’s collision rate prediction vs. Fixed- Share for each 

data sample (represented by a trial number) 

 
Fig. 5. SENSE vs. EWMA for highly variant portion of collision rate 

Fig. 5 shows a closer view of the behavior of SENSE 
compared against two EWMA filters over a 25-second interval 
between 65-90 seconds of Fig. 4. Note that in this span of 
time, data fluctuate significantly, which makes it very difficult 
for any predictor to predict accurately. In this period, SENSE 
behaves like a low-pass filter, e.g., EWMA with 𝛼 set to 0.2, 
while the curve corresponding to EWMA with 𝛼 value of 0.8 
looks like the real data but delayed by a full trial, which results 
in the highest error. Table IV summarizes the results shown in 
Fig. 5 by comparing the average error and error ratio for the 
first 100 trials of the collision rate dataset. It confirms that, for 
the first half of the dataset, which is quite "noisy", SENSE acts 
as an EWMA predictor with lower 𝛼 and yields highest 
accuracy. 

Fig. 6 zooms in the performance of SENSE and two 
EWMA filters over the interval of 100-145 seconds in Fig. 4. 
As shown in Fig. 6, SENSE quickly catches up with collision 
rate changes and behaves similarly to EWMA with 𝛼 = 0.8 
(acting as a high-pass filter). In contrast, EWMA with 𝛼 value 
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of 0.2 lags behind and cannot keep up with the collision rate 
variation. During this period, EWMA with 𝛼 value of 0.2 
exhibits poor performance comparing to the other methods. 

 
TABLE IV 

AVERAGE ERROR FOR FIRST 100 TRIALS OF COLLISION RATE DATASET 
 AVERAGE ERROR ERROR RATIO (%) 

SENSE 0.0323 - 
EWMA-0.2 0.033 2.5% 
EWMA-0.4 0.0335 4% 
EWMA-0.6 0.0346 7% 
EWMA-0.8 0.0365 13% 

 

 
Fig. 6. SENSE vs. EWMA for smooth portion of collision rate 

TABLE V 
AVERAGE ERROR FOR SECOND 100 TRIALS OF COLLISION RATE DATASET 

 AVERAGE ERROR ERROR RATIO (%) 

SENSE 0.0138 - 
EWMA-0.2 0.0193 40% 
EWMA-0.4 0.0158 14% 
EWMA-0.6 0.0148 7% 
EWMA-0.8 0.0142 3% 

 
Table V lists the average error and error ratio for the last 

100 trials of Fig. 4. During this interval where EWMA with 𝛼 
= 0.8 is clearly a better choice, SENSE behaves as EWMA 
predictor with high 𝛼 but achieves slightly higher accuracy.  

Table VI summarizes the average error and error ratio of the 
five different forecast schemes over the whole collision rate 
dataset depicted in Fig. 4. It confirms SENSE’s ability to 
automatically adapt its performance based on network 
dynamics. In the case of uncorrelated behavior, SENSE gives 
more weight to experts with low 𝛼 and in the case of 
correlated data, more weight is given to experts with high 𝛼 
value. Since EWMA does not have this capability, for the first 
half of the dataset, EWMA with 𝛼 = 0.8 is worse than SENSE 
by 13% (from Table IV) and for the second half of the dataset, 
EWMA with 𝛼 = 0.2 is significantly worse than SENSE (40% 
from Table V). Table VI clearly evidences that SENSE yields 
higher accuracy when compared to all the other four methods 
by at least 8% for the complete dataset. This comparison 

confirms SENSE’s dynamic behavior to selectively and 
swiftly chooses the best expert according to the observed 
network dynamics. During noisy periods in the dataset, 
SENSE picks an expert with low 𝛼 while during periods when 
the data changes more smoothly, SENSE prefers an expert 
with high 𝛼 value.  

