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ABSTRACT
In this paper we investigate and characterize user activity
in WiFi networks by analyzing and comparing the behavior
of users that connect to two public WiFi networks, one of
them deployed in a University campus and the other in a
major urban area. We characterize WiFi network user ac-
tivity based on two main features, namely: time users stay
connected to Access Points and Access Point load. Overall,
the main contributions of our work are as follows: (1) to the
best of our knowledge, this is the first study comparing user
activity in two di↵erent scenarions, i.e., a University campus
WiFi network and an urban WiFi network; (2) our results
validate previously observed characteristics of user behavior
in WiFi networks, as well as unveil new behavior patterns,
such as the fact that users on campus tend to stay connected
to the network for longer periods of time when compared to
users in an urban area; and (3) our work is the first study
to formally test and validate the hypothesis that association
times in WiFi networks follows a power law and to estimate
the power-law’s tail index.
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1. INTRODUCTION
According to [1], mobile data tra�c grew 74% world-

wide in 2015 and is expected to increase almost eightfold
by 2020. Additionally, by 2020, the total number of smart-
phones will be nearly 50% of the total number of devices and
connections. This unprecedented growth demands a deeper
understanding of how users move, connect, as well as gen-
erate and consume tra�c. Understanding user activity in
wireless access networks is essential to be able to scale and
accommodate future connectivity- and tra�c demand. Fur-
thermore, better understanding mobile user behavior and
activity can also greatly contribute to improve urban plan-
ning, including transit, transportation, and housing infras-
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tructure, emergency response, as well as other services (e.g.,
food, shopping, entertainment, etc).

In this paper, our goal is to characterize user mobility-
and usage patterns in WiFi networks based on data from
real networks. In particular, we study traces from two dif-
ferent scenarios, namely a University campus and the down-
town area of a major city. The former trace was obtained at
the Dartmouth College campus during the 2005-06 academic
year with a total of over 24,000 users and 3,300 access points.
The latter trace was collected for 6 years (2004-2010) at the
city of Montreal consisting of over 340 access points con-
necting 45,000 users. The main contributions of this study
are as follows:

• To our knowledge, this is the first systematic study
that compares user activity in a University campus
and a major city.

• We have both validated results from previous related
work and unveiled new user behavior. For example,
we confirm that user connection times follow a power-
law as has been observed previously; an example of a
new result our study reveals is the fact that users tend
to connect for longer periods of time in a university
campus when compared to an urban network.

• Ours is the first study to apply statistical theory to
test whether association times follow a power law and
to estimate the tail index of their distribution.

2. RELATED WORK
In order to put our work in perspective, we propose a new

taxonomy to classify existing studies on user mobility. We
start by classifying related work into two main categories,
namely studies based on descriptive- versus predictive anal-
ysis. In Table 1 we list relevant work on user activity in
infrastructure-based WiFi networks and the features they
investigate according to our taxonomy. Predictive studies
on user mobility characterization in WiFi networks explore
di↵erent features including: (1) Association Time: time
interval during which the user stayed connected to an Access
Point (AP) before moving to another AP or leaving the net-
work; (2) User Tra�c: amount of tra�c (e.g., in number
of bytes) users download and upload during the association
time; (3) Direction of Movement: direction a user takes
when moving between APs; (4) AP Load: access point
usage, such as number of users connected to a given AP,
total tra�c handled by an AP, etc; (5) Hotspots: group
users into communities according to social- and geographic
features, such as popular hotspots. On the other hand, pre-



Table 1: Relevant related work divided according to pro-
posed taxonomy

Descriptive Association Time Tra�c Direction of Movement AP load Hotspots
Google WiFi [2] p p p

Dartmouth [8] p p p

SF and NY [6] p p

Predictive Fractal Waypoint Markov Queuing Models Clustering SVM
MixedQueuing [4] p

MHMM [5] p

ToGo [12] p

SAGA [13] p

dictive studies of user activity in WiFi networks can be clas-
sified according to the modeling approach adopted. Notable
modeling approaches used in previous work include: (1)
Markov Models; (2) Fractal Waypoints; (3) Queuing
Models;(4) Clustering, and (5) Support Vector Ma-
chines (SVMs).

