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Abstract—In this paper, we propose a novel modeling frame-
work to study congestion in delay- and disruption tolerant net-
works (DTNs). The proposed model is based on directed site-bond
percolation where sites represent space-time position of DTN
nodes, and bonds are contact opportunities, i.e. communication
links that can be established whenever nodes come in range of
each other. To the best of our knowledge, this is the first model of
DTN congestion using percolation theory. The proposed modeling
framework is simple yet general and can be used to evaluate
different DTN congestion control mechanisms in a variety of
scenarios and conditions. We validate our model by showing that
its results match quite well results obtained from the ONE DTN
simulation platform. We also show that our model can be used
to understand how parameters like buffer management policy,
buffer size, routing mechanism, and message time-to-live affect
network congestion.

I. INTRODUCTION

Delay- and disruption-tolerant networks (DTNs) refer to
networks that are characterized by intermittent connectivity,
long delays, and often constrained bandwidth. They were
originally motivated by space exploration and its need for deep
space communication [1]; however, over time, a diverse set
of DTN applications for extreme environments have emerged
including vehicular networks [2], emergence response and mil-
itary operations [3], surveillance [3], tracking and monitoring
applications [4], as well as bridging the digital divide [5]. In
these scenarios, long delays arise as a consequence of either
the fact that distances are long or that connections are episodic.

The DTN architecture proposed in [6] addresses mes-
sage delivery challenges posed by intermittently connected
networks using the store-carry-and-forward paradigm where
messages are forwarded only when a contact opportunity
arises. As a result, messages might remain stored for long
periods of time in persistent storage at intermediate nodes
before reaching their destinations. Because of the inability to
guarantee end-to-end connectivity at all times, congestion may
build up in the network. As a result, persistent storage at nodes
may fill up and eventually overflow, causing data loss and
consequently network performance degradation.

Understanding network congestion has motivated a num-
ber of research efforts that focus on modeling network be-
havior under congestion. Existing models employ a variety
of techniques including renewal theory [7] [8], fixed point
methods [9], fluid models [10], financial models [11], Markov

chains [12], and control theory [13]. In this work, we develop a
simple, yet general mathematical framework to model conges-
tion in DTNs based on percolation theory [14]. Our goal is to
use the resulting modeling framework to evaluate and validate
existing and future DTN congestion control mechanisms. An
important feature of the proposed percolation model is the
fact that, instead of requiring global knowledge about the
whole network, it relies exclusively on local information,
i.e., information related to a node and its neighbors. As will
become clear in the remainder of the paper, formulating the
DTN congestion problem as a percolation process happens
quite intuitively and the resulting percolation model is simple,
general, and easy to derive.

To the best of our knowledge, our work is the first to
model DTN congestion using percolation theory. The proposed
model defines the probability of delivering a message between
a given source-destination pair as the probability there exists
a path between the source and destination containing only
non-congested nodes (i.e., nodes that contain available buffer
space for arriving messages) and active links (nodes in contact
with one another). As a result, our model yields the following
network congestion related metrics: average buffer occupancy,
average buffer blocked time, average message delivery prob-
ability, and average delivery delay. Ultimately, our goal is to
use the proposed model to evaluate DTN congestion control
mechanisms in terms of how cost-effective they are in prevent-
ing/containing congestion.

The remainder of this paper is organized as follows.
Section II describes DTN congestion problem and presents
a brief overview of percolation theory while in Section III,
the DTN congestion problem is described as a percolation
problem. Section IV presents the experimental settings and
defines some evaluation metrics which are used to evaluate
our model. Section V presents an experimental analisys of the
proposed model using both Matlab and the ONE simulator.
Section VI investigates the related work for percolation theory
applied at multi-hop ad hoc networks and DTN. Final remarks
and conclusions are drawn in Section VIL

II. DTN CONGESTION AND PERCOLATION

In this section, we discuss DTN congestion and introduce
definitions, notations, and results of percolation theory which
will be used in our model. More details including proofs of
percolation results discussed here can be found in [15].
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Figure 1. Deep space communication scenario