 
TABLE VI 

AVERAGE ERROR FOR THE WHOLE COLLISION RATE DATASET 
 AVERAGE ERROR ERROR RATIO (%) 

SENSE 0.013 - 
EWMA-0.2 0.0257 9% 
EWMA-0.4 0.0244 8% 
EWMA-0.6 0.0244 8% 
EWMA-0.8 0.025 8.5% 

FIXED-SHARE 0.0774 466% 
 

D. Prediction Summary 
The accuracy of Fixed-Share algorithm depends on prior 

knowledge on the range of dataset, large number of experts, 
and proper expert distribution that are not usually available in 
on-line problem. Even though more experts are essential for 
better accuracy, this requires a lot of trials for Fixed-Share 
algorithm to settle down to the best expert, resulting in 
significant inaccuracy under the dynamic situations.  

EWMA prediction accuracy is significantly dependent on 
the value of 𝛼. As it is shown in our results, finding the proper 
𝛼 value requires prior statistical information about data, which 
is again not available in on-line problems. 

SENSE eliminates the requirement for this prior knowledge 
by using smart experts. SENSE dynamically determines 
appropriate expert values and weights to minimize prediction 
error. Our results showed that SENSE agility results in best 
prediction performance under various scenarios and data set.  

V. IMPACT OF SENSE’S TECHNIQUES AND PARAMETERS 
In this section, we examine the impact of SENSE's 

parameters and techniques, i.e., Level-shift and META-
learning. We start by running the same experiments used in [1] 
which were designed to show how Fixed-Share algorithm 
tracks the predictions of the best expert; tracking best expert's 
predictions has been shown to improve prediction accuracy 
when compared to the Static Experts for rapidly changing 
data. Our results show that SENSE's best expert weight 
adjustment mechanism performs as well as Fixed-Share for 
rapidly changing data.  

 

A. Best Expert’s Weight Recovery 
As described in Section II.B, Fixed-Share was proposed to 

overcome the slow weight recovery of the best expert in the 
Static Expert algorithm. This feature of Fixed-Share was 
evaluated in [1], which reports on how Fixed-Share tracks the 
predictions of the best expert compared to the Static Experts 
algorithm. We conducted exactly the same experiments 
described in [1]; our input data consists of a sequence of 800 
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trials with three level shifts at trials 201, 401 and 601. For 
trials in the range of [1,200], [201,400], [401,600], and 
[601,800], the outcome y!, is 0, 10, 5, and 15, respectively. 
The overall prediction was based on 64 experts. Every group 
of 200 trials has its own best expert, which changes at every 
shift. Best expert’s prediction comes from a uniform random 
distribution on a smaller range than typical experts. For 
example, for trial [0,200], since the outcome is always 0, 
expert’s values are chosen from a uniform random distribution 
between (0, !

!
) and (0, !

!
0.1) for the typical and best experts, 

respectively.  
 

(a) Best expert's weight in Static Expert Algorithm 
 

(b) Best expert's weight in Fixed-Share algorithm 
 

 
(c) Best expert's weight in SENSE 

Fig. 7. Best expert's weight recovery test 

Fig. 7(a), (b), and (c) plot the weight change of the best 
expert in the three algorithms during four 200-trial segments. 
Confirming the results reported in [1], Fig. 7(a) and (b) show 
that in the first 200-trial segment, Static Experts performed 
comparably to Fixed-Share, whereas in the remaining three 
segments, it considerably under-performed. For Static Experts, 
it takes almost 100 trials for the new best expert’s weight to 
approach 1 from almost 0. In contrast, as shown in Fig. 7(b), 
Fixed-Share can quickly learn the new best expert for the 
current segment. We should note that, as in [1], the sharing 
degree parameter (𝛼) is set to its best value considering the 
number of shifts in data, which is not always the case. Our 
results as plotted in Fig. 7(c) confirm that SENSE can learn as 
quickly as Fixed-Share. SENSE's quick learning ability is 
accomplished using Level-shift.  
 

B. Impact Of Parameters 
In this section, we evaluate the effect of SENSE's tunable 

parameters such as number of experts, 𝛽, 𝜂  !"# and 𝜂  !"#. 
Although results presented in this section are from 
experiments using datasets following sine wave patterns only, 
we observed similar results when we ran these experiments 
with our other datasets.  