3. WIFI NETWORK TRACES
Our study explores user activity in two di↵erent WiFi

network scenarios, namely a major urban center and a Uni-
versity campus. To this end, we study two WiFi traces
which have been made publicly available from CRAWDAD.
The first trace was collected over six years (2004-2010) from
the WiFi network deployed in the city of Montreal, Que-
bec, Canada [11]. The second trace was collected at the
Dartmouth College campus during the 2005-2006 academic
Year [9]. In the remainder of this section, we describe the
two traces in detail

3.1 Montreal Trace
Île Sans Fil (French for ”Wireless Island”, also known as

ISF), is a non-profit organization that operates a network
of WiFi hotspots in Montréal, Québec, Canada [11]. ISF
provides free wireless network access to over 45,000 users
and has a total of 346 unique access points (APs) deployed
across Montreal’s downtown area. All of the APs are lo-
cated in publically accessible spaces, including cafes, restau-
rants, and bars, but also in libraries, funeral homes, doc-
tors’ o�ces, and Business Improvement Agencies (BIAs).
They cover city parks and sections of popular commercial
streets. While at of the end of the 6-year period, ISF had
346 APs deployed. The number of active APs per month
varies, however it steadily increases during the trace col-
lection period. At the last month of the trace, there were
185 active APs. Information available in the trace includes:
users session (i.e., between login and logout) data such as
account (user) id, MAC address, login- and logout times, AP
id, and amount of data transferred (incoming and outgoing)
for a period of six years from 2004 to 2010. The data has
been sanitized in order to anonymize user-specifc informa-
tion such as account id, connection id, user MAC address,
and AP id.

3.2 Dartmouth Trace
The Dartmouth trace [9] was collected at the Dartmouth

College campus during the 2005-2006 academic year. The
campus occupies 200 acres with over 190 buildings, of which
188 had wireless coverage at the time the trace was collected.
Over 3000 APs were deployed, providing WiFi coverage to
the campus. Due to the compact nature of the campus, the
APs installed in buildings are able to provide network cover-
age to most of the campus’ outdoor areas. All APs share the
same SSID, allowing wireless clients to roam seamlessly be-

tween APs. The 188 buildings with wireless coverage span
115 subnets, so clients roaming between buildings may be
forced to obtain new IP addresses through DHCP (lease
times were 6 or 12 hours at di↵erent points in the trace).

4. USER ACTIVITY PATTERNS
We analyze user activity for both the Montreal- and Dart-

mouth traces according to the Association Time and AP
Load metrics as defined in Section 2.

4.1 AP Load

Montreal

Figure 1(left) shows the number of sessions (connections)
for every user while Figure 1(right) shows the number of
sessions for every unique AP for the Montreal trace. Ac-
cording to Figure 1(left), users have on average 14 sessions
and the user that connects the most has over 13,000 ses-
sions. The median number of sessions is 3 and the third
quantile is 8. The tail index for the session distribution is
3.71, which indicates that, even though most users have very
few sessions, approximately 23% of users have more than 8
sessions and 15% have more the 14 sessions. As shown in
Figure 1(right), the average- and median number of sessions
per AP is 692 and 218, respectively, while the maximum
number of sessions per AP is over 10,000. Note that the
least loaded APs have 57 sessions or less, which represents
the first quantile.
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Figure 1: Montreal trace - Left: Number of sessions per user.
Right: Number of sessions per AP.