A. DTN Congestion

The challenges of controlling congestion in DTNs are
mainly due to two reasons: (1) end-to-end connectivity be-
tween nodes cannot be guaranteed, and (2) arbitrarily long
latency caused by high propagation delays and/or intermittent
connectivity. Take for example the deep space communica-
tion scenario in Figure 1, in which a terrestrial terminal is
connected to a terrestrial satellite. The terrestrial satellite is
connected to an Orbital International Station (OIS) in orbit
around the sun, which in turn connects to a Martian satellite
and a space probe. Additionally, there is a Martian terminal
connected to the Martian Satellite. The link between the OIS
and the Martian Satellite is interrupted whenever the planet
Mars is between the OIS and the orbiting satellite, as well as
whenever the sun is between Mars and the OIS. Therefore,
traffic on the “link” between the Terrestrial and Martian
satellites may need to be buffered at the OIS for long- and
varying periods of time. If the OIS becomes heavily congested,
it will significantly hamper communication between the Ter-
restrial satellite and the space probe. Under these conditions,
“traditional” end-to-end congestion control mechanisms, a la
TCP, do not work well. As DTN nodes become congested,
incoming messages may be discarded due to buffer overflow.
This increases the drop rate and raises network overhead which
leads to inefficient use of bandwidth and further worsens
congestion conditions.

DTN congestion control has attracted considerable atten-
tion from the network research community. As a result, a num-
ber of congestion control techniques have been proposed [16],
most of which have been evaluated empirically using network
simulation platforms. Our goal, in this work, is to propose a
simple, yet general framework that can model DTN congestion
mathematically and that can be used to study the performance
of DTN congestion control solutions, complementing and val-
idating empirical studies. We explored a number of modeling
approaches and found that percolation theory is well suited to
describe congestion in DTNs. In the next section, we provide
a brief overview of percolation theory and describe how we
apply it to the DTN congestion problem.

B. Percolation Theory Overview

Percolation was first introduced in the mathematics lit-
erature motivated by the problem of how fluids flow (or
percolate) in different materials (or media) [14]. It immediately
caught the attention of mathematicians and physicists for its
simplicity and wide applicability [15]. To date, percolation has
been employed in a variety of contexts ranging from complex
networks, control of epidemic diseases, and wildfires.

In percolation, the medium or network is modeled as a
graph. A graph is a pair (V, E), where V' is a countable set
of points called vertices or sites, and E is a set of edges,
i.e. unordered pairs of vertices (v,w), also called bonds.
When (v,w) € E, we say that v and w are adjacent. A
set of distinct vertices {vi,ve,vs,...,v,} C V is called
path when consecutive vertices are adjacent in the lattice.
The graph distance between two vertices is defined to be the
minimum amount of bonds necessary in order to establish a
path that connects them. Consider each vertex v € V to be
open with probability p and closed with probability 1 — p,
independently of every other vertex. Thus we can define P,
as being the probability distribution that describes the state
of the graph as a whole. This distribution is defined in the
sampling space 2 = {0,1}V. Elements w €  are represented
as w = (w(v): v € V). So, when w(v) = 0 we say that v is
closed whereas, when w(v) = 1, we say that v is open.

Given a configuration w € €2, we say that a path is open
if all of its vertices are open, that is, w(v;) = 1 for all {i =
1,2,...,n}. Two sites = and y in V are said to be connected
(z > y) if there is a open path {vy, v, ..., v,} where z = vy
and y = v,.

Given one configuration w € () and a vertex x, we can
consider the set of all vertices that are connected to x. This
set is called the open cluster of = in the configuration w and
it is represented by C,(w), or simply by C,. More formally,
we have C; = {y € Viw € (¢ ¢ y)}. When z is equal
to the origin 0 € Z¢ (where Z is an Euclidian integer lattice
with dimension d) we drop the subscript and write C' = Cj
to denote the open cluster containing the origin. Vertices in
the lattice are called sites and edges bonds. In the so-called
bond percolation models, bonds are declared "open" with
probability p, or "closed" with probability 1 — p. In the context
of percolation’s original application, open bonds correspond to
channels through which fluid can flow. Open paths consist of
a sequence of adjacent open bonds together with their end-
vertices. Sites are declared "unblocked" with probability p or
"blocked" with probability 1 — p. An open path is a sequence
of neighboring unblocked sites. Two sites belong to the same
open connected component, or simply to the same cluster, if
they are linked by an open path.

