
HAL Id: hal-01849907
https://hal.inria.fr/hal-01849907

Submitted on 26 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handover and Load Balancing for Distributed Network
Control: Applications in ITS Message Dissemination

Anuj Kaul, Li Xue, Katia Obraczka, Mateus Santos, Thierry Turletti

To cite this version:
Anuj Kaul, Li Xue, Katia Obraczka, Mateus Santos, Thierry Turletti. Handover and Load Balancing
for Distributed Network Control: Applications in ITS Message Dissemination. The 27th International
Conference on Computer Communications and Networks (ICCCN 2018) , Jul 2018, Hangzhou, China.
<hal-01849907>

https://hal.inria.fr/hal-01849907
https://hal.archives-ouvertes.fr

Handover and Load Balancing for Distributed

Network Control: Applications in ITS Message

Dissemination

Anuj Kaul, Li Xue, Katia Obraczka

UC Santa Cruz

{anujkaul,katia}@soe.ucsc.edu

xueli@ucsc.edu

Mateus A. S. Santos

Ericsson Research, Brazil

mateus.santos@ericsson.com

Thierry Turletti

Université Côte d’Azur, Inria

thierry.turletti@inria.fr

Abstract—In this paper, we build upon our prior work on
D2-ITS, a flexible and extensible framework to dynamically
distribute network control to enable message dissemination in
Intelligent Transport Systems (ITS), and extend it with handover
and load balancing capabilities. More specifically, D2-ITS’ new
handover feature allows a controller to automatically “delegate”
control of a vehicle to another controller as the vehicle moves.
Control delegation can also be used as a way to balance load
among controllers and ensure that required application quality
of service is maintained. We showcase D2-ITS’ handover and
load-balancing features using the Mininet-Wifi network simula-
tor/emulator. Our preliminary experiments show D2-ITS’ ability
to seamlessly handover control of vehicles as they move.

Index Terms—intelligent transport systems, software defined
networking, distributed network control, next-generation vehic-
ular network, handover

I. INTRODUCTION

According to the European Union’s 2010/40/EU Directive

[1], Intelligent Transport Systems (ITS) are defined as “sys-

tems in which information and communication technologies

are applied in the field of road transport, including infras-

tructure, vehicles and users, and in traffic management and

mobility management, as well as for interfaces with other

modes of transport”. As such, ITS is pushing the envelope

and establishing next frontiers in a number of information

and communication technology, including vehicular networks

(VANETs) and vehicular communication. In the context of ITS

applications, vehicles can exchange safety information, e.g., to

assist drivers in avoiding accidents, to perform autonomous- or

self-driving tasks, to coordinate traffic flow, communicate road

conditions, etc. Furthermore, information flow can also support

“infotainment” services, navigation, etc. [2]. For instance,

the European Telecommunications Standards Institute (ETSI)

defined multiple messages to support ITS services such as

Road Hazard Warning [3].

In VANETs, there are two main types of communi-

cations, namely Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I). As vehicles get equipped with increas-

ingly more computation- and storage capabilities as well as

more complex sensors (e.g., cameras, radars, etc.), vehicular

communication will require not only more resources from

the underlying communication infrastructure, but also also

more stringent quality-of-service guarantees (e.g., latency,

bandwidth, etc). In order to support growing vehicular com-

munication demands, new technologies such as Dedicated

Short Range Communications (DSRC) [4], which enables

V2V communication, have been proposed to ensure that

stringent requirements (e.g., extremely low latency messages

for autonomous driving) can be met. As such, VANETs will

likely employ heterogeneous underlying technologies includ-

ing multiple radio access technologies, such as IEEE 802.11,

IEEE802.11p, and cellular technologies such as Long Term

Evolution (LTE) and its enhancements towards fifth-generation

(5G) networks.

