
A Machine Learning Approach to End­to­End RTT Estimation and its

Application to TCP

Bruno A. A. Nunes∗1, Kerry Veenstra∗, William Ballenthin†, Stephanie Lukin‡ and Katia Obraczka∗2

∗Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, USA
†Department of Computer Science, Columbia University, New York, NY, USA

‡Department of Computer Science, Loyola University Maryland, Baltimore, MD, USA
Email: �bnunes, veenstra, katia}@soe.ucsc.edu, wrb2102@columbia.edu and smlukin@loyola.edu

�bstract—In this paper, we explore a novel ap-
proach to end-to-end round-trip time �RTT) estima-
tion using a machine-learning technique known as the
Experts Framework. In our proposal, each of several
“experts” guesses a fixed value. The weighted average
of these guesses estimates the RTT, with the weights
updated after every RTT measurement based on the
difference between the estimated and actual RTT.
Through extensive simulations we show that the

proposed machine-learning algorithm adapts very
quickly to changes in the RTT. Our results show a
considerable reduction in the number of retransmit-
ted packets and a increase in goodput, in particular
on more heavily congested scenarios. We corroborate
our results through “live” experiments using an im-
plementation of the proposed algorithm in the Linux
kernel. These experiments confirm the higher accu-
racy of the machine learning approach with more than
40� improvement, not only over the standard TCP,
but also over the well known Eifel RTT estimator.

I. Introduction

Latency is an important parameter when designing,
managing, and evaluating computer networks, their pro-
tocols, and applications. One metric that is commonly
used to capture network latency is the end-to-end round-
trip time (RTT) which measures the time between data
transmission and the receipt of a positive acknowledge-
ment.
Several network applications and protocols use the

RTT to estimate network load or congestion, and there-
fore need to measure it frequently. The Transmission
Control Protocol, TCP, is the best known example.
TCP bases its error- and congestion-control functions
on the estimated RTT instead of relying on feedback
from the network. TCP’s estimate of the RTT employs a
widely used technique: the Exponential Weighed Moving
Average (EWMA).
In this paper, we propose a novel RTT estimation

technique that uses a machine-learning based approach
called the Experts Framework [1]. As described in detail
in Section III, the Experts Framework uses “on-line”
learning, where the learning process happens in “trials”.

1Financial support was granted by the CAPES Foundation
Ministry of Education of Brazil, Caixa Postal 250, Brasilia - DF
70040-020 Brazil.

2This work was partially supported by NSF grant CCF-091694
and a US Army-ARO MURI grant.

At every trial, a number of “experts” contribute to an
overall prediction, which is compared to the actual value
(e.g., obtained by measurement). The algorithm uses the
prediction error to refine the weights of each expert’s
contribution to the prediction; the updated weights are
used in the next iteration of the algorithm. We contend
that by employing our prediction technique, network
applications and protocols that make use of the RTT
do not have to measure it as frequently and can rely on
our predictions.

As an example application for the proposed RTT
estimation approach, we use it to predict the RTT
used by TCP’s error and congestion control. Through
extensive simulations and live experiments, we show that
our machine-learning approach can adapt to changes in
the RTT faster and thus predict its value more accu-
rately than the current EWMA technique employed by
most versions of TCP. As described in Section II, TCP
uses the RTT estimate to compute its Retransmission
Time-Out (RTO) timer [2], which is one of the main
timers involved in TCP’s error and congestion control.
When the RTO expires the TCP sender considers the
corresponding packet to be lost and therefore retrans-
mits it. TCP’s RTO relies on RTT predictions and
measurements in order to set its value properly. RTT
can be defined as the time that elapses from a packet
leaving the sender until the reception at the sender of a
positive acknowledgment for that packet. If the RTO is
too long, it can lead to long idle waits before the sender
reacts to the presumably lost packet. On the other hand,
if the RTO is set to be too aggressive (too short), it might
expire too often leading to unnecessary retransmissions.
Needless to say that setting the RTO is critical for TCP’s
performance.