To illustrate bond- and site percolation, we consider the
square lattice shown in Figure 2.

e In site percolation (see Figure 2a), we view the lattice
as a rectangular array of squares. Each square is
declared to be unblocked with probability p (black
squares), and blocked with probability 1 — p (white
squares). A cluster is defined as a maximal connected
set of neighboring unblocked squares.

e In bond percolation (see Figure 2b), the lattice is a
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Figure 2. Types of percolation

graph consisting of horizontal and vertical edges. Each
lattice edge is open (thicker) with probability p, and
closed (thinner) with probability 1 — p. A cluster is
defined as maximal connected subgraph of the lattice
consisting of open edges.

Bond- and site percolation are commonly used to study the
connectivity properties of clusters in the lattice as a function of
the parameter p. The main question is to determine wether the
probability that there exists an infinite open path starting at the
origin is non-zero, or equivalently, wether the origin belongs
to an infinite cluster with non-zero probability.

In order to model congestion in DTNs, we use another
formulation called directed site-bond percolation. In this for-
mulation, both sites and edges have their states assigned ran-
domly and independently. Furthermore edges will be oriented
in order to represent the flow of information in the lattice.
In the proposed percolation-based DTN congestion model:
(1) open bonds represent contacts between DTN nodes, (2)
blocked sites represent DTN nodes whose buffers are 100%
occupied (i.e., congested nodes), and (3) unblocked sites repre-
sent DTN nodes that are not congested. Our model allows us to
derive important network performance metrics such as average
message delivery probability, average buffer occupancy ratio
and blocked time, as well as average message delivery delay.
These metrics are defined in Section IV-B. Our model also
allows us to understand the impact of parameters such as buffer
management policies, routing mechanisms, message time-to-
live on network congestion control.

III. DTN CONGESTION MODEL

DTN congestion can be expressed as a percolation problem
by examining whether there exists a path between data sources
and destinations and whether the paths are open, i.e., non-
congested. In other words, the probability of delivering data
from a node x to a node y is equivalent to the probability of
finding an open path between = and y. As such, our model tries
to find, in the graph represention of the network, open paths,
i.e, sequences of adjacent open edges and unblocked sites
over which data can be delivered from sources to destinations.
To this end, in addition to finding end-to-end paths between
DTN sources and destinations, the model also considers buffer
occupancy at each node along the path.

While our percolation-based model is quite general and
applicable to lattices of arbitrary dimension d, for simplicity,
in this work we focus on the special case of d = 1 which still
captures the main DTN congestion features that we want to
study. The experimental validation of our model presented in
Section V-A shows that results obtained from the model match

quite well simulations run on the ONE DTN simulator [17].
Figure 3 shows the DTN representation we use in our percola-
tion model; the network is represented as a collection of nodes
in a domain S C Z<, where each node is a vertex ina d = 1
lattice, i.e., a line. We model the state evolution of the nodes
by adding the temporal dimension, which is represented by
parallel lines labeled tg, ¢, - - - ,t, as shown in Figure 3. Our
model is thus defined in Z4*! = Z4xZ'. Asitein 24!, d =1
will be denoted by (z,t) where 2 € Z¢ represents the position
of the site at time t € Z.

As previously highlighted, in order to establish whether a
node z is blocked (congested) or unblocked (non-congested)
at time ¢, our model calculates x’s buffer occupancy given by:
x’s buffer occupancy at time ¢ — 1, plus the number of new
messages created at x, plus the number of incoming messages
at x received from its neighbors, minus the number of out-
going messages from x. Below, we proceed to calculate these
different buffer occupancy components. Table I summarizes
the variables used in our model and their definitions.

We consider that, at each time ¢, a node = can only forward
a message to its left and/or right neighbors (z — 1 and = +
1, respectively). This corresponds to the SE (southeast) and
SW (southwest) oriented edges in Figure 3, respectively. We
use vertical edges to represent the fact that a node can keep
messages stored locally from time ¢ to ¢ 4+ 1. These edges are
represented as dashed lines in Figure 3.

Spatial
dimension

Temporal
dimension

-

Figure 3. Network model

Let Q be a positive integer denoting the buffer capac-
ity at nodes, i.e. the maximum number of messages that
can be stored at each node. Let M(z,t) denote the set of
messages stored at node x at time ¢ and m(i,z,t) | ¢ =
{1,2,...,M(x,t)} refers to an individual message stored at
T at time t.

