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Abstract—In this paper, we show empirically that
the spatial node density resulting from human mobility
follows a power law. We also show that the number of
locales visited by users also exhibit heavy-tail behav-
ior. We develop a stochastic model that confirms our
empirical observations by showing that node mobility
resulting from our model closely approximates mobility
recorded in real traces collected from a variety of
scenarios. Besides corroborating our empirical observa-
tions, we showcase another application of our model by
using it to generate mobility regimes whose spatial node
density exhibit heavy-tail behavior. We validate the
resulting mobility generator by comparing its output
against real traces.

I. INTRODUCTION

Understanding how users move is critical to the design
of wireless networks and their protocols. So much so that,
over the last decade, network researchers have dedicated
considerable attention to user mobility modeling and char-
acterization. The importance of node mobility in designing
networks has motivated researchers and practitioners to
try to use realistic scenarios to drive the design and
evaluation of wireless network protocols. As a result, ini-
tiatives such as the CRAWDAD [1] trace repository have
emerged. CRAWDAD makes available real mobility traces
which can then be used by the networking community to
test and evaluate mobile networks and their protocols.
However, even though initiatives like CRAWDAD have
greatly increased availability of real traces, the number
and variety of publicly-available mobility traces is still
quite limited. Consequently, relying exclusively on traces
to design and evaluate network protocols would not allow
a broad enough exploration of the design space.

The relatively limited availability of real traces has
lead to the development of “mobility generators”, which,
following a pre-specified mobility regime, determine the
position of network nodes over time during simulation
runs. Synthetic mobility generators have been extensively
used in the study of wireless networks [2]. One of the most
widely used synthetic mobility regimes is the Random-
Waypoint Mobility (RWP) model. However, RWP mo-
bility has been known to exhibit some undesirable prop-
erties [3]. The work reported in [4] shows that random
mobility leads to homogeneous spatial node distributions.
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This means that even if the initial spatial node distribu-
tion is spatially heterogeneous, node density will tend to
“deteriorate” to a homogeneous distribution under RWP
mobility.

Indeed, one of the main challenges in constructing mo-
bility generators is building models that can capture key
features and the complexity of user mobility in real-live
settings. As suggested before, one such key feature is node
clustering, which can be defined as the tendency of nodes
to agglomerate. In prior work [5], we show that, instead
of being homogeneously distributed over an area, users
tend to congregate and form clusters, where some regions
may be quite dense while others completely deserted. In
order to express this feature of user mobility, we define
spatial node density as the number of nodes located in a
given unit area. Our study of user mobility also revealed
that the original non-homogeneous spatial node density
distribution is maintained over time. Thus, according to
our observations, human mobility is characterized by non-
uniform, time-invariant spatial node density.

We contend that spatial node density has considerable
impact on fundamental network properties such as connec-
tivity and capacity which in turn have direct influence on
core network functions like medium access and routing. To
date, only a few efforts have focused on modeling spatial
node density. Notable examples include [6] and [7], which
propose analytical models to study spatial node density
under RWP mobility. In our own prior work [8], we model
spatial node density by developing a set of first order
ordinary differential equations (ODEs) whose parameters
are extracted from real mobility traces.

In this paper, we start by showing empirically (using
real mobility traces collected in a variety of scenarios) that
spatial node density observed in human mobility can be
modeled by a Power Law (PL). We then propose a model
to describe analytically the heavy tail behavior exhibited
by spatial node density and verify that the proposed model
closely approximates empirical spatial density distribu-
tions resulting from real mobility traces. As an example
application, we use our model to build a waypoint-based
mobility regime that is capable of generating mobility
traces whose spatial node density distributions closely
resemble the ones measured in real human mobility scenar-



ios with the advantage of not requiring to extract model
parameters from empirical datasets. We use our mobility
regime to simulate node mobility in ad hoc network sce-
narios and show that the resulting average spatial node
density closely resembles spatial density behavior observed
in real mobility traces (the average absolute error in this
case was less than 15%).