The experiments whose results are shown in Fig. 8 evaluate 
SENSE’s sensitivity to the number of experts. We run SENSE 
with different numbers of experts on a sine wave input over a 
range of frequencies. The values of 𝛼 are uniformly 
distributed between 0 and 1; for instance, in the case of 4 
experts, we use 𝛼 values of 0.2, 0,4, 0.6 and 0.8. Table VII 
shows 𝛼 values used for this experiment. As can be observed 
in Fig. 8, SENSE’s performance changes only slightly when 
the number of experts increases beyond 2. This is consistent 
with our observations in [2]. 

 
TABLE VII 

Α VALUES FOR DIFFERENT NUMBER OF EXPERTS 
Number of 

experts 
Values of 𝜶  

1 0.5 
2 0.25, 0.75 
4 0.2, 0.4, 0.6, 0.8 
8 0.125, 0.25, …, 0.875, 1 

16 0.0625, 0.125, …, 0.875, 0.9375, 1 
32 0.03125, 0.0625, …, 0.9375, 0.968, 1 

100 0.01, 0.02, 0.03, …, 0.98, 0.99, 1 
 

Fig. 9 shows the impact of META-learning's 𝛽 parameter 
on SENSE’s behavior by plotting the average error-frequency 
curves for different 𝛽 values. We observe that the difference 
in accuracy is almost indistinguishable for different 𝛽. This 
can be explained by the fact that each expert does its best to 
keep track of the input data. META-learning is invoked only 
when errors tend to continuously increase or decrease since it 
is designed to severely penalize static experts that maintain 
their prediction regardless of current measurements. 
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Fig. 8. SENSE’s sensitivity to number of experts over sine waves 

 

 
Fig. 9. SENSE’s sensitivity to 𝜷 over sine waves 

We also evaluated the impact of the META-learning 
parameters, 𝜂!"# and 𝜂!"# on SENSE’s performance. Fig. 10 
shows the average error rate for each pair of (𝜂!"#, 𝜂!"#) 
using, as input, to sine waves with different frequencies. We 
observed that different values of 𝜂!"# and 𝜂!"# do not have 
significant effect on SENSE’s performance. In our 
experiments, we used 𝜂!"# = 10 and 𝜂!"# = 100. 

 

 
Fig. 10. SENSE's sensitivity to ETHA-min and ETHA-max over sine waves 

C. Impact of Level-shift and META-learning  
We evaluate the effect of the Level-shift and META-

learning methods on SENSE's performance.  Fig. 11 and 12 

show the increase in accuracy (percentage of average error 
improvement) when SENSE uses:  (1) Level-shift only, (2) 
META-learning only, and (3) Combined Level-shift and 
META-learning. Both figures confirm that these techniques 
improve the performance of SENSE. Note that the 
improvements resulting from Level-shift on RTT are much 
higher than on collision rate. The reason is that the RTT data 
has a larger number of level shifts and SENSE's Level-shift 
mechanism can detect them and adjust the experts' weights to 
follow the variations in the data. On the other hand, in the 
collision rate dataset, data fluctuates significantly and does not 
trigger the Level-shift mechanism. 

Similarly to Level-shift, META-learning yields larger 
contribution to SENSE’s performance for the RTT dataset 
than collision rate. And again, the reason is that the RTT 
dataset exhibits smoother behavior; therefore, META-learning 
is able to effectively increase the weight of “good” experts and 
decrease the weight of “bad” experts, which improves 
SENSE's performance overall. Consequently, the combined 
improvement of both techniques for the RTT dataset is almost 
25% and just below 10% for the collision rate dataset.  
 

 
Fig. 11. Impact of Level-shift and META-learning methods on RTT dataset 

 

 
Fig. 12. Impact of Level-shift and META-learning methods on collision rate 

dataset 

VI. RELATED WORK 
Several network protocols and applications make use of 

heuristics to estimate and adapt to the dynamics of the 
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underlying network. Since the literature on the topic is quite 
extensive, in this section, we focus on reviewing work that is 
more closely related to ours. 