As ITS applications become more diverse and demand

more resources and as new communication technologies be-

come available, VANET’s network infrastructure is faced with

considerable challenges, i.e., accommodate underlying hetero-

geneous communication technologies, while satisfying ever

more demanding applications. Software Defined Networking

(SDN) [5], through control and data plane separation and

centralized intelligence, is considered a key technology en-

abler to achieve flexible, programmable, and high-performing

next-generation vehicular networks [6], [7]. Its application to

VANETs has been proposed in recent years. However, logi-

cally centralized control function or static control distribution

are not compatible with VANET’s scalability, geographic dis-

tribution, administrative decentralization, and diverse quality-

of-service requirements. In [8], we propose the Dynamic

Distributed Network Control for ITS, or D2-ITS, a flexible

and dynamically distributed network control framework, which

aims at addressing the scalability, heterogeneity, delay intol-

erance, and decentralization requirements of ITS applications.

To this end, D2-ITS’ distributed control plane: (1) is decoupled

from the data plane, and (2) is based on a control hierarchy that

can dynamically adjust to current environment and network

conditions in order to support ITS application requirements.

In this paper, we build upon our D2-ITS framework and

extend it with handover and load balancing capabilities. More

specifically, D2-ITS’ new handover feature allows a controller

to automatically “delegate” control of a vehicle to another

controller as the vehicle moves. Control delegation can also be

used as a way to balance load among controllers and ensure

that required application quality of service is maintained. We

showcase D2-ITS’ handover and load-balancing features using

the Mininet-Wifi network simulator/emulator [9].

The remainder of the paper is organized as follows. Section

II reviews the related works while Section III provides a brief

description of the D2-ITS architecture and model. In Section

IV, we discuss different types of handover and their trade

offs, and in Section V present D2-ITS’s handover and load

balancing features, including their algorithms and implemen-

tation. Section VI describes our experimental methodology,

experiments we conducted and their results. Finally, Section

VII concludes and discusses directions for future work.

II. RELATED WORK

Controlling and managing network resources in VANETs

is a challenging and complex task. Abundant literature is

available on theoretical research (e.g., [6], [7], [10]).

There has also been several efforts that conduct experi-

mental evaluation of new technologies to support VANETs.

For example, the work in [11] presents VANET emulation

experiments in Mininet-WiFi [9] to show the applicability and

benefits of SDN to VANETs. They define a new implementa-

tion setup for the vehicle to enable more realistic experiments.

The proposed setup consists of combining two Mininet-WiFi

”objects”, namely station and switch, which emulate end-

devices and switches, respectively. It enables the use of

heterogeneous wireless interfaces which can support V2V and

V2I communication coupled with a software switch that can

support programmable flow management by a centralized SDN

controller. DeVANET [12] proposes a decentralized SDN-

based VANET architecture where each domain is controlled by

a controller. However, DeVANET does not consider dynamic

control distribution in response to application needs and cur-

rent network and environment conditions. Another SDN-based

centralized control approach for VANETs is presented in [13].

Experiments based on the OpenNet simulator using POX as

the SDN controller compare performance against a traditional

network control plane (i.e., not using SDN) in terms of packet

delivery ratio, throughout, and packet delay.

Though not specifically applied to VANETs, the work

presented in [14] describes a load balancing handover scheme

performed by a centralized controller which selects APs clients

should associate with as they move. The proposed handover

mechanism is demonstrated using Mininet-Wifi experiments.

As previously pointed out, in [8], we propose D2-ITS, a

novel dynamically distributed network control plane frame-

work and show how it is able to support ITS’ Road Hazard

Warning (RHW) message dissemination application.

III. D2-ITS

As illustrated in Figure 1, D2-ITS’ control plane is decou-

pled from the data plane (following the SDN model), however

it can be distributed across multiple controllers according to

a control hierarchy. In this particular example, controllers

at the highest level of the D2-ITS hierarchy are located at

cellular base stations (RBS), whereas second-level controllers

are located at road-side units (RSUs). As shown in the figure,

RSUs are controlling vehicles in Domains A and B, whereas

Domain C vehicles are being controlled by the controller

in one of the RBSs. These “local” controllers which are

located closer to devices being controlled and their physical

environment are able to react much faster to underlying

dynamics besides maintaining topology knowledge through

periodic updates from controlled devices.