The remainder of this paper is organized as follows:
The next section presents important definitions and the
mobility datasets used in our work. In Section III we
present our empirical study on the PL properties of real
user spatial density. Section IV presents our analytical
model for node spatial density and show a good matching
between it and the same metric extracted from real mo-
bility datasets. In Section V we present a waypoint-based
mobility regime that is capable of generating simulated
mobility traces in which the engendered spatial node
density resembles closely the ones measured in real human
mobility scenarios. Related work on spatial node density
and realistic mobility models are presented in Section V1.
Finally, Section VII concludes the paper.

II. DATA AND DEFINITIONS

For our study, we use real traces collected in scenarios
that are quite diverse, namely a park in the city of Rio
de Janeiro, Brazil, a University campus, and taxis in San
Francisco, California, USA. Some of the traces were col-
lected using GPS devices, while others record associations
and disassociations of users to Wi-Fi Access Points (APs).
These traces are summarized in terms of number of users,
duration of the trace, and the log sampling period in
Table I.

For the GPS traces, we divide the mobility domain,
i.e., the area around which nodes move, into equal sized
squares, that we refer to as cells. To decide what cell size
to use, we assume that a node’s transmission range is 100
meters. If we use squared cells, they will be circumscribed
in a 200m diameter circle. That results in 140 x 140 meter
cells. To validate our choice of cell size, we ran experiments
with different cell sizes and observed no significant change
in the results obtained for reasonable cell sizes (i.e., not
considering cells that are too small or too big). In the case
of WLAN traces, their cells are defined by the area covered
by the APs, where each cell corresponds to an AP.

Spatial Node Density

We define spatial node density as the number of nodes
located in a given unit area. We extract spatial node
densities from the traces using the trace’s sampling period.
We also use the following definitions:

e Node Spatial density distribution: the percentage of
cells being visited by > x nodes.

e Node Mobility Degree: the percentage of nodes that
visit a number > n of cells.

Intensity Map

We measure the intensity of a cell as the number of node
visits a given cell receives during a given time interval.
Each cell i € {1..N}, where N is the total number of cells
composing the physical mobility domain, is assigned an
intensity p; 7, at interval T; given by an Intensity Map
(IM), for t € {0,1,2,...}. The IM is a vector composed by
N elements, where each element has a value {u; r, € R |
wi 1, > 0} that indicates how intense the activity in cell
1 is. The IM for interval T}, will give us the spatial node
density for that interval of time.

Analogously, we extract an User Intensity Map (UIM)
composed by L elements, where each element has a value
{1, € R | w1, > 0} that indicates how mobile a node
I € {1..L} is. In other words, p 7, is the number of cells
visited by node [ during T;.

Node Speed and Pause Time

We also extract from the traces the distributions of
speed and pause time by using the trace’s sampling period.
For example, in the Quinta trace, the sampling period is
T = 1 seconds. We define the node’s speed as & where
d is the distance traveled between two consecutive entries
in the GPS trace at times t; and to and At = t5 — 3.
Pause time is defined as P = At, if d < threshold, or zero
otherwise. The threshold is not zero here to account for
GPS error. We set this threshold to be 0.5 meter for the

Quinta trace due to jitter in the GPS update frequency.

Trace # users # Cells Duration Samples

Quinta [9] 97 16 900s 1s

SF Taxis [10] 483 1600 24 days 1 to 3 mins

Dartmouth [11] 6524 1776 60 days Instant
TABLE 1

SUMMARY OF THE REAL TRACES STUDIED.
III. POWER LAW AND NODE DENSITY

In this section, we use well-known statistical techniques
to show that spatial node density resulting from human
mobility exhibit heavy tail behavior, i.e., it follows a Power
Law distribution. Power law has been used to describe a
number of phenomena in communication networks, such
as, node inter-contact time [12], Internet topology [13],
Internet traffic [14], traveled distance and trip displace-
ment [15] etc. To the best of our knowledge, this is the first
time that spatial node density resulting from real mobility
has been shown to follow a power law.

Fitting empirical data into a distribution that follows
a power law is not trivial due to fluctuations that occur
in the tail of the distribution representing rare events, and
also due to the difficulty in identifying the part of the data
distribution that actually follows the power law.