For a message m(i,,1):

Fli ) = {1 if m(i,z,t) has already been forwarded,
Y 0 if m(z, x,t) has not been forwarded yet.
(1)
For each site (x,0), let us set an initial buffer occupancy
O(xz,0). Here we assume that {O(z,0);x € Z} is initially
empty. We say that node z is blocked at time ¢ if O(z,t) = Q.

We define B(x,t) as the number of messages created at z
at time ¢; B(x,t) is an independent random variable given by



Table 1.

DTN PERCOLATION MODEL VARIABLES AND DEFINITIONS

Variable Name

Description

N (z) number of neighbors of
Q maximum number of messages that can be stored in a node’s buffer
M(z, t) set of messages stored at node x at time ¢.
m(i,z,t) message ¢ stored at x at time ¢
f(i,x,t) specifies whether message m (¢, x, t) stored at x at time ¢ was forwarded or not
Wz, 3, z,t) specifies whether message m(j, «;, t) forwarded by neighbor x; already exists in =’s buffer at time ¢
Te node’s transmission radius
O(z,t) 2’s buffer occupancy at time ¢
B(z,t) number of messages generated by x at time ¢
E set of all bonds
S(z,t) number of outgoing messages at x at time ¢
D(z,t) number of drop messages at  at time ¢
Crmsg(z,t) number of messages consumed by applications running on x at time ¢
F(z,t) number of messages forwarded by z at time ¢
e bond between two sites/nodes
n(e) specifies whether a bond between x and z; is open or closed

B specifies message forwarding mechanism: replication if 8 = 0 or “plain” forwarding if 8 = 1
w(z,t) specifies whether a blocked (congested) or unblocked (uncongested) at time ¢
r path that contains only unblocked sites and open bonds
K(x,t) number of messages received from right neighbor at time ¢
v(z,t) number of messages received from left neighbor at time ¢
L(z,t) number of messages forwarded to left neighbor at time ¢
R(z,t) number of messages forwarded to right neighbor at time ¢

a Bernoulli distribution with parameter A € (0,1) called the
message generation rate. On average, a message is created at
x every 1/ unities of time.

Let . > 0 be an integer denoting the node’s transmission
radius. We add a bond for each pair of sites e = ((z,t), (x;, t+
1)) if |x; — 2| < rc. Let us denote by E be the set of all bonds
obtained by this procedure (Figure 3 presented an illustration
for the case d = 1 and 7, = 1). We define {n(e) | e €
E} a family of independent random variables with Bernoulli
parameter p indexed by the bonds of the network. We say that
the bond e is open if 77(e) = 1 and closed otherwise. This
allows us to model node encounters in DTNs, i.e., when a
bond e = ((z,t),(x;,t + 1)) is open, nodes z and x; are in
contact and thus can communicate. This is also how we model
the effect of node mobility which influences the appearances
and disappearances of bonds in the lattice.

Now, let S(z, t), which is given by Equation 2, be the total
number of outgoing messages at node x at time t. S(z,t)
includes the number of messages discarded (D(z,t)), the
number of messages that have been consumed by applications
running on & (Cpsq(z,t)), as well as the number messages
forwarded by x (F'(x, t)). Note that to calculate F'(x, t), we use
B € {0,1} which specifies whether the forwarding mechanism
uses replication or not. More specifically, if 3 = 0, a copy
of the message is forwarded and the original message is
maintained in the buffer. Otherwise, if 8 = 1, the original
message is itself forwarded and thus not maintained in the
buffer. Indeed, this is how we model the underlying routing
mechanism being used, i.e, whether it is based on replication or
“plain” forwarding. D(x, t) represents the number of messages
discarded either because the message time-to-live (TTL) has
expired or because the buffer filled up. In the latter case,
messages will be discarded according with a pre-defined drop
policy [16]. In the experimental evaluation of our model (see
Section V), we vary the drop policy and observe its impact on
network congestion.

Recall that, at time ¢, a node x can only forward messages
to nodes z — 1 (left neighbor) and x + 1 (right neighbor).
Thus, the number of messages forwarded by z, F'(x,t) can be

written as F(z,t) = L(x,t) + R(z,t), where L(x,t) is the
number of messages forwarded by z to its left neighbor x — 1
at time ¢, and R(z,t) is the number of messages forwarded
by z to its right neighbor = + 1 at time ¢.