Fig. 1. D2-ITS Architecture.

A. Control Plane

Controller-to-controller communication happens through the

east-west interface and is essential for control state synchro-

nization, topology discovery and maintenance, controller- and

vehicle authentication, etc. In the case of ITS’ Road Hazard

Warning (RHW) service, an event-based road message dissem-

ination service specified by the European Telecommunications

Standards Institute (ETSI), Cooperative Awareness Messages

(CAMs), which may carry measurement reports, vehicle in-

formation (e.g., location, speed), and vehicle authentication

information, are also part of the control plane 1. Figure 2

illustrates how CAM messages are processed by controllers.

The control plane also includes controller-to-switch com-

munication which, in SDN terminology, is referred to as

the southbound interface. Through the southbound interface,

controllers send data forwarding rules to the data forwarding

devices (i.e., vehicles in our ITS scenario) they control.

B. Data Plane

Decoupled from the control pane, D2-ITS’ data plane

focuses solely on forwarding data messages using ”rules”

installed in forwarding devices by the controller. In general,

ITS applications will involve Vehicle-to-Vehicle (V2V) com-

munication, Vehicle-to-Infrastructure (V2I) / Infrastructure-to-

Vehicle (I2V) communication, Infrastructure-to-Infrastructure

(I2I) communication, or a combination thereof.

• Vehicle-to-Vehicle Data Plane: Data can be forwarded be-

tween vehicles through V2V direct connection or through

1More information on ETSI Intelligent Transport Systems standards is
available at http://www.etsi.org/technologies-clusters/technologies/intelligent-
transport.

Fig. 2. D2-ITS controller’s processing of CAM messages

devices which are part of the data forwarding infrastruc-

ture, e.g., Road-Side Units (RSUs) using V2I, I2I and I2V

communication. For example, in the case of autonomous

driving communication, messages from vehicles can be

directly delivered to other vehicles in the domain. On

the other hand, as mentioned in [8] and as illustrated in

Figure 1, if Node 1 in Domain A needs to communicate

with Node 2 in Domain B, Domain A’s RSU can relay

traffic to Domain B’s RSU (I2I communication), which

will then deliver it to Node 2.

• Vehicle-to-Infrastructure (V2I) / Infrastructure-to-Vehicle

(I2V) Data Plane: In ITS, the infrastructure itself may

originate messages, e.g., to communicate road conditions,

alerts, etc. ITS’ Road Hazard Warning (RHW) service

defines a variety of events including traffic jams, haz-

ardous conditions and messages that will be generated

to alert road users (e.g., cars, trucks) of such events

For example, Decentralized Environmental Notification

Messages (DENMs) [3] are mainly used to provide the

necessary alerts in the case of emergency situations (e.g.,

eminent risk of collision) or warnings (e.g., road conges-

tion conditions). As such, DENMs should be conveyed

through the communication infrastructure and delivered

to road users in the geographic area affected by the event,

also called ”relevance area” [3].

Figure 3 illustrates the processing of DENM messages by the

controller.

IV. D2-ITS HANDOVER AND LOAD BALANCING

In [8], we demonstrated that by decoupling the control-

from the data plane, D2-ITS leverages network programma-

bility to address ITS scalability, delay intolerance and decen-

tralization. In this work, we extend D2-ITS with handover

and load balancing capabilities in order maintain continuous

service availability and satisfy application quality-of-service

requirements when subject to conditions such as unpredictable

mobility patterns of fast moving vehicles, communication

channel impairments, etc.