We can split this problem into two subproblems. First
is how to predict the RTT of the next packet to be
transmitted, and second, how the predicted RTT can
be used to compute the RTO. In this paper, we focus on
the first subproblem, i.e., the prediction of the RTT. We
do so using a new approach based on machine learning.
We then present results that show considerably more
accurate RTT predictions when compared to TCP’s



original algorithm for RTT estimation, and we evaluate
the impact of this increased accuracy on the network.
Moreover, in order to evaluate the true impact of our
machine learning solution on TCP, we also implemented
a well cited work on the same field, the Eifel [3] retrans-
mission timeout, on the Linux Kernel and compared
the results of several file transfers using the machine
learning solution, the standard TCP timer and the Eifel
timer. The second subproblem, i.e., to set the RTO value
in order to take advantage of the more accurate RTT
predictions, is the focus of future work.
The remainder of this paper is organized as fol-

lows. Section II presents related work, including a brief
overview of TCP’s original RTT estimation technique. In
Section III, we describe our RTT prediction algorithm.
Section IV and Section V present our evaluation method-
ology and results for simulation evaluation and real
Linux implementations, respectively. Finally, Section VI
concludes the paper and highlights directions for future
work.

II. Related Work
TCP uses a timeout/retransmission mechanism to re-

cover from lost segments. While this timeout value needs
to be greater than the current RTT to avoid unnecessary
retransmissions, it should not be so great that it results
in network underutilization from protracted responses to
losses and congestion. In Jacobson’s well known work [2],
two state variables EstimatedRTT and RTTV�R keep the
estimate of the next RTT measurement SampleRTT and
the RTT variation, respectively. RTTV�R is defined as
an estimate of how much EstimatedRTT typically deviates
from SampleRTT. EstimatedRTT is updated according to an
exponential weighted moving average (EWMA) given by
Equation 1, where α = 1

8 . RTTV�R is calculated using
Equation 2 which is also a EWMA, this time of the
difference between SampleRTT and EstimatedRTT with gain
β typically set to 1

4 . Equation 3 sets the new value for
the RTO as a function of EstimatedRTT and RTTV�R, where
K is usually 4.

EstimatedRTT=�1−α)·EstimatedRTT+α·SampleRTT (1)

RTTV�R=�1−β)·RTTV�R+β·�SampleRTT−EstimatedRTT� (2)

RTO=max�EstimatedRTT+K·RTTV�R� 2·ticks) (3)

In prior work, a number of approaches have been
proposed to estimate TCP’s RTT. Allman and Paxson
use trace-driven simulations to evaluate different RTT
estimation algorithms, finding that the performance of
the estimators is dominated by their minimum values
and uninfluenced by the RTT sample rate [4]. This
last conclusion was challenged by Ludwig and Sklower
who propose a new algorithm called Eifel for estimat-
ing the RTT and setting the RTO [3]. Ludwig and
Sklower identify several problems with TCP’s original
RTT estimation algorithm [2], including the observa-
tion that a sudden decrease in RTT causes RTTV�R

and consequently RTO to increase unexpectedly. Our

approach mitigates this behavior, since the predictions
can follow quite closely any abrupt changes in the RTT.
In Section IV we present comparative results that show
that our proposed machine-learning approach not only
outperforms TCP’s original RTT estimator, but also
the Eifel algorithm. Eifel was used as an alternative for
comparison other than Jacobson’s algorithm, since it is
one of the most cite work on RTT estimation.
Lou and Huang propose an adaptive TCP control

algorithm that adjusts the RTT estimation based on
the ratio of previous and current bandwidth [5]. Ma
et. al. describe a TCP retransmission timeout algorithm
that is based on recursive weighted median filtering [6].
Their simulation results show that, for Internet traffic
with heavy tailed statistics, their method yields tighter
RTT bounds than TCP’s original RTT computation
algorithm. Leung et. al. present work that focuses on
changing RTO computation and retransmission polices,
rather than improving RTT predictions [7].
Machine learning has been used in a number of other

applications. Helmbold et. al. use an Experts Framework
algorithm to predict hard-disk drive’s idle time and
decide when to attempt to save energy by spinning down
the disk [8]. For this problem, the cost of making a bad
decision (i.e., when spinning the disk down and back up
costs more than simply leaving it on) is very well defined,
since the decision of spinning down the disk does not
affect the length of the next idle time.
Unlike the spin-down example, when predicting the

RTT, every prediction causes the next RTT to be set
to a different value, and that influences every event that
happens thereafter. Thus, the problem of defining the
cost of a bad RTT prediction is not as straightforward.
Our solution to this problem is discussed in Section III.
Mirza et. al. propose a throughput-estimation tool

based on Support Vector Regression modeling [9]. It
predicts throughput based on multiple real-value input
features. To the best of our knowledge, to date no
attempt to use on-line learning algorithms to predict
network conditions has been reported.

III. Proposed Approach

In this section we present the Fixed-Share Experts
algorithm as a generic solution for on-line prediction.
Later we describe its application to the problem of
predicting the round-trip time of a TCP connection.