Figure 2(left) shows a scatterplot of the logarithm of the
total number of sessions per AP versus the logarithm of the
number of users in each AP. Note that the number of users
per AP represents a lower bound for the number of sessions,
so all points in the graphs must lie above the 45 degree line.
The graph indicates that the relationship is roughly linear
(in the log-log plot), with limited- and roughly constant vari-
ability. On the other hand, in Figure 2(right), we show a
scatterplot of the total number of sessions per user versus
the number of APs to which a user connects. Interestingly,
the relationship between these two variables is generally not
linear in this case. Indeed, we see evidence of at least three
clusters. One of them corresponds to what could be consid-
ered “static users”, i.e., users who frequently connect to a
relatively small number of APs (data points located along
the vertical axis). Another cluster consists of the points lo-
cated along the horizontal axis which correspond to users
that connect very sporadically, but they do so to a large
number of di↵erent APs. Note that the latter type of users
appears to be relatively more frequent that the former. Fi-
nally, we observe the cluster represented by the points in the



bottom left corner of the graph, indicating that most users
connect to under 40 APs over less that 4,000 sessions.
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Figure 2: Montreal trace: Left: Logarithm of the total num-
ber of sessions per AP versus the logarithm of the number of
users in each AP. Right: Total number of sessions per user
versus number of APs a user connects to.

Dartmouth

We also analyzed AP Load for the Dartmouth trace. Again,
first we study the usage patterns for users and APs sepa-
rately which is plotted in Figure 3. In Figure 3(left), the
number of sessions per user is shown and we can see that,
on average, users have approximately 160 sessions, whereas
very few users have more than 10,000 sessions. In Fig-
ure 3(right), we show the number of sessions per AP. The
average load per AP for Dartmouth is 158 sessions and the
highest load is 4000 sessions. When we compare Montreal
and Dartmouth in terms of the number of sessions per AP,
that is AP Load, we observe that access points in Montreal
have on average, and overall, a higher load then Dartmouth
access points. This result is to be expected since the sam-
ple population in Montreal is at least ten times higher and
the number of access points in Montreal is approximately
ten times lower. However, we note that users have on aver-
age a higher number of sessions in Dartmouth, a university
campus, than in Montreal. The same observation also holds
when comparing the number of user sessions at the Dart-
mouth campus to the results obtained in [2] for Google’s
Mountain View WiFi network.
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Figure 3: Dartmouth trace: Left: Number of sessions per
user. Right: Number of sessions per AP.

Next, we study AP usage patterns for Dartmouth. Fig-
ure 4(left) plots the log of the total number of sessions per
AP versus the log of the number of users in each AP. Sim-
ilarly to the Montreal trace, we observe that the relation-
ship is also almost linear (in the log-log plot) but exhibits
much higher variability. In Figure 4(right), we plot the to-
tal number of sessions per user versus the number of APs
to which users connect. Like in the Montreal case, we ob-
serve a cluster of users in the bottom left corner of the graph

who connect to less than 400 APs over less that 5,000 ses-
sions. However, unlike Montreal, there are no other easily
identifiable clusters.
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Figure 4: Dartmouth trace: Left: Logarithm of the total
number of sessions per AP versus the logarithm of the num-
ber of users in each AP. Right: Total number of sessions per
user versus number of APs a user connects to.

4.2 Association Time

Montreal

Figure 5 shows the histogram of the logarithm of associa-
tion times for the whole Montreal trace. We observe that
a little less than 30% of users spend approximately 50 min
connected, while a little over 20% remain connected for ap-
proximately 20 min and another 20% remain connected for
up to 2h. We also observe that a small percentage of users
connect over very long or very short times. To better under-
stand the behavior of these users, we analyze in Section 5
the tail of the association time distribution and test the hy-
pothesis that it follows a power-law. This power-law behav-
ior of the association times has has been observed in related
work [10], [8], [4]. However, to our knowledge, our work is
the first to conduct a formal analysis to test the power-law
hypothesis for association times in WiFi networks, where we
estimate power-law parameters such as the tail index.
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Figure 5: Left - Montreal trace: Histogram of the log of
association times (in seconds). Right - Dartmouth trace:
Histogram of the log of the association times (in seconds).

In our study, we also try to uncover temporal patterns in
the association times. Figure 6(left) shows the distribution
of the log of the median association time per day of the week
for the entire trace. We divided each day of the week in 8
periods, namely: from 0am to 3am, from 3am to 6am, etc.
in order to explore finer-grained temporal patterns for the
time users remain connected to an AP.