A. Handover

Communication networks that support user- or device mo-

bility should be able to provide continuous service availability

Fig. 3. D2-ITS controller’s processing of DENM messages

while users/devices are moving. In infrastructure-based net-

works, e.g. cellular networks or wireless LANs (WLANs), a

handover (or handoff) refers to the process of transferring an

ongoing call or data session from the current infrastructure

device to which the mobile is associated (e.g., cellular base

station, a WLAN access point, or AP) to another infrastructure

device. Handovers can occur when the mobile device moves

away from its current network point of attachment and thus out

of its transmission range and gets closer to another. Handovers

can also occur for load balancing, e.g., when an AP is near-

or at capacity and decides to offload current or incoming

associations to a nearby, less loaded AP. This usually improves

call quality and user experience. In VANETs, vehicles may

move at relatively high speeds (e.g., compared to pedestrians)

and also have limited degrees of freedom due to the fact that

they need to use roadways [15]. In D2-ITS, handovers happen

when a controller delegates control of a vehicle to another

controller due to vehicle mobility or in order to balance

controller load.

In general, handovers can be classified according to different

criteria. For example, depending on when they are initiated,

handovers are either ”hard” or ”soft”:

• Hard Handover: In this case, the association with the

current controller is released either before or as the

association with the new controller is established. As

such, disruption in connectivity may occur which may

result in data loss.

• Soft Handover: In soft handover, before breaking the

previous connection to the old controller, a new con-

nection to the new controller is established and active

sessions are transfered to the new controller. Once the

active sessions are transfered, the connection to the old

controller is broken.

Handovers can also be classified depending on who initiates

them, as follows:

• In controller-initiated handovers, the controller decides

to initiate the handover of some of its connected vehicles

Fig. 4. RHW communication using gateways

to another controller, either at the same hierarchical

level (vertical delegation), or across hierarchical levels

(horizontal delegation). For example, depending on its

current load, a controller can decide to handover one

or more vehicles that it currently controls (e.g., it can

choose vehicles currently generating high traffic load) to

a neighboring controller.

• In vehicle-initiated handovers, the vehicle itself decides

to initiate the handover to a neighboring controller. For

example, depending upon the signal strength or trans-

mission errors, a vehicle may decide to associate itself

to a neighboring controller with bettwr signal quality.

However, for security purposes, controllers need to au-

thenticate vehicles in order to authorize the handover.

B. Handover Steps

The handover process can be divided into 3 phases:

• Controller discovery: In D2-ITS, controllers broadcast

beacon messages periodically. Beacons contain infor-

mation about the controller, including IP address, port

number, current load, etc. Once a vehicle receives a

beacon from a controller, it calculates the corresponding

Received Signal Strength Indicato (RSSI) value. Vehicles

store this information in their local database and also

propagate it to the controller to which it is connected.

The controller or the vehicle can use RRSI information

to decide whether a handover should be initiated.

• Controller selection: Using the information in beacons,

different criteria (e.g., RSSI value as discussed above) can

be used to select the handover’s target controller. Once the

controller is selected, either the controller or the vehicle

can initiate the handover.

• Association: In D2-ITS, once the target controller for

the handover is selected, the vehicle proceeds with the

association. Also, the current controller can send the

current state it has about the vehicle to the next controller.

This helps reduce or eliminate the authentication process

of the vehicle by the target controller.

V. D2-ITS HANDOVER DESIGN AND IMPLEMENTATION

Figure 4 shows a simple handover scenario with two RSU

controllers, each of which controlling a vehicle. The figure

Fig. 5. Handover initiated by controller

Fig. 6. Vehicle-initiated handover

also illustrates D2-ITS’ software components present in the

controller and vehicle. As shown in Figure 5, the D2-ITS

controller builds upon an SDN controller and uses a local

database to store state information (information about cur-

rently controlled nodes, neighboring controllers, etc), as well

as a handover initiator, which is described in more detail in

Section V-C below. The vehicle itself runs a software switch, a

local database, and, in order to handle handovers, also includes

a beacon consumer and handover intiator, which are also

described in Section V-C.

A. Controller-Initiated Handover

Figure 5 illustrates the workflow of controller-initiated han-

dover as well as D2-ITS’ software components present in the

controller and vehicle. In this particular scenario, RSU A is

controlling a vehicle which is about to be handed over to RSU

B. The sequence of steps illustrated in Figure 5 is as follows:

1 RSU A’s controller periodically broadcasts beacon mes-

sages.