A. The Fixed-Share Experts Algorithm

Our RTT prediction algorithm is based on the Fixed-
Share Experts Algorithm [1] which uses “on-line learn-
ing” combining the predictions of a set of fixed experts
denoted by �x1� ...� xN}.
In on-line learning, the learning process happens in

trials. During every trial t the algorithm receives the
predictions from N experts and uses them to output
a master prediction ŷt. After trial t is completed, the
true outcome yt is known and the experts incur a loss.



The loss, computed at trial t for every expert i, is
a function Li�t(xi� yt) used to update a set of weights
to be used to compute the next prediction for trial
t + 1. This set of weights is denoted by Wt+1�i =
�wt+1�1� ...� wt+1�i� ...� wt+1�N}. The weight wt�i should be
interpreted as a measurement of the confidence in the
quality of the i-th expert’s prediction at the start of
trial t. In the initialization of the algorithm we make
w1�i =

1
N
� ∀i ∈ �1� ...� N}. The algorithm updates the

expert’s weight every trial after computation of the
loss at trial t by multiplying the weight of the i-th
expert by e−ηLi�t�xi�yt). The learning rate η is used to
determine how fast the updates will take effect, dictating
how rapidly the weights of misleading experts will be
reduced. Table I summarizes the fixed-share experts
algorithm.

Parameters: η > 0 and 0 ≤ α ≤ 1
Initialization: w1�1 = ... = w1�N = 1

N
1� Prediction:

ŷt =

�
N

i=1
wt�i∙xi�

N

i=1
wt�i

2� Computing the Loss: ∀i : 1� ...� N

Li�t�xi� yt) =

�
�xi − yt)

2 � xi ≥ yt
2 ∙ yt � xi < yt

3� Exponential updates: ∀i : 1� ...� N
w�
t�i

= wt�i ∙ e
−ηLi�t�yt�xi)

4� Sharing weights: ∀i : 1� ...� N

pool =
�N
i=1
α ∙ w�

t�i

wt+1�i = �1− α) ∙ w�
t�i

+ 1
N
∙ pool

Table I
The Fixed-Share Experts algorithm.

After updating the weights, the algorithm also
“shares” some of the weight of each expert among other
experts. Thus, an expert who is performing poorly and
had its weight severely compromised can quickly regain
influence in the master prediction once it starts predict-
ing well again. The amount of sharing can be changed
by using the α parameter, called the sharing rate. This
allows the algorithm to adapt to bursty behavior. Indeed,
in Section IV, we use, among others, bursty traffic
scenarios to evaluate the performance of our algorithm.
In [1] the basic version of the Experts Framework is

presented, proving bounds for different loss functions.
The algorithm is also analyzed for different prediction
functions, including the weighted averaging we use. The
implementation described in this paper, with the inter-
mediate pool variable, costs O(1) time per expert per
trial.

B. Applying Experts to TCP’s RTT Prediction

To apply the presented algorithm to TCP’s RTT-
prediction problem, the experts predictions xi shown
in Table I serve as predictions for the next RTT mea-
sured in ticks. yt is the RTT value at the present trial
(equivalent to the SampleRTT), and ŷt is the algorithm’s
prediction (equivalent to the RTT prediction or the
EstimatedRTT mentioned in Section II).

We want the loss function Li�t(xi� yt) to reflect the real
cost of making wrong predictions. In our implementation
(see Table I), the loss function has different penalties for
overshooting and undershooting, as they have different
impacts on the system’s behavior and performance. An
underestimate of the RTT could contribute to an RTO
computation that is less than the next measured RTT,
causing unnecessary timeouts and retransmissions. We
thus employ the following policies. If the measured RTT
yt is higher than the expert’s prediction xi, but still
close, then it means that this expert is contributing
for a spurious timeout and should be penalized more
than other experts that overshoot by a little. Big over-
shooters are also severely penalized. The non-trivial
issue here is identifying the appropriate cost for miss-
predicting the RTT. In this case, the cost could be
simply the difference between prediction and measure-
ment, or maybe a factor thereof. It is still possible to
improve the loss function by improving the definition of
cost in our particular RTT prediction problem. Further
investigating appropriate loss functions is the subject of
future work.
Setting the value xi of the experts is referred to

as setting the experts spacing. To space the experts
is to determine the experts’ values and their distri-
bution within the prediction domain. When predicting
RTTs, the experts should be spaced between RTTmin

and RTTmax, defined in some implementations (and on
the network simulator used in this work) to be 1 and
128 ticks, respectively. Based on observations of several
RTT datasets, we concluded that the the majority of
the RTT measurements are concentrated in the lower
part this interval. For that reason we found that expo-
nentially spacing the experts, instead of uniformly (or
linearly) spacing them, leads to better predictions. The
exponential function used in our experiments is xi =