Power laws are expressions of the form P(x) o« z7%,
where a is a constant parameter and = are the measure-
ments of interest. Few physical phenomena follow a power
law for all values of x [16]. Usually, only the tail of the
distribution, i.e., starting from a given minimum value,
Tmin, follows a power law. Thus, given a set of values that



correspond to the observed data and the hypothesis that
the data was extracted from a distribution that follows a
power law, we want to verify if this hypothesis is plausible.

We employed the statistical techniques described in [16]
to fit the empirical data into a power law and compute
its parameters. Also in [16], a goodness-of-fit test was
proposed which generates a p parameter to test whether
a distribution follows a power law. In other words, it tests
if a curve that follows a power law is a plausible fit for
the empirical data. This test is based on the measurement
of the distance between the distribution of the empirical
data and the hypothesis of the model. This distance is
compared with the distance of measurements taken from
a set of synthetic data drawn from the same model. The
value of p is defined as a fraction of the distance of the
synthetic data that is greater than the empirical distance.
Thus, if p is high (close to 1), than the differences between
the empirical data and the model can be attributed to
statistical fluctuations. The distance is computed through
the statistical test of Kolmogorov-Smirnov (KS). In the
case where p is small the model is not plausible. In [16], a
reference value of p < 0.1 is used to reject the hypothesis
that the empirical data follows a power law.

Figure 1 shows the cumulative distribution function
(CDF) of the spatial node density distribution for the
Quinta 1(a), Dartmouth 1(b), and San Francisco cabs 1(c)
mobility traces. The plots show the fitting of this data
according to three probability distributions: exponential,
log-normal and a power law distribution (using the method
described in [16] for the power law fitting). The first two
distributions are shown here, due to the fact that even
if the data is well fit by a power law it is still possible
that another distribution, such as an exponential or a log-
normal, might give a fit as good or better. Thus, for the
sake of comparison, we also show the fitting of the same
data using the exponential and log-normal distributions.
It is possible to see from Figure 1 that the power law
distribution is the best fit for all three scenarios studied.

These figures also show the parameters of the fitted
curves for each probability distribution. The power law
distribution curves show the respective values of p for the
three traces studied. Through the metric p, computed for
the power law distribution, it is possible to verify if the
hypothesis that the empirical data follows a power law
is a plausible one for these scenarios. It is important to
notice that for all the traces, p is well above the reference
threshold of 0.1 defined in [16], validating the hypothesis
as plausible that the spatial density distribution of mobile
nodes follows a power law with parameters close to o = 2.5
and Z,,;, proportional to the number of observations.
Here, a gives the slope of the curve and x,,;, depicts where
the heavy tail behaviour begins, which for these traces
ranges from 10% to 20% of the upper density.

Another important factor in mobile networks is how
mobile a node is. In other words, the number of different
locations or cells that a mobile node visits, defined here as
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Fig. 1. CDF of the spatial node density distribution for the Quinta,
Dartmouth and San Francisco cab traces.

node mobility degree. We have been able to verify that
the hypothesis that the node mobility degree follows a



power law distribution is also plausible. However, due to
space constrains we do not show the statistical analysis
here for this metric. From the point of view of DTNs or
social networks, this information is quite useful since a
mobile node that visits a large number of locations would
potentially experience a greater number of opportunistic
contacts.

IV. SrAaTIAL NODE DENSITY STOCHASTIC MODEL

Having verified the power-law characteristics of spatial
node density resulting from real user mobility motivated
us to develop an analytical model for spatial node density
and node mobility degree that would reflect their power
law properties. A similar model was developed for the
distribution of income of people living in the UK in the
early 50‘s ([17]). In this section, we present a stochastic
model for the spatial node density distribution and node
mobility degree that reflects their power law behaviour.

A. Node Density Distribution as a Stochastic Process

In the model presented in this section the spatial node
density distribution of some enumerable groups of cells
is assumed to develop by means of a stochastic process.
The stochastic matrix is assumed to remain constant
through time. Under these circumstances and provided
certain other conditions discussed below are satisfied,
the distribution will tend towards a unique equilibrium
distribution dependent upon the stochastic matrix but not
on the initial distribution.