2 Upon receiving beacon messages from the controller, the

vehicle’s software switch forwards them to the vehicle’s

beacon consumer application.

3 The beacon consumer processes the beacon and updates

this information in the vehicle’s local database.

4 These updates generate an update notification to the

vehicle’s and the controller’s (in this case the controller

in RSU A) handover initiator.

5 When the handover criteria of RSU A’s handover ini-

tiator are met, the controller selects the target controller

for the handover and initiates the handover request to the

vehicle. The controller also fetches the vehicle’s state

information from its local database and sends it to the

new controller, in this caseo, RSU B.

6 Upon receiving the handover request from its controller,

the switch inside the vehicle starts to initiate link estab-

lishment (or association) with the new controller (RSU

B).

B. Vehicle-Initiated Handover

Figure 6 illustrates the vehicle-initiated handover workflow.

1-4 : Similar to controller-initiated handover as explained

above.

5 When the handover criteria of Handover application

within vehicle are met, switch within the vehicle sends

the request to initiate handover to the controller.

6 After controller A validates the handover request, it

sends approve handover request.Controller also fetches

the vehicle information from its local database and sends

vehicle state information to the new controller of RSU B.

This is again similar to the controller initiated handover

scenario.

7 After the switch inside the vehicle receives approve

handover request from controller, switch starts to initiate

link establishment.

C. Handover Extensions to D2-ITS

To achieve seamless handover in D2-ITS, we included the

following extensions to D2-ITS’s original design (as described

in [8]):

• Beacons: For the purpose of controller discovery by

vehicles, controllers periodically send beacon messages

which are heard by vehicles in the proximity of the

controller. Note that, while some protocols like IEEE

802.11 already generate periodic beacon messages, others

such as LTE do not.

• Vehicle database: To store information related to neigh-

boring controllers, we use a database in the vehicle

where we keep the following information about known

controllers:

– RSSI value;

– Controller IP address;

– Controller port number;

– Time when last beacon was received.

• Beacon-consumer application: Beacon consumer ap-

plication would co-locate with OVS inside the vehicle.

The functionality of the beacon consumer application

is to consume the beacon messages from neighboring

controllers and to update the table described above.

• Handover-initiator application: There would be two

different handover-initiator applications:

– Handover-initiator application at vehicle: This appli-

cation would reside in the vehicle and would listen

to the updates on the ovsdb table. Specific sets of

criteria to initiate the handover are configured in

this application. When those criteria are met, it will

initiate the handover.

– Handover-initiator application at controller: This ap-

plication would reside in the controller and would

listen to the updates on the ovsdb table remotely.

Similar to the Handover-initiator application at vehi-

cle, specific configurable handover criteria are set in

this application and, when they are met, handover is

triggered.

VI. EXPERIMENTAL EVALUATION

The goal of this simulation is to investigate and compare

handover latency and packet loss of D2-ITS and central-

ized ITS architecture. In order to do so, we need set up

vehicle-infrastructure-vehicle end-to-end communication, then

we could time stamp at the moment sending the message

and receiving the message to obtain message transmission

latency due to handover and also count the packet loss for

performance. From one step begins, we implement following

three basic functions: inter-controller negotiation, vehicle to

controller communication and handover while vehicles mov-

ing. More work are needed in the future.

A. D2-ITS Handover Prototype

As the basis for our implementation, we use the Pox [16]

open-source controller and the OVS software switch [17].

We used Mininet-WiFi2 as our experimental platform. More

specifically, we ran our experiments with Mininet-WiFi ver-

sion 2.2.1d1 running on Ubuntu version 16.4 in VirtualBox

5.2.6. Mininet-WiFi [18], [9] is a network emulator which

can emulate different types of wireless nodes, such as access

points, eNodeBs, and wireless links. It also supports node

mobility and provides visualization capabilities.

B. Experiments and Results

The main goal of our experiments is to demonstrate D2-

ITS’ support for handover and load balancing in a seamless

fashion. In particular, we use ITS Road Hazard Warning

(RHW) message dissemination application to show that D2-

ITS does not incur significant additional latency nor causes

service disruptions.