RTTmin + RTTmax · 2
�i�N)

4 . The 1
4 multiplicative factor in

the exponent of the spacing function was experimentally
chosen to smooth out its growth. This increases the
difference between the experts and generates diversity
among them, which is good for the sake of increasing
predictions granularity and accuracy.
The algorithm, as stated in Table I, will continually

reduce the experts’ weights towards zero. Thus, in order
to avoid underflow issues in our implementation, we
periodically rescale the weights.

IV. Simulation Results

In this section we discuss simulation results obtained
from applying the experts framework and compare the
results with Jacobson’s performance. We evaluate the
RTT prediction accuracy, as well as goodput, number of
retransmitted packets and size of congestion window.
We evaluated the proposed RTT estimation approach

using a variety of scenarios; in this section, we present
results of two of these scenarios. These scenarios were



chosen so that we could also study the impact of mobility
in the RTT fluctuations and not only fluctuations due to
traffic changes and congestion. In Scenario I we study a
mobile ad-hoc network composed of 20 nodes. Scenario II
is also a mobile network composed of 20 nodes but with
a traffic pattern different from Scenario I, as described in
the following sections. In this last scenario we also vary
mobility by changing the average speed of the mobile
nodes.

Each point in every plot presented in this section is
the mean value of the given metric for 24 simulations
runs with a confidence level of 90�. For the simulations,
the QUALNET [10] simulator was used. The simulation
area in all experiments is 1500m X 1000m, and the
simulated time is 25 minutes. The routing protocol used
was AODV [11], 802.11 as the medium access protocol,
and Random Way Point (RWP) mobility model was
used for all mobile scenarios, with zero seconds of pause
and velocity between [1,50] m/s. All nodes run File
Transmission Protocol (FTP) applications to generate
the TCP flows, and packet size is fixed to 512 bytes. The
parameters are common for every simulation scenario
unless stated otherwise.

Impact of Parameters �N� η� α)

We experiment with several combinations of the
Fixed-Share algorithm parameters. The number of ex-
perts N affects the granularity over the range of values
the RTT can assume. In our experiments, N > 100
had no major impact on the prediction accuracy. The
learning rate η is responsible for how fast the experts
are penalized for a given loss. We want to avoid too
low a value of η since it increases the algorithm’s con-
vergence time; conversely, if η is too large, it forces
the expert’s weights toward zero too quickly. If this
second case occurs, then as weight rescaling kicks in, the
algorithm assigns similar weights to all experts, making
the algorithm’s master prediction fluctuate undesirably
around the mean value of the experts’ guesses. We chose
a learning rate in the interval 1.7 < η < 2.5 as it provides
good prediction results for all the scenarios tested.

When sharing is not enabled (α = 0) the outcome of
the algorithm is given only by decreasing exponential
updates, making it hard for the algorithm to follow
abrupt changes in the RTT measurements: experts that
experience a prolonged poor performance lack influence
because their weights have become too depreciated.
In this case, it would take more trials so that these
experts start gaining greater importance in the master
prediction. Enabling full sharing (α = 1), similar weights
are assigned to every expert, and the master prediction
fluctuates close to a mean value among the experts
guesses. Thus, all reported results use N = 100, η = 2
and α = 0.08.

A. Scenario I - MANET

First we considered a Mobile Ad Hoc Network
(MANET) composed of 20 nodes. This scenario was
built to let us evaluate the performance of the RTT
prediction algorithms when the paths in the network
and the RTT vary considerably. Although our goal was
to show the algorithm’s response to RTT fluctuations,
we also varied the number of TCP flows during the
simulations to change the load and congestion level in
the network. We evaluated scenarios with concurrent
flow counts of 3, 7, 17, 34, 68, 100 and 130. Although the
flows were evenly distributed among nodes, they started
in random times across the duration of the simulation
and presented random sizes that varied from 1000 to
100000 packets.

Figure 1. Mean absolute difference between predicted and mea-
sured RTT for both algorithms on a MANET with 20 nodes.