We suppose that the measured values of cell’s density,
or the measured number of mobile nodes visiting a cell,
is divided into an enumerable infinity of ranges, which
we assume to have uniform proportionate extend. For
example, we might consider the ranges per interval time to
be 1-2 nodes, 2-4 nodes, 4-8 nodes, 8-16 nodes, ... although
different graduations could be considered. We shall regard
the development through time of the density distribution
between these ranges as being a stochastic process, so that
the density of any individual cell in an interval time may
depend on what it was in the previous interval time and
on a random process. We are assuming, also, that the total
number of cells in the system is invariant through time.

Under such assumptions, the node spatial density distri-
bution can be described in terms of the following vectors
and matrices. We first define X,.(0), as the number X,.(0)
of cells in each range R,., r = 1,2, ... in the initial time T}
and a series of matrices p,(t) telling us in each time 7T}
the percentage of cells of R, who are shifted to range R in
the following interval time T3, 1. With these definitions the
density distribution z,(t) in the successive time intervals
will be generate according to Equation (1)

ZX )Py (t (1)

If we now suppose that the ranges are ordered by size
(there being a lowest cell density range Ry), then we can
define a new set of stochastic matrices

st+1)

Pra(t) = Prpa(t) (2)

and rewriting (1) in the form

D)= Y X Open ) (3)

U=—00

Dry(t) then tell us the proportion of cells in R,. who shift
by a number u of ranges in 7;.

In order to make a simple model, we should assume
that the matrix p,, (t) regarded as a frequency distribution
in u differs very little in form for variations over a wide
range of values of r and ¢. When considering the practical
implications of this suggestion one can see that it means
that the probability of shifts upwards and downwards
along the ranges of cell’s densities differ little as between
the occupants of different ranges, and differ little over
time.

Our other assumption that the function pf,.,(t) =
Pry(t) Temains constant over time was shown in our previ-
ous work [5]. Examining the static equilibrium generated
by a fixed set of functions p/..(t) is an essential preliminary
to the study of the dynamic equilibrium with moving
Pl (2).

It is known that under very general conditions the
repeated application of the same set of cell-changes rep-
resented by an irreducible matrix pl,(t) will make any
initial density distribution eventually approach a unique
equilibrium distribution, determined by the matrix p/(¥)
alone.

It would be a great advantage in constructing models
of density distribution if we had empirical evidence about
the matrix p,(t) describing actual movements of density
distribution in real networks. Thus, in order to validate the
proposed model, some such evidence was compiled from
the CRAWDAD repository [1] through two of the studied
traces, Dartmouth and SF Taxis, and the third trace, the
Quinta trace [9].

B. A Model Generating a Pareto Distribution

Let us assume, for the sake of simplicity, that for every
value of ¢ and 7, and for some fixed integer n, we have

=pru(t)=0 if u>1 or

This means that no cell move up by more than one range
in a time, or down by more than n ranges at a time.

pr,rJru(t) = pT,u(t) = Pu > 0 (5)
—n=<u=<1 and u>-r

Proriu (t) u<-n (4)

Equation (5) tells us that the probabilities of shifts
upwards and downwards along the ranges of cell’s densities
are distributed in a manner independent of present cell,
despite of the limitations imposed by the impossibility
of descending below a given number of positions. This
postulate always leads to a density distribution which



obeys Pareto’s law at least asymptotically for high density
of cells.
We also need to assume that for each value of r and ¢

(oo} o0
S o)=Y prlt) =1 (6)
s=0 u=-—r
which by (5) also implies
1
> put)=1 (7)
u=—n

This assumption (6) expresses that all density of cells
preserve their identity throughout time in the manner
described in Section IV-A above.

One other assumption must be introduced in order to
ensure that the process is not dissipative, i. e., that the
density of cells do not go on increasing indefinitely without
settling down to an equilibrium distribution. Let us denote

9=)= 3 pust -z (8)

u=-n
then our stability assumption is that
1
g(1)=-— Z up, 18 positive. (9)
u=—n

This means that for all cells, initially in any one of
ranges R,, R,11, Rnto..., the average number of ranges
shifted during the next time is negative.