Our experiments demonstrated the following D2-ITS func-

tionality: The implementation takes advantage of the POX

framework, leveraging some of its components and adding the

missing functionalities. The functions used for the East-West

Interface are categorized as follows.

• Messenger Module: A POX module providing a message

queue (MessageNexus). Messages are sent to the channels

and are formatted in JSON. It is possible to define chan-

nels, send and receive messages, and be notified when

a connection is established. The messenger.tcp transport

module allows the message queue to open a TCP socket

to listen for messages coming from outside the controller.

A thread binds a socket to a port and listens for new con-

nections. A new thread is spawned for each connection to

2https://github.com/intrig-unicamp/mininet-wifi

Fig. 7. Starting the Messenger Module

send and receive messages and interact with the message

queue. Threads are handled via the POX rococo library

(based on Python threading).

• East West Messenger Module: A Python module imple-

menting the communication for the East-West Interface

and the vehicles. It uses event handlers to trigger actions

when a new controller or the user client running on the

cars connect, when a message is received or when a

message needs to be sent. The communication between

controllers, East-West Interface, uses a handshake kind

protocol where the controllers can exchange point to point

or broadcast messages. The communication between a

vehicle and its current controller, uses a channel to send

messages, CarLink, and a channel to poll for messages

for the vehicle, CarLinkRelay. The communication is

initiated by the vehicle that this way can be used for

vehicles to send messages, more details are described in

the following subsection.

• Link Client Module: An independent script used to in-

teract with the controllers. It uses a TCP socket to open a

connection to the messenger running in POX (IP address

and port are known) and then provides a CLI to send

messages and display the ones received. Messages are

in JSON, they include the channel name, and the actual

message.

The messenger module and east west messenger module are

defined in mymessenger.py, which needs to be put in the

ext/ directory of POX controller in order to initialize the

connection. Moreover, the controller to controller commu-

nication happens with a controller invoking the test client

program to send a message to another controller at any time.

The communication between controllers uses a specific chan-

nel.The messenger function can be initiated through following

command:

• mininet-wifi/$ cd pox

• mininet-wifi/pox/$./pox.py --verbose openflow.of 01 -

--port=6644 --address=127.0.0.1 messenger messen-

ger.tcp transport --tcp port=6254 mymessenger

Figure 8 shows how to start the client module, running on

another terminal in the virtual machine. In the future the model

of a vehicle will trigger this client controller. For example,

a vehicle sending an emergence message will trigger the

controller to communicate with the neighbor controller. Here

is the command to start the POX client controller with the

test client.py.

Fig. 8. Starting the Client Module

• mininet-wifi/$cd pox

• mininet-wifi/pox$./pox/messenger/test client.py 127.0.0.1

6254

C. Vehicle to Controller Communication

In vehicle to controller communication, as first step, a vehi-

cle need to automatically discovery and authenticate with RSU

during its moving without a need for manual configurations.

For example, while the vehicle roaming to a new location,

the vehicle could reactively or proactively discovery the RSU

in the domain through active scan or bgscan. As mentioned

before, controller is co-located with RSU, thus controller will

be selected in case of RSU is selected. When a vehicle have

selected and successfully associate with the current domain

RSU, RSU send the co-located controller’s information(i.g.,IP

address, MAC address) embedded in the beacon frames to

the vehicle for deciding the controller handover. We assume

if the vehicle is in the range of more than one RSUs, it can

select the RSU and its controller by strongest signal, defined in

RSSI parameter. We experienced significant issues in getting

Mininet-WiFi to activate the POX controller through script.