F(x,t)
O(z,t)
S(x,t) =D(x,t) + Consg(z, ) + B Y fli,,1)  (2)

i=1

According to Equation 3, x(x,t), the number of messages
received by z from its right neighbor, depends on whether there
is an edge between x and its right neighbor during (¢,¢ + 1),
which is determined by n((z+1,t), (x,t+1)). Clearly, if x and
x+1 are not in contact with one another x(x,t) = 0. If there is
an edge between = and x+ 1, the number of messages received
(and stored) by x is given by L(z + 1,¢) minus the number
of 4+ 1’s messages which x already has in its buffer. These
messages, if exchanged by the two nodes, will be discarded
by x as duplicates. The number of duplicate messages is given
by 0D 1341, §, 2, t), where I(z 41, j, z,t) is defined

by quu:ation 5.

k(z,t) =n((z + 1,t), (z,t + 1)) [L(z + 1,t)—
O(x+1,t)

DRRICE W R0 )

Jj=1

Similarly, v(x,t), the number of messages received by x
from its left neighbor is expressed by Equation 4.

V(1) = ((x — 1,0), (.t + D)[RG: — 1)
O(z—1,t)

Yo lw-1j420)]. @

j=1



l(l‘mj,l’,t) = {

0 otherwise.

®)

We can now write the expression for the buffer occupancy
at x at time ¢ + 1 in Equation 6 as z’s buffer occupancy at
time ¢, plus the amount of new messages created at = at time
t, minus S(z,t), the number of messages leaving x at time ¢,
plus the number of messages received from z’s right neighbor
at time ¢ (if a contact existed between them), plus the number
of messages received by x at ¢ from 2’s left neighbor (if a
contact existed between them).

O(z,t+1) = {(O(x,t) + B(x,t) — S(x,t)+
k(z,t) +v(z,t)) A O}, (6)

where for any real numbers a and b, a A b = min{a, b}.

We then say that x is blocked at time ¢ when Equation 7
is true.

{O(z,t) + B(x,t) — S(z,t) + s(z,t) + vz, t)} > Q, (7)

and define:

0 if = is blocked in time ¢,

w(a,t) = {1

Recall that our goal is to find open paths I, i.e., sequences

[ =[(2% ), (@' th, (@2, 1%), (23, ¢%), ..., (", t")] )

®)

if z is not blocked in time ¢.

such that
(@ 8). @) €B ¥ i=0. =1 (10)

and, in addition,
o w(ht)=1V i=0,...,nand
b n((xiati)a(xi+1vti+l)):1 N izO,...,n—l.

As shown in the results presented in Section V, using
our model we can compute network performance metrics
such as buffer occupancy, buffer block time, message delivery
probability, and delivery delay which are congestion indicators.
Our model can also be used to evaluate the effectiveness of
different congestion control mechanisms.

IV. EXPERIMENTAL METHODOLOGY

The evaluation of our model was carried out in two ways.
First, we validate the model by comparing its output against
simulation results from the ONE DTN simulator [17]. Then,
we use our model to study how parameters like buffer man-
agement policy, buffer size, routing mechanism, and message
time-to-live (defined in Section IV-B below) affect network
congestion and can be used to perform congestion control. We
implemented our model in MatLab.

1 1ff(j756“t) =1 and m(.]a ‘riat) € M(Iat)’

A. Experimental Setup

For experiments presented in Section V, the parameters of
our model and their values are summarized in Table II while
the parameters of the ONE simulator [17] and their values are
listed in Table IV.

Some considerations about the implementation of our
model are noteworthy. For example, when a message is de-
livered to its intended destination, it is consumed by the ap-
plication running at the destination within T'imeApp seconds.
This is the period of time the message stays in the node’s
buffer after being received and before being removed from
the buffer. In our experiments, unless stated otherwise, we use
TimeApp = 0, which means that the message is promptly
removed from the buffer as soon as it arrives. Each time two
nodes are in contact with one another, they try to exchange
all their stored messages if there is available space in their
buffers. To this end, both nodes compute the buffer occupancy
according to Equation 6. If the node’s buffer is considered
blocked (see Equation 7), the buffer management policy of
choice is activated to discard the appropriate messages. Four
drop policies have been considered in our experiments (see
Table III). Each message has a TTL (Time-To-Live) whose
value is decremented by one unit at every clock tick. When a
message’s TTL expires, the message is automatically removed
from the system.

io L {1 I 1o 195 16 lor s 5

Figure 4. Snapshot of the ONE simulator scenario for 10 DTN nodes.