Now we may determine the equilibrium distribution cor-
responding to any matrix p;,r +u(t) = pru(t) conforming
to our assumed rules. Owing to the uniqueness theorem
mentioned above in Section IV-A, it will be sufficient to
find any distribution which remains exactly unchanged
under the action of the matrix p/ (¢) over time. This
distribution must be, apart from a multiplying constant,
the unique distribution which will be obtained by the
repeated action of the matrix multiplier p/ /() over time.

If X is the desired equilibrium distribution, we need by

(2), (4), (5)

1
X, = Z PuXs_y forall s>0

u=—n

(10)

and

S

vV=—"n

0

Xo = Z GuX_y where ¢, =
We need only satisfy (10), since (10), (4), (5) and (6)
ensure the satisfaction of (11) as well.

Now a solution of (10) is
Xs=10° (12)
where b is the real positive root other than unity of the

equation

g(z)= > pur Tt —2=0 (13)

uUu=-—n

where g(z) was already defined in (8).

Descartes’ rule of signs establishes that Equaliton (13)
has no more than two real positive roots: since unity is
one root, and g(0) = po > 0, and ¢'(1) > 0 by (9), the
other real positive root must satisfy

0<b<l (14)

Hence the solution (12) implies a total number of cells
given by
1
T1-b
and, to arrange for any other total number N, we need
merely modify (12) to the form

N’ (15)

X, =N(1-b)bp* (16)

Now we shall assume that the proportionate extent of
each range is 10", and that the lowest density of cell is
Ymin, then X, is the number of cells in the range R; whose
lower bound is given by

logioys = sh + 10g10Ymin
(17)
By summing a geometrical progression, using (16), we
now find that in the equilibrium distribution of the number
of cells exceeding y, is given by

Ys = 105hymm from where

F(ys) = Nb® from where logioF (ys) = logioN+slogiob
(18)
Now put
o =logiob™ " and ~ =logioN + logioymin  (19)
Then it follows from (17) and (18) that
logi0F(ys) = v — alogioys (20)

This means that for vy = yg,y1,y2..., the logarithm of
the number of cells exceeding y is a linear function of y.
This states Pareto’s law in its exact form.

Thus if all ranges are equal proportionate extent, our
simplifying assumptions ensure that any initial distribu-
tion of density cells will in the course of time approach
the exact Pareto distribution given by (19) and (20).

The very simple model discussed in this section brings
out clearly the tendency for Pareto’s law to be obeyed in
a “community of cells” where, above a certain minimum
value for cell’s spatial density, the chances of various
amounts of percentage change for the cell’s spatial node
density are independent of the initial density distribution.

The spatial node density distribution can be observed in
Figure 2 for the Quinta, Dartmouth and SF Taxis mobility
traces respectively. These curves show the probability of
finding a cell that was visited by y or more nodes at a given
interval, and were computed by extracting the number of
users visiting each cell at a given interval, i.e. [800s, 900s]



1 T

0.9 —— SDM il
Quinta Trace

0 I I I I

10 15
Density y (Nodes/cell)

(a) City park - GPS.

0.4 T

—— SDM
Dartmouth Trace|

0.35-

0.3r b

0.25- N

PY=y]
o
o
.

0.1r b

0.051 i

0 . .
100 150 200 250
Density y (Nodes/cell)

o
o
o

(b) University campus - Wi-Fi

0.4 T

—— SDM
—— SF Taxis Trace|

0.3r N

0.351

0.25- i

0.2 i

PLY =y]

0.15F q

0.1r b

0.05- b

;s
0 500 1000 1500 2000
Density y (Nodes/cell)

(c) Vehicular network in a city - GPS.

Fig. 2. Spatial node density distribution for the (a)Quinta,
(b)Dartmouth and (c)SF Taxis mobility traces, real mobility trace
distribution and the proposed analytical model.

for the Quinta trace, and a random non-interrupted time
interval of 24hrs for Dartmouth and SF Taxis.

The aforementioned figures also show the curve for the
model proposed in this section, that we call here the
Stochastic Density Model (SDM). The coefficients of the

stochastic matrix, used to parametrize our model were
extracted from the traces so that we could compare to
the empirical density and validate our model.