EWMA is a well-known technique adopted by several 
communication protocols. As previously pointed out, TCP 
uses EWMA to estimate near-term round-trip time (RTT), 
which is used to set TCP's retransmission timeout (RTO). 
Since, depending on the network environment, RTTs may 
vary considerably in short timescales, a number of 
mechanisms have been proposed to either replace or augment 
EWMA. DualPats, a real time TCP throughput prediction 
service for distributed applications, was introduced in [13]. It 
utilizes EWMA to make throughput predictions of large 
transfers augmented with active probing. In [12], EWMA 
along with other simple linear predictors was employed to 
show that; in general, history-based methods predict the 
throughput of TCP transfers more accurately than formula-
based techniques, i.e., mathematical models that express TCP 
performance as a function of network path characteristics. In 
[16], collision rate is estimated by an EWMA based 
mechanism to dynamically adjust the contention window 
parameters in 802.11 MAC protocol.  

More recently, a few efforts have used machine learning 
techniques to estimate near-term network variables. For 
instance, the work in [2] proposed a TCP RTT predictor based 
on a simple yet efficient machine learning algorithm called 
Fixed-Share [1]. The results presented in [2] show that, for a 
variety of network scenarios and conditions, the proposed 
Fixed-Share based predictor was able to improve RTT 
estimation significantly (thus yielding higher throughput) 
compared to existing approaches. Support Vector Regression 
(SVR) [10] also introduced a machine learning method, which 
can accept multiple inputs to generate accurate predictions. 
This method was used in [11] to predict the end-to-end TCP 
throughput for arbitrary file sizes. 

A variant of the Fixed-Share approach has also been 
employed in the context of medium-access control (MAC). 
More specifically, in [9], a collision-free schedule based MAC 
that uses Fixed-Share to predict offered traffic load was 
proposed. Simulations as well as testbed results show the 
benefits of traffic prediction to schedule flows at the MAC 
layer in terms of delivery delay and delivery ration when 
compared to contention based MAC protocols. In [4], a 
method to predict direct and staggered collision probabilities 
of each node in WLANs has been introduced. Using 
information from an access point (AP) about network traffic 
broadcast as well as the AP's local measurements, each node 
obtains a spatial picture of the network in order to estimate 
probabilities of collisions locally. Similar techniques to the 
one used in [4] have been employed in [5] to improve 
throughput and link adaption in 802.11 networks with hidden 
terminals. In particular, a link adaption algorithm, in which 
nodes estimate the channel conditions by comparing the 
observed loss statistics to the expected loss statistics based on 
the estimated collision probability, is employed to select the 
ideal modulation rate under the estimated network conditions. 

VII. CONCLUSIONS AND FUTURE WORKS 
In this paper, we introduced SENSE (Smart Experts for 

Network State Estimation) a novel network state predictor 
based on a simple, yet efficient machine learning technique 
called Fixed-Share. SENSE improves the Fixed-Share 
algorithm by employing Exponentially Weighted Moving 
Average (EWMA)-based "smart" experts, META-learning, 
and Level-shift techniques. Our experiments on both synthetic 
and real datasets confirm that SENSE can automatically adapt 
to fluctuations of different time scales, which sets it apart from 
"static" techniques such as "pure" EWMA and Fixed-Share. 
Our experiments over a variety of datasets indicate that 
SENSE provides higher prediction accuracy over the Fixed-
Share algorithm and EWMA. 

As future research directions, we plan to apply SENSE to 
various network protocols such as IEEE 802.11e and X-MAC, 
which require channel state estimation to achieve better 
performance. To flexibly manage the degree of differentiation 
among classes of IEEE 802.11e traffic, we plan to adjust the 
protocol’s contention window based on the collision rate 
forecast by SENSE. We also plan to use SENSE’s collision 
rate forecast to dynamically enable/disable the RTS/CTS 
feature in 802.11. 

In power-aware MAC protocols such as X-MAC, we will 
develop an algorithm to dynamically adjust the sleep time of 
nodes according to the traffic load predicted by SENSE. We 
will also continue to improve SENSE; for example, we plan to 
devise a mechanism that allows the experts' smoothing factor, 
α, to be automatically derived based on the input data. 
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