On Figure 1 we can compare the accuracies of the
Experts Framework and Jacobson’s algorithms. Note
that the more accurate RTT prediction of the machine-
learning approach leads to a more efficient setting of
the RTO timer, which reduces considerably the relative
number of packets retransmitted, especially under heavy
traffic conditions. As shown in Figure 2, retransmissions
are reduced substantially (by as much as over 30�)
without decreasing the number of packets sent. Note also
the improvement in the total number of packets received
(Figure 3).

Figure 2. The percentage of retransmitted packets in relation to
the total number of packets transmitted on a MANET with 20
nodes.

Our use of the Experts Framework not only improved
the RTT predictions, thereby avoiding unnecessary re-



transmissions, but also avoided unnecessary triggering
of congestion-control mechanisms. Consequently, TCP’s
congestion window (cwnd) is higher on average, as shown
in Figure 4, which shows the average cwnd over the
duration of the whole simulation for different congestion
scenarios. We can see in this figure how the gap between
algorithms increases with increasing congestion condi-
tions. That means that the consequences for increasing
traffic, i.e. greater RTT fluctuations, is much less severe
when using the experts approach.
We ran similar experiments using a MANET com-

posed of just 10 nodes (less dense network). However,
the difference between the algorithms’ accuracy for the
10-node experiments did not change much, where the
mean error when using the standard TCP timer was
always more then double the mean error for the machine-
learning approach. We omitted the figures here due to
space restrictions and given the similar nature of the
results using 10 and 20 nodes.

Figure 3. Total number of packets delivered over the duration of
the simulation for a MANET with 20 nodes.

Figure 4. cwnd over different congestion scenarios on a MANET
with 20 nodes.

B. Scenario II - Bursty Traffic

In this scenario we give traffic more of a bursty char-
acteristic. The objective of implementing this scenario
is to evaluate the behavior of the predictor and the
network performance, under different traffic fluctuations.
Moreover, the expected behavior in this case would be a
larger improvement in the network metrics when using
the machine learning approach, given that it can take
advantage of bursty characteristics due to sharing. Here,
we simulate a network with 20 mobile nodes in which

every node starts a TCP flow of 1000 packets every 200
seconds during 90 minutes of simulation. Thus, nodes
would transmit for a while and then remain silent until
the next cycle of 200 seconds. We also vary the velocity
of the nodes between [1, 10]m/s, [20, 30]m/s, [40, 50]m/s.
Since the measured RTT fluctuations for this scenario

are much greater, the mean prediction error in this case
is larger than in the previous scenarios (figure omitted
due to space concerns). We also report a much lower
number of retransmitted packets, which reflected on
the cwnd, allowing a higher goodput when using our
machine learning approach, as we can see in Figure 5.

Figure 5. Total number of packets delivered over the duration
of the simulation for different node mean velocities and traffic in
burst.

V. Linux Implementation and Experiments

We implemented the machine-learning algorithm
and the Eifel algorithm in the kernel of Linux
version 2.6.28.3. We modified the function
tcp rtt estimator�) to return the output of
the evaluated RTT prediction algorithm. Our
implementation of the Eifel algorithm, to the best
of our knowledge, is faithful to the algorithm described
in [3] for predicting the RTT and setting the RTO.
We acquired data from live runs of file transfers

using our modified TCP Kernel modules that implement
the Eifel and the proposed prediction algorithm. Data
collection happened over 30 file transfers of a 16 MB file.
To help filter out the effects of gradual network changes,
we interleaved the transfers that were controlled by
our machine-learning approach, the Eifel retransmission
timer, and Jacobson’s algorithm. In total there were 10
runs of each algorithm for each of 3 scenarios.
The live experiments used a different set of scenarios

than the simulations. In Scenario 1 the source of the file
transfer was a Linux machine containing the modified
modules for the Experts and Eifel algorithms, and the
original Kernel code and TCP timer. This machine was
connected to the wired campus network at the University
of California, Santa Cruz. The destination was another
Linux machine connected to the Internet, physically
located in the state of Utah in the USA. Scenario 2 was
similar to Scenario 1, except that the source was now
connected wirelessly to a 802.11 access point, which was



Scenario1 Scenario2 Scenario3
Metric Eifel Jacobson Experts Eifel Jacobson Experts Eifel Jacobson Experts
Error 11.21 8.19 5�10 114.52 74.11 67�64 298.24 199.23 131�65
cwnd 61.55 69.82 74�87 55.38 66.71 74�89 18.91 31.08 38�11
rexmits 26.40 31.12 13�02 314.20 367.70 250�80 204.62 363.21 159�61