C. User Mobility as a Stochastic Process

Here, we define user mobility as the number of cells
visited by a mobile user over a given period of time. A user
with low mobility visits a small number of cells, while a
very mobile user visits a larger number of cells. Following
the assumption that user mobility follows a power law, as
indicated by our findings in Section III, we then present
in this section the user mobility distribution between an
enumerable infinity groups of users is also assumed to
develop by means of a stochastic process, in the same way
as in Section IV-A.

Following similar assumptions, the user mobility distri-
bution can be described in terms of the following vectors
and matrices. We define ©4(0), as the number 04(0) of
users in each range Dy, d = 1,2, ... in the initial time Tj
and a series of matrices p;lv (t) telling us in each time T}
the percentage of users of Dy who are shifted to range D,
in the following interval time T;y;. With these definitions
the user mobility distribution 04(¢) in the successive time
intervals will be generate according to

Z ®d pdv

As before we suppose that the ranges are ordered by size
(there being a lowest range of number of cells visited per
user Cp), then we can define a set of stochastic matrices

W+ 1) (21)

paf(t) = Pt 5(t) (22)
and rewriting (21) in the form
1) t+ 1 Z @v f pv f, f(t) (23)

f=—o00

par(t) then tell us the proportion of users in Dy who
shift by various number f of ranges in T;.

After some evaluations that follow similar assumptions
as in Section IV-B, we are able to find the equilibrium
distribution F(w,) of the number of users which the
number of visited cells exceeds w,.

Taking into account the model derived in this section
for the long tail distributions of number of visited cells
and spatial node distribution, in the following section we
present a new mobility regime that dictates how users
move around the simulation area.

V. STOCHASTIC DENSITY MOBILITY MODEL

In Section III, we show, based on empirical evidence,
that spatial node density resulting from human mobility
follows a power law. Besides validating our observations
analytically, another application of the Stochastic Density



Model (SDM) we developed in Section IV above is to gen-
erate mobility regimes that result in spatial node density
that exhibits heavy-tail behaviour.

We call the resulting mobility regime Stochastic Density
Mobility Model (SDMM) which works as follows. We
first define “cluster” regions (high density cells) using
SDM. These regions are cells where the concentration
of nodes visiting them is greater than a given threshold
Ymin; O, in other words, we use the tail of the density
distribution to derive the probability of a node choosing a
cell, thereby generating cluster regions. In the case of non-
cluster regions (low density cells), where the concentration
of node visits is below the ¥,,;, threshold, for the sake of
simplicity, we apply a uniform spatial density distribution.
The results shown here for one of the mobility traces
indicate that the uniform distribution is a reasonable
approximation for the low density distribution. However,
it is our ongoing work to study more closely the impact of
different known distributions to model cell density bellow
Ymin -

Below we provide a more detailed description of our
proposed model and describe how its parameters are set.
We highlight that one of the benefits of our model is
to generate node spatial distributions that are similar to
the ones found in real live mobile applications (e.g., the
traces presented in Section IT) without the need to extract
parameters from mobility traces.

A. Proposed Mobility Model

During the initialization phase, nodes can be distributed
in the geographic area according to any given distribution.
For simplicity, we then use a waypoint-based mobility
regime, contending that a mobility model should be simple
in order to be widely adopted. Thus, the steps involved
in the the movement are as follows. In Step (1), using a
probability distribution given by F(w,), a node decides if
it is going to move to another cell or not. In Step (2) the
node chooses its next cell using a probability distribution
given by F(ys). A (z,y) destination is chosen randomly
inside the chosen cell. In Step (3) the node moves to
that destination at a randomly chosen speed, uniformly
distributed between [Vmin, Vmax]. In Step (4) the node
pauses for some time, and repeats from Step (1).

More specifically, in Step (1), a node ! decides with
probability P(p;) if it will remain in the same cell, or if
it will choose a new destination in a different cell, with
probability 1 — P(g;). The number of different cells yy
visited by node [ is defined a priori by sampling from the
computed distribution F(w,). The probability P(y;) that
a user [ will remain in the same cell is computed as in
Equation 24, and this value of P(y;) is kept constant for
each node [ during the simulation.