In order to validate our model against the ONE simula-
tor [17], we run ONE simulations using the line topology
shown in Figure 4). We set the node transmission range such
that a node can only communicate with its two adjacent
neighbors in the line topology as depicted in Figure 4). To be
able to simulate using the ONE the two forwarding strategies
that we use in our model, namely replication and single-
copy forwarding, we use two of the ONE’s routing schemes.
Replication in our model (8 = 0) is simulated using epidemic
routing [18] in the ONE, which replicates a message and
forwards it to all nodes that are within range (i.e., nodes that
have open bonds with the current node). To match single-copy
forwarding (5 = 1), we use the ONE’s implementation of the
first contact protocol [19], according to which only one copy
of a message exists in the network at any point in time. This
means that a message is relayed to the first encountered node

Table III. DROP POLICIES
Drop Policy Description
DROP-INCOMING  the incoming message is dropped.
DROP-HEAD the first message in the buffer, i.e., the head of the
queue, is dropped.
DROP-LAST the newly received message is first removed.

DROP-OLDEST the message with the shortest remaining life time

(closest to TTL expiration) is dropped.




Table II.

SIMULATION PARAMETERS AND THEIR VALUES FOR MATLAB EXPERIMENTS

Parameters

Name Description

Value

Discrete clock time simulation time

TTL messages time-to-live (TTL)

Lambda () message generation rate

BufferSize buffer capacity in number of messages

Rho (p) connection success probability

BufferPolicy message drop scheme if congestion happens

Nodes number of nodes

TimeApp once the message arrived at the destination how long it will take for it to be consumed by the application

Beta (3)
MessageSize

forwarding strategy (replication or single-copy)
message size

it is a duplicate, and is then removed from the message buffer
of the previous hop.

Table IV. SIMULATION PARAMETERS AND THEIR VALUES FOR ONE
SIMULATIONS
Parameters
Name Description Value
Scenario.endTime simulation time 1000 seconds
btlnterface.transmitSpeed bandwidth 2.5 Mbps
btlnterface. transmi itting range 26m
Group.router routing protocol [EpidemicRouter,FirstContactRouter]
Group.movementModel mobility model LinearFormation

node buffer size
message time to live

Group.bufferSize
Group.msgTTL

[10, 20, 30, 40, 50, 60] KB
[100, 200, 300, 400, 500] seconds

Group.nrofHosts number of nodes in network 50
Movimentmodel.worldSize area where simulation takes place 1km x Ikm
Events].size message size 1KB

Events].interval i.e. one new message every 1 to 5 seconds [1-5, 1-10, 1-20, 1-30] seconds

In the ONE simulator, two nodes are in contact whenever
they are within the communication range of one another.
So, if the separation distance between the nodes is less than
the r., all links will be always active. In order to simulate
the fact that node neighborhoods change, we simulate links
between neighbors going up and down according to a Bernoulli
distribution with parameter p. To this end, we modify the ONE
simulator to include this feature and set p = 0.5 to match our
model.

B. Evaluation Metrics

One of the goals of our model is to describe the congestion
problem taking into account the main characteristics of a DTN,
for example, limited resources, high delays, and intermittent
connectivity. Additionally, we also want to be able to analyze
DTN congestion under a variety of scenarios and conditions
(e.g., deep space communication).

To this end, we define the following metrics that can be
derived from the proposed model. These metrics not only
provide us with insight into the performance of existing
congestion control mechanisms but also help us to propose
new ones that can be more cost-effective. We also use these
metrics to cross-validate our model against simulation results
from the ONE simulator.

1)  Average buffer occupancy is given by the average ratio
between the number of messages stored at a node and the
size of the node’s buffer; in our model it is equivalent to
O(z, ).