Table II
Prediction error �in ticks), cwnd �in packets) and number of retransmissions averaged over 10 runs of the same

experiment.

connected to the Internet through the UCSC campus
network. Scenario 3 was a full wireless scenario, where
both source and destination were connected to the same
802.11 access point. All the measurements were collected
at the source of the file transfer.
Figure 6 shows around 200 trials of one of the file

transfers. It is possible to notice how much faster the ma-
chine learning algorithm can respond to sudden changes
in the RTT value and how much closer it can follow the
real measurements.
Table II summarizes results from live experiments for

the three scenarios studied. This table shows an improve-
ment in the RTT prediction from 40� in Scenario 1 up to
51� in Scenario 3 when comparing the accuracy between
the experts algorithm and the standard TCP predictor.
This difference is even higher when comparing to Eifel.
The other performance metrics—average number of re-
transmissions and cwnd—also improved considerably
when applying our machine-learning approach. On the
other hand, Eifel has the advantage of not requiring any
parameters to be set since gains are computed “on-the-
fly”. In the case of Jacobson’s algorithm, even though
a couple of parameters have to be set in advance, it
is a much simpler and easier to implement algorithm.
However, trading-off complexity to achieve significantly
higher performance is consistent with the steady in-
crease of processing and storage capabilities available in
computing and communication devices. Thus, given the
superior performance illustrated by our results, we can
conclude that our approach gives a good trade-off be-
tween higher complexity and performance improvement.

VI. Conclusions

In the present work, we proposed a novel approach
to end-to-end RTT estimation using a machine learn-
ing technique known as the Experts Framework. We
showcase our approach as an alternative to TCP’s RTT
estimator and show that it yields higher accuracy in
predicting the RTT than the standard algorithm used
in most TCP implementations. The proposed machine
learning algorithm is able to adapt very quickly to
changes in the RTT. Our simulation results show a
considerable reduction in the number of retransmitted
packets, while increasing goodput, particularly in more
heavily congested scenarios. We corroborate our results
by running “live” experiments on a Linux implemen-
tation. These experiments confirm the higher accuracy
of the machine learning approach with more than 40�

improvement, not only over the standard TCP predictor,
but also when comparing to another well know solution,
the Eifel retransmission timer.

Figure 6. RTT values measured on the Linux kernel, and pre-
dictions made by Jacobson’s algorithm and the proposed predictor
using the Experts framework.

References
[1] M. Herbster and M. K. Warmuth, “Tracking the best expert,”

Mach. Learn., vol. 32, no. 2, pp. 151–178, 1998.
[2] V. Jacobson, “Congestion avoidance and control,” SIG-

COMM Comput. Commun. Rev., vol. 25, no. 1, pp. 157–187,
1995.

[3] R. Ludwig and K. Sklower, “The eifel retransmission timer,”
SIGCOMMComput. Commun. Rev., vol. 30, no. 3, pp. 17–27,
2000.

[4] M. Allman and V. Paxson, “On estimating end-to-end net-
work path properties,” in SIGCOMM ’99: Proceedings of
the conference on Applications� technologies� architectures�
and protocols for computer communication, �New York, NY,
USA), pp. 263–274, ACM, 1999.

[5] W. Lou and C. Huang, “Adaptive timer-based tcp control
algorithm for wireless system,” in Wireless Networks� Com-
munications and Mobile Computing� 2005 International Con-
ference on, vol. 2, pp. 935 – 939 vol.2, june 2005.

[6] L. Ma, G. Arce, and K. Barner, “Tcp retransmission timeout
algorithm using weighted medians,” Signal Processing Letters�
IEEE, vol. 11, pp. 569 – 572, june 2004.

[7] K. Leung, T. Klein, C. Mooney, and M. Haner, “Methods to
improve tcp throughput in wireless networks with high delay
variability [3g network example],” in Vehicular Technology
Conference� 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 4,
pp. 3015 – 3019 Vol. 4, sept. 2004.

[8] D. P. Helmbold, D. D. E. Long, and B. Sherrod, “A dynamic
disk spin-down technique for mobile computing,” inMobiCom
’96: Proceedings of the 2nd annual international conference
on Mobile computing and networking, �New York, NY, USA),
pp. 130–142, ACM, 1996.

[9] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine
learning approach to tcp throughput prediction,” SIGMET-
RICS Perform. Eval. Rev., vol. 35, no. 1, pp. 97–108, 2007.

[10] “QualNet.” http://www.scalable-networks.com.
[11] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector

routing,” in In Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, pp. 90–100,
1997.