P(u) = —=—2—

VYm € {1..L
Zm Hm { }

(24)

In Step 2 a node decides with probability P(u;) its next
destination cell. We assume that the probability P(u;)
that a node would choose cell i as a next destination
depends on the intensity pu;, that can be obtained by
sampling from the computed distribution F(ys), of every
cell i. The probability P(u;) is computed as in Equation
25, and this value of P(y;) is kept constant for each cell i
during the simulation.

P(ui) = =2 Vj € {1.N}

Zj Hj

As we previously pointed out, it is important to note
that the parameters for the proposed mobility regime do
not need to be extracted from real mobility traces. In the
proposed model we need to set only 4 parameters, namely
the speed range, pause time range, ymin, and the set of
coeflicients for the generating function in Equation 8. The
tuning of these parameters will depend on the parameters
for the scenario itself (e.g. total area, cell size, number of
nodes, cluster size, etc). In the simulation results presented
in the next section, we extracted the parameters from the
traces for a fair comparison between the proposed model
and the real trace. From the statistical study presented in
Section III, 4,,,sn, was found to normally fall between 10%
to 20% of the largest cluster (the highest node density).
The coefficients of Equation 8 can be set according to the
shape of the target density curve, considering: (1) the sizes
of the clusters one wants to simulate and (2) the total
population of nodes, which will provide an estimate of how
many clusters of each size can be simulated.

(25)

B. Simulation and Results

We validate our mobility regime by utilizing a modified
version of the Scengen [18] scenario simulator to generate
traces according to our proposed stochastic density mo-
bility regime. It is worth noting that the analytical model
presented in Section IV is generic enough that could be ap-
plied to compute the probability of choosing a node’s next
destination not only in simulations in ad-hoc scenarios, but
also in other mobility scenarios (e.g., WLAN scenarios).
Moreover, the parameters of our model can be adjusted
to represent different and arbitrary scenarios, without the
need to rely on real mobility traces. The results in terms
of spatial density distribution and user mobility, enabled
by our model, should fit the spatial characteristics found
in real human mobility or, at least, present the same
power law behaviour. Nonetheless, the proposed model
also allows, as shown in this section, that it is possible
to apply parameters extracted from real mobility traces,
if the goal is to represent some specific existing real human
mobility scenario, from where a mobility trace dataset was
made available.

In these experiments, a set of 10 synthetic traces were
generated using our implementation of SDMM in Scengen.
The results shown in Figure 3 refer to the Quinta trace.
In order to compare our model with an existing real



human mobility scenario we adjusted the parameters of
the simulation according to data extracted from a real
mobility trace. The speed range was set such that the
average speed would match the ones measured in the
GPS traces for Quinta. Pause times were chosen uniformly
in the range [0, P4z, where the value of P, was set
so that the average pause time would match the one
measured in the real traces. The same was done for the
dimensions of the rectangular simulation area, set to be the
same as in the GPS traces. Also, we used the same initial
positions found in the real trace for the same number of
users. Table IT summarizes the simulation parameters.

Parameter Quinta GPS Trace
Avg. Speed (£0)(m/s) 1.2(£0.53)
Avg. Pause (sec) 3.6

Total Area (meters x meters) 840x840

Cell Size (meters x meters) 140x140
Duration (sec) 900

# nodes 97

TABLE II
SIMULATION PARAMETERS.

Figure 3 shows the mean spatial node density distri-
bution for SDMM averaged over 10 simulation runs. The
error bars in this curve show the confidence interval for
a confidence level of 95%. The other two curves represent
the proposed analytical model presented in Section IV and
the empirical spatial node density distribution at end of
the trace collection interval, i.e., 900 seconds.

From these plots we observe that the density distri-
bution for SDMM regime follows closely the distribution
of the Quinta trace. We also observe that the difference
between those two curves and the curve for the SDM ana-
lytical model is quite small. Quantitatively, we define these
errors as a percentage difference between the distribution
for the real trace and the curve for the proposed mobility
regime taken at each point in the x-axis. In other words,
the error is the absolute difference between the spatial
distribution for the proposed model and the distribution
computed for the real trace, taken at each point in the
x-axis, divided by the corresponding value of the density
distribution given by the real trace. The mean error in this
case, averaging the errors computed for all points in the
x-axis is 14.82%, where the confidence interval is equal to
[11.72%,17.91%)] for a 95% confidence level.