2)  Average buffer blocked time is defined by the average
time that each site remains blocked (or congested). It
corresponds to w(x*,t") in our model.

3)  Average message delivery probability is given by the
probability of existence of a space-time path that connects
the message source to its final destination. This metric al-
lows us to infer network congestion levels and corresponds
in our model to the probability that I" exists.

1000 seconds

[100, 200, 300, 400, 500] seconds

[1/5, 1/10, 1/20, 1/30]

[10, 20, 30 .40, 50 , 60] messages

0.5

[DROP-INCOMING, DROP-HEAD, DROP-LAST, DROP-OLDEST]
50

0 seconds

[0, 1]

1 KB

4)  Delivery delay is defined as the total time elapsed between
message generation and its delivery and is equivalent, in our
model, to the time it takes for a message to be delivered
over I, if I" exists.

V. RESULTS
A. Model Validation

We validate our model by comparing its results obtained
from its Matlab implementation against simulation results from
the ONE DTN simulator. To evaluate the impact of congestion
on network performance, we try to generate enough load to
congest the network. Figure 5 shows the average message
delivery probability as a function of the message generation
period resulting from our model and from the ONE simulator.
We observe that both curves essentially overlap with an aver-
age percentage difference ! of 1.58% in the case of Figure 5a
and 0.96% in Figure 5b. As expected, for longer message
generation periods (i.e., lower message generation rate, or
A in our model), which results in less messages generated,
the average delivery probability increases. Note that average
delivery probabilities from this experiment are quite low since
no congestion control scheme has been used. In this case, the
drop policy is frequently activated, causing messages to be
discarded before they are delivered. According to Figures Sa
and 5b, we observe that the delivery probability when using
8 = 0 (epidemic routing) is slightly lower than when using
B =1 (first contact routing) because in the former case there
are more message copies in the network resulting in buffer
overflow and consequently increased drop ratios. As a result
the average delivery probability is lower.

Figure 6 shows the delivery latency for different TTLs.
Similarly to the average delivery probability results, the curves
resulting from our model and the ONE simulator are quite
close: the average percentage difference between the latencies
obtained from our model and results from the ONE is 6.68%
when § = 0 and 3.06% when § = 1 (Figures 6a and 6b
respectively). We observe that when the message time-to-
live increases, the latency has a tendency to increase. This is
because higher message time-to-live results in a greater number
of messages in the network, which in turn generates overload.
Consequently, it increases the message delivery time since the
messages stay longer into network.

B. Understanding Network Congestion

Here we use our model to understand network behavior
under congestion and how certain policies and parameters can

IThe percentage difference comparison calculates the percentage difference
between two values in order to determine how close they are.
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Figure 5.  Average delivery probability for different message generation
periods (TTL of 300s, Drop-policy DROP — OLDEST, buffer size of
60 kbytes).
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Figure 6. Average latency for different message time-to-live (Drop-policy
DROP — OLDEST, buffer size of 60 kbytes, message generation period
of 5s). The standard deviation for the results from our model are 46.49 for
B =0 and 43.70 for 8 = 1. For the ONE experiments, we obtain a standard
deviation of 31.40 for 5 = 0 and 34.26 for 8 = 1.

control congestion. We begin with the impact of different drop
policies on delivery probability which is shown in Figure 7.

What we observe is that the delivery probability for different
policies does not vary considerably when 8 = 0. However,
when 5 = 1, we note that the variability of the behavior among
the different drop policies increases, favoring “drop-head” and
“drop-last”.

Average defivery probability for
different buffer management policies.
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Figure 7. Message delivery probability for different drop policies with § = 0
and 8 = 1 (TTL of 300s, buffer size of 60 kbytes, message generation period
of 30s).

Figure 8 shows that, as expected, increasing the buffer size
results in shorter buffer block times.

Average buffer block time for
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Figure 8. Average buffer block time for different buffer sizes with 5 = 0
and 8 =1 (TTL of 300s, message generation period of 5s).

From Figure 9, we observe that higher time-to-lives in-
crease average buffer block time. This is mainly because
messages can stay longer in the buffer until being forwarded
or delivered. As a result the buffer becomes full faster.

Average buffer block time for
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Figure 9. Average buffer block time for different message time-to-live with
B =0 and S = 1 (buffer size of 60 kbytes, message generation period of
5s).