Using the average median association time of 29 minutes
(red horizontal line in Figure 6(left)) as baseline, we observe
di↵erent behavior depending not only on the day of the week



but also on time of the day. As expected, on Monday, we
notice higher association times during business hours (i.e.,
9am-6pm), whereas during early morning and late night, as-
sociation times are lower. The median and average associa-
tion times during business hours are 30- and 75 minutes, re-
spectively. Tuesday and Wednesday show similar behavior,
i.e., higher association times during business hours, however
the period extends from 9am-7pm. We notice a somewhat
di↵erent behavior on Thursdays and Fridays: while the me-
dian association time is still around 29min, the average asso-
ciation time is 60min between 9am and 3pm. Interestingly,
on weekends, we observe longer average association times,
which happen during the period between 6am and 3pm. We
also notice that the median and average association times
for the weekend in on average higher than for weekdays,
namely 36 and 80 minutes, respectively. In order to explore
coarser grain patterns, we also investigated the distribution
of the median association times on a monthly basis through-
out the year. Figure 6(center) shows a boxplot of the log of
the median association time per month for the entire trace
period. Here we can see that the average median associ-
ation time is approximately 30min (red horizontal line in
the plot). However, we observe that in the first six months
after the network was deployed, i.e., from August 2004 to
February 2005, the average median association time is ap-
proximately 18min. We believe this lower association time
(relative to the overall average median association time of
30min) is due to the fact that the Ile San Fils network had
just been deployed and was still growing.
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Figure 6: Montreal trace: Left: Boxplot of the log of the
median association time per day of the week, and (center)
per month. Dartmouth trace: Boxplot of the log of the
median association time per quarter (in seconds) for the
2005-06 academic year.

Dartmouth

We also analyze the distribution of the association time for
the Dartmouth trace. Dartmouth campus’ WiFi network
has been studied in previous work, for example [3] [13] [5] [8] [4].
To our knowledge, we are the first ones to study the most
recent version of the trace available from [9]. We find that,
di↵erently from traces collected in major cities (e.g., Mon-
treal, San Francisco and New York [6]), Dartmouth campus
users tend to remain connected for longer periods of time.
More specifically, on average, users spend more than 1h con-
nected to campus APs. Figure 5 (right) shows the histogram
of the log of the association time for the entire trace. Sim-
ilarly to Montreal, we observe a bimodal distribution. In
the first cluster, users remain connected for up to 11 min,
which encompass approximately 20% of users. The second
cluster encompass approximately 62% of users that remain
connected for more than 20 min. Within the first cluster,
we observe that 10% of users have an association time of 6
min. On the other hand, approximately 15% of users have
an association time of over 2h. Similarly to Montreal, we

can identify a small percentage of users (7%) that either re-
main connected for very long or very short periods of time.
We hypothesize that some of these longer connections times,
e.g., in the order of days, might be attributed to desktop-
or even laptop computers in dorms or o�ces which remain
connected for long periods of time. To better understand
the behavior of these extreme users, we analyze in Section 5
the tail of the association time distribution and test that
it follows a power-law. Our results align with results from
studies of the Dartmouth campus network for previous aca-
demic years [8] [2] [5].

We also investigated the distribution of the median associ-
ation time during every quarter of the academic year. Here,
we are interested in capturing temporal usage patterns over
a shorter time scale. Figure 6 (right) shows a boxplot of
the log of the median association time per quarter for the
2005-2006 academic year. Using the average median asso-
ciation time of 38 min (red horizontal line in Figure 6) as
baseline, we can observe some variation among quarters. For
the Fall quarter of 2005, we observer lower median associa-
tion times, on average 28 min, whereas during Winter quar-
ter of 2006 we observe a higher median association time 72
min. Even though the average median association time from
Spring 2006 to Summer 2006 decreased (3h to 48 min), we
can see they still have a very similar distribution. This is an
interesting result, since we could expect that most students
wouldn’t remain on campus during summer vacations. Fi-
nally, we notice an increase in the median association time
during the beginning of the next academic year, Fall 2006.
We also observe that the average median association time
for Fall 2006 and Winter 2006 have similar distributions.