At the end we decided to work-around the issues through

the following extensions: we extended the POX controller

to receive messages coming from vehicles through a socket

interface. An external program (car client) is designed for

stateless communication between vehicles and controllers,

which is invocable from Mininet-WiFi. Car client takes some

arguments, including a message to send, the vehicle name,

and the IP address and port number of the controller to

which to send the message. In order to send a message to

the associated controller, the program opens a socket with

the specified controller, sends the message and closes the

socket(stateless communication). The program can also poll

the controller to check if there are messages from the con-

troller to the vehicle waiting to be delivered. Additionally,

there are following functions in east-west messenger module

defined to support vehicle to controller communication. The

communication between a vehicle and its current controller,

uses a channel(CarLink) to send messages, and a different

channel(CarLinkReplay) to poll for messages for the vehicle.

The communication is designed to be initiated by the vehicle

that this way can be more realistic. The following functions

to are invoked:

• Initialization: It defines and starts the functions to enable

communication between the controller and vehicles.

• Car Link Relay(CarLinkRelay, CarLinkRelayBot): This

function keeps track of the connections sending messages

Fig. 9. Vehicle to Controller Communication

from vehicles. For each connection on the channel, it

keeps a message counter, listens to messages and triggers

actions and replies(ACKs). In addition, this function

sends messages when triggered by controller events.

• Car Client Module: An independent python script used

by a vehicle to interacts with the controller. It is stateless

and uses a TCP socket to open a connection to the

messenger running in POX (IP address and port are

known). It provides its ID, the car name, can send a

message and/or request messages queued for it. Messages

are in JSON, include the ID, car name, the channel name,

carlink or calink request, and the eventual message, such

as emergence.

The steps to simulate vehicle to controller communication

are shown in Figure 9 as follows: We run multiple remote

POX controllers, each in its own Xterm. Due to all the POX

controllers running inside the same virtual machine, each

controller is identified by a different port number. Inside

the Mininet-WiFi car definition, we invoke the car client

program whenever a message has to be sent to a controller,

specifying the controller associated with the RSU the vehicle

is currently associated with. Periodically the vehicle invoking

the car client program queries the controller co-located with

the RSU that the vehicle is currently associated with to check

if there are messages waiting to be delivered. We believe

that a stateless communication approach is more appropriate

than keeping up persistent TCP connections in a mobility

environment where associations of car to RSU / controller is

dynamic and continuously changing.

D. Handover

We consider two scenarios to observe the handover:

• There are two RSUs (RSU1 and RSU2) deployed which

have very small signal overlap area, while 3 cars de-

ployed, shown in Figure 10.

• There are three RSUs (RSU1 and RSU2 and RSU3)

deployed which have large signal overlap area, while 3

cars deployed, shown in Figure 11.

The handover implementation has 4 stages: scanning, RSU

selection, RSU association, Controller association, alterna-

tively, data packet detour. At this stage, we simulate the

Fig. 10. Handover Scenario 1

Fig. 11. Handover Scenario 2

handover through Mininet-WiFi ssf (Strong Signal First) as-

sociation based on RSSI value. We configure the environment

as follows: enables the wmediumd, uses UserAP module for

RSU rather than OVSKernel AP, enable bgscan mechanism.

In order to enable the controller association while the moving

vehicle achieving association with RSU, we set the controller

as a parameter for RSU. Thus, when a vehicle association with

specific RSU, the vehicle also will obtain the information of

the controller. This information should be invoked inside the

wireless packet. In this experiment, we directly configure the

controller address in the vehicle node to mimic this behavior.

After association, the vehicle can communication with the con-

troller based on mechanism descried aforementioned. Figure

12 shows the behavior of the activity of association while

vehicles reset the new position.

VII. CONCLUSION AND FUTURE WORK

In this paper, we built upon our prior work on D2-ITS, a

flexible and extensible distributed network control framework

that addresses stringent requirements of emerging and future

applications, such as Intelligent Transportation Services (ITS),

Fig. 12. Handover Observation

and extend it with handover and load balancing capabilities.

D2-ITS’ new handover feature allows a controller to auto-

matically “delegate” control of a vehicle to another controller

under certain conditios, e.g., as the vehicle moves. Control

delegation can also be used as a way to balance load among

controllers and ensure that required application quality of

service is maintained. We showcase D2-ITS’ handover and

load-balancing features using the Mininet-Wifi network sim-

ulator/emulator [9]. As part of our future work, we plan to

demonstrate D2-ITS’ handover and load balancing features

in a wide-range of realistic scenarios and considering other

handover criteria such as controller load, application latency

and bandwidth requirements, etc.