Figure 10 shows that as the buffer size increases, so does
the average buffer occupancy. Basically, for higher buffer sizes
the node can store more messages, and consequently the buffer
occupancy ratio has a tendency to increase.
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Figure 10. Average buffer occupancy for different buffer sizes with § = 0
and B = 1 (TTL of 300s, message generation period of 5s).

As it can be seen in Figure 11, for higher time-to-live
values, buffer occupancy tends to increase. The reason for this
is that messages stay in the buffer longer. However, beyond a
certain value of the TTL, buffer occupancy does not change
significantly. This is probably due to the fact that messages
have enough time to be delivered to their intended destination.
For example, in Figure 11, for TTL values greater than 400s,
the average buffer occupancy does not vary significantly.

Average buffer occupancy time for
ditforont message TTL

Figure 11. Average buffer block time for different message time-to-live with
B =0 and B = 1 (buffer size of 60 kbytes, message generation period of
5s).

VI. RELATED WORK

In this section we review prior research efforts focusing in
the two areas related to our work, namely: percolation theory
applied to mobile ad-hoc networks (MANETSs) and network
congestion modeling.

A. Applications of Percolation in MANETs

Since MANETSs consider propagation of information over
a random structure, percolation theory offers a theoretical
framework to study the behavior of such systems. Recent
studies [20] [21] [22] [23] [24] showed the existence of phase
transition phenomena in MANETSs using percolation theory.
They showed, for instance, the existence of a connectivity
threshold needed to guarantee the communications in the
network. In addition these studies evaluate the probability of
routing success when links go up and down, and, like our work,
they argue that the evolution of the network over time generates
many more possible configurations, enabling the percolation
cluster to become much larger.

Space-time percolation, detection by mobile nodes, and
information dissemination have attracted the attention of re-
searchers ( [25] [26] [23] [27]). In [27] a critical percolation
threshold for aligned cylinders was derived, which provides
a lower bound for the required node degree as it relates
to the performance of opportunistic networking. Nodes are
assumed stationary and it is shown that opportunistic content
dissemination schemes, such as “floating content”, can be
analyzed by using a three-dimensional continuum percolation
model.

A study of DTN and its capacity to store, carry, and
forward messages so that messages eventually reach their final
destination(s) was presented recently [28]. Percolation theory
is used to characterize the mean density of nodes required to
support communication in DTNs. In [29], a lower bound for
node buffer size in intermittently connected wireless networks
is described using percolation theory.

B. Modeling Network Congestion

A variety of methods have been employed to model con-
gestion in traditional networks, including queuing [30] [31],
auto-regression [32] [33], and Markov chains [32] [33]. Our
work complements this prior work by considering congestion
in DTNs.

There are also some studies that treat the congestion
problem using financial models. For instance, market theory
suggests that differentiated service can arise from a pricing
scheme based on the level of congestion. As the resource
becomes overloaded, only those who are willing to pay higher
usage prices remain on the network. An economic pricing
model is used by [11] to study the congestion problem and
how to mitigate it in DTNs.

An analytical framework based on bulk arrival and bulk
service queues to model DTN node behavior is proposed
in [12]. The authors compute the stationary discrete probability
densities of the sizes of the arriving bulks. In addition, they
investigate a class of forwarding strategies, based on epidemic
routing, used by DTN nodes where an expression for the
average buffer occupancy is derived.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the first DTN congestion
model based on percolation theory, in particular, site-bond
percolation. Using percolation theory to describe congestion
in DTN scenarios allows us to propose a simple yet general
model that derives the probability of delivering a message
between a given source-destination pair. The resulting delivery
probability is the probability that there exists a path that con-
tains only uncongested nodes and active contact opportunities
in the network. Ultimately, our goal is to use the proposed
model to evaluate DTN congestion control mechanisms in
terms of how cost-effective they are in preventing/containing
congestion. Additionally, we use the theory of percolation to
derive performance metrics that are key to understand DTN
congestion and how to mitigate it.

The current model considers epidemic- and single-copy
forwarding as data forwarding strategies. We plan to add to
the model other forwarding strategies such as Prophet, Spray



and Wait, Spray and Focus, etc. We will also extend our model
to 2- and 3 dimensions as well as incorporate node mobility
explicitly.
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