5. HEAVY-TAILED ASSOCIATION TIMES
In this section, we investigate the hypothesis that the

heavy-tail distribution of user association times follows a
power-law as suggested by our results reported in Section 4.2
and by relevant related work [10], [8], [4]. Previous work sug-
gests that many of the reported power-law distributions in
the literature have not been rigorously validated. This is es-
pecially true when the power-law assumption is made based
on log-log plots. Instead, in this paper we aim to formally
test the hypothesis that association times follow a power
law. We also estimate the distribution’s tail index, which is
key to estimate future association times.

The probability density function of the power-law distri-
bution (also known as the Pareto distribution) is defined
as:

f(x) =
↵� 1
xmin

(
xmin

x

)↵ (1)

for ↵ > 1 and xmin > 0. We do not attempt to use the
power-law distribution to model the full distribution of the
association times. Instead, it is used to model its right tail,
i.e., the distribution of large association times. The value
xmin represents the minimum value for which the distri-
bution follows a power-law. Note that as the value of xmin

increases, the amount of information available about the be-
havior of the tail decreases. The most common approach to
estimate xmin, also known as the threshold, is by inspecting
the log-log plot of the data. However, this method is very
subjective and error prone. Instead, we use a Kolmogorov-
Smirnov (K-S) test, which looks at the maximum distance
between the data and the cumulative density function of



the power-law distribution whose parameters are estimated
using maximum likelihood. This test is implemented us-
ing the R poweRlaw [7] package. The uncertainty associated
with the parameters are estimated via a bootstrap proce-
dure also available in the poweRlaw package. Figure 7(left)
shows the power-law fitted to the heavy tail of the asso-
ciation times for Montreal while Figure 7(right) shows the
same graph for Dartmouth. The tail parameters estimated
for Montreal were ↵ = 3.68 sd = 0.22 and for Dartmouth
↵ = 2.79 sd = 0.004, where sd is the standard deviation.
The p � value associated with the K-S test was 0.06 for
Montreal and 0.10 for Dartmouth.

Figure 7: Montreal trace: (left) Power law fit for the tail of
association times for Montreal and (right) for Dartmouth

Both K-S goodness-of-fit (p� values) for Montreal’s and
Dartmouth’s association time distributions indicate that they
can indeed be modeled by a power-law. We further observe
that the tail of the distribution of Dartmouth’s association
times is heavier than Montreal’s. This can be observed by
inspecting Figure 7(left) and (right) as well as by their tail
parameter ↵. Dartmouth’s ↵ is lower that Montreal’s in-
dicating a heavier tail since the lower ↵ is, the slower the
distribution decays and therefore, the heavier the distribu-
tion’s tail. Consequently, large association times tend to be
relatively more common for Dartmouth than Montreal. In-
deed, since for the power-law distribution only moments of
order b↵c � 1 exist, the tail of Dartmouth is heavy enough
that the conditional variance is infinite.

6. SUMMARY AND DISCUSSION
In this section, we summarize the main findings of our

study:

• AP Load: We find that for the Montreal trace, the re-
lationship between number of sessions and number of
users is roughly linear, whereas the relationship be-
tween number of sessions and number of APs is not.
We also observed similar trends for Dartmouth. How-
ever, as expected, the AP load for Montreal is on av-
erage and overall higher than Dartmouth’s. For the
Montreal network, we can identify 3 di↵erent user clus-
ters based on the number of user sessions: there are the
so-called static users, i.e., users that mostly connect to
a few APs (i.e., less than 5), users that are quite mo-
bile, i.e., connect to a large number of APs (i.e., more
than 50), and finally most users connect to less than
40 APs. However, for Dartmouth, we can only identify
one clear cluster, which are users that connect to less
than 400 APs.

• Association Time’ Heavy-Tailedness: We test the
hyphotesis that the association times for both Mon-
treal and Dartmouth follow a power-law and confirm

that both distributions can indeed be modeled as power-
laws. Dartmouth has a heavier-tail when compared to
Montreal, therefore large association times tend to be
more common for Dartmouth.
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