ACKNOWLEDGMENTS

This work is part of the DrIVE Associated Team between

Inria, Unicamp, Ericsson Research and UCSC. It has been par-

tially funded by Inria’s Associated Team Program, the French

ANR Investments for the Future Program under grant ANR-

11-LABX-0031-01, and the US National Science Foundation

under project CNS 1321151.

REFERENCES

[1] Directive 2010/40/eu of the european parliament and of the council
of 7 july 2010 eur-lex.europa.eu. [Online]. Available: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF

[2] T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and
Y. Nemoto, “A stable routing protocol to support its services in vanet
networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6,
pp. 3337–3347, Nov 2007.

[3] ETSI, “Intelligent transport systems; vehicular communications; basic
set of applications; specifications of decentralized environmental notifi-
cation basic service,” ETSI, Tech. Rep. EN 302 637-3 V1.2.1, 2014.

[4] J. B. Kenney, “Dedicated short-range communications (dsrc) standards
in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–
1182, July 2011.

[5] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[6] K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu, and L. Lei, “Soft-defined
heterogeneous vehicular network: architecture and challenges,” IEEE
Network, vol. 30, no. 4, pp. 72–80, July 2016.

[7] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Software-defined
networking for rsu clouds in support of the internet of vehicles,” IEEE
Internet of Things Journal, vol. 2, no. 2, pp. 133–144, April 2015.

[8] A. Kaul, K. Obraczka, M. A. S. Santos, C. E. Rothenberg, and T. Turletti,
“Dynamically distributed network control for message dissemination in
its,” in 2017 IEEE/ACM 21st International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), Oct 2017, pp. 1–9.

[9] R. Fontes and C. Rothenberg. The user manual, mininet-wifi
emulator for software-defined wireless networks. [Online]. Available:
https://github.com/intrig-unicamp/mininet-wifi

[10] D. K. Sheet, O. Kaiwartya, A. H. Abdullah, and A. N. Hassan, “Location
information verification cum security using tbm in geocast routing,”
vol. 70, pp. 219–225, 12 2015.

[11] R. D. R. Fontes, C. Campolo, C. E. Rothenberg, and A. Molinaro, “From
theory to experimental evaluation: Resource management in software-
defined vehicular networks,” IEEE Access, vol. 5, pp. 3069–3076, 2017.

[12] A. Kazmi, M. A. Khan, and M. U. Akram, “Devanet: Decentralized
software-defined vanet architecture,” in 2016 IEEE International Con-
ference on Cloud Engineering Workshop (IC2EW), April 2016, pp. 42–
47.

[13] S. Thun and C. Saivichit, “Performance improvement of vehicular
ad hoc network environment by cooperation between sdn/openflow
controller and ieee 802.11p,” Journal of Telecommunication Electronic
and Computer Engineering, vol. 9, no. 2-6, 2017.

[14] N. Kiran, Y. Changchuan, and Z. Akram, “Ap load balance based
handover in software defined wifi systems,” in 2016 IEEE International
Conference on Network Infrastructure and Digital Content (IC-NIDC),
Sept 2016, pp. 6–11.

[15] J. Harri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad
hoc networks: a survey and taxonomy,” IEEE Communications Surveys
Tutorials, vol. 11, no. 4, pp. 19–41, Fourth 2009.

[16] Pox controller. [Online]. Available: https://github.com/noxrepo/pox
[17] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vSwitch,” in Proceedings of
the 12th USENIX Conference on Networked Systems Design and Imple-
mentation, ser. NSDI’15. Berkeley, CA, USA: USENIX Association,
2015, pp. 117–130.

[18] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E.
Rothenberg, “Mininet-wifi: Emulating software-defined wireless net-
works,” in 2015 11th International Conference on Network and Service
Management (CNSM), Nov 2015, pp. 384–389.