VI. RELATED WORK

A key aspect of human mobility is user’s, or node’s
spatial density. There has been some effort in trying
to model user spatial distribution for mobile networks,
however, these efforts focus on modeling density of known
to be unrealistic random mobility models. To name a
few, authors in [6] and [7], propose analytical models for
spatial node density in simulations driven by the RWP
mobility regime. On the other hand, in a more recent effort
[8] a set of first order ODEs was used to model spatial
density where the model parameters are extracted from

real mobility traces. In the present work we are able to
closely model spatial density without the need for dataset
input. As an application use case, we apply our analytical
model in defining the probabilities of choosing a node’s
next destination in a new mobility model that is also able
to generate realistic node spatial density distributions.
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Fig. 3. Node Density Distribution.

Mobility models are indeed an indispensable tool in
the design, testing, and evaluation of wireless networks
and their protocols. To address the challenge of realistic
mobility simulation, a number of efforts have proposed
mobility models based on realistic mobility patterns [19].
Notable examples include [20, 21, 22, 23]. However, this
approach may limit their practical application in scenarios
where there isn’t any mobility data available.

More recent work focuses on the “scale-free” properties
observed in many real networks like the Internet, the Web,
and some social networks, to name a few. The seminal
work of Barabasi and Albert [24] proposes a model that
generates scale-free networks, i.e., networks whose node
degrees follow a power law distribution. One key concept
underpinning the Barabési-Albert model is referred to as
the preferential attachment principle which states that
“the more connected a node is, the more likely it is
to receive new links”. Several recently proposed mobility
models (e.g., [25, 26, 27, 28, 29]), try to mimic real human
mobility by following the preferential attachment principle
and aim on generating spatial node density that resembles
the one found in real mobility scenarios.

However, it was shown in previous work that using the
preferential attachment principle to model human mobility
leads to undesirable long-term behavior [5]. More specif-
ically, preferential attachment based mobility regimes do
not preserve the original spatial node density distribution
and lead to steady-state behavior similar to random mobil-
ity as exemplified by the RWP model. Instead, real human
mobility exhibits persistent density heterogeneity as shown
in [5]. In our work we take a different approach, where
we propose a model that may receive input parameters



extracted from real mobility records but is also able to
faithfully represent spatial node density that resembles
the one found in real-live mobility without the need for
extracting parameters from mobility datasets.

VII. CONCLUSIONS

We investigated in this paper human mobility and the
heavy tail characteristics of some important mobility met-
rics, such as spatial node density. In our study we analyze
a set of three very diverse real mobility traces. Those mo-
bility traces include human mobility in a park, a university
campus WiFi network and a vehicular mobility trace on
a city center. We applied sound statistical methods and
demonstrated that a power law distribution is a plausible
model for real human mobility and spatial node den-
sity in the diverse set of scenarios considered. Moreover,
we took advantage of the power law properties of such
important mobility metrics and proposed an analytical
model, regarding the spatial node density distribution and
the user mobility in a mobile scenario as a stochastic
process. We showed that our model approaches closely the
empirical data measured from real mobility traces. As our
final contribution we applied the equations derived from
the proposed analytical model to build a waypoint-based
mobility regime that is capable of generating simulated
mobility traces in which the engendered spatial node
density resembles closely the ones measured in real human
mobility scenarios.

In this work, the evaluation of our SD-Mobility Model
was performed in order to show-case a practical appli-
cation of our analytical model. Further evaluating the
proposed mobility regime and comparing it with spatial
and temporal characteristics found in real traces, extracted
from other real mobility scenarios, is part of our on-going
work. Moreover, we plan on studying the impact of our mo-
bility model and the spatial and temporal characteristics
mentioned, on core network functions, such as routing, for
example. This evaluation would involve simulating mobile
ad-hoc networks that evolve according to our mobility
model and comparing it against other mobility regimes
designed to account for the scale-free characteristics found
in real human mobility scenarios